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1M! design of thiS fOC~et and gant:)' structure requires 11 basIc ~nowledge of 
both statics and dynamiCS. which form the subject matter of engineering 
mechanil::s. 



General Principles 

CHAPTER OBJECTIVES 

• To provide an introduction to the basic quantities and idea lizations 
of me<:hanic5. 

• To give a statement of Newton's Laws of Motion and Gravitation. 

• To review the principles for applying the 51 system of units. 

• To examine the standard procedures for performing numerical 
calculations. 

• To present a general guide for solving problems. 

1.1 Mechanics 

M~cJllmics is a branch of Ihc physical sciences lh:I' is concerned w;lh thc 
Slale of rest or mOl ion of bodies Ihal an! subjected 10 [he :lelioll of force$. 
In general. this subject c:In be subdi\'idcd into thrcc branches: rigid-body 
/IIt'dllmics. df'jumlllblt'.hoffy //ICc/lOll irs. andf/ilitilllt'rlwllics. In Ihis book 
we will study rigid-body mechanics since it is a basic requirement for thc 
study oflhe mechanics of dcfonnablt: bodies and Ihe mechanics of Ouids. 
Funhermore. rigid.body mechanics isesscmial (or the design and analysis 
of many types of structuT<llmcmbcrs. mechanical components.or eli:'ctrkal 
devices encountcred in I.'ngineering. 

Rigid-body mechanics is divided inlo two areas: statics and dynamics. 
Sfllliey deals with the equilibrium of bodies. that is. those that arc either 
al rCSI or move with <I constant velocity: whereas (iYIWlllieS is cona.'rncd 
with thc act'Clcraled motion of bodics. We can consider sta tics as a 
special case of dynamics. in which the acceleration is zero; however, 
statics deserves separale trealment in engineering education since many 
objecls Me designed wilh Ihe inll.'n liol1 that they remain in equilibrium. 



4 CH"'PfE~ 1 GEN~Ir"" l PRINCI PLES 

Historical Development. The subject of statics developed I'Cry 

carly in history because ils principles can be (onnulalcd simpl)' (rom 
measurements of geometry and fon;:o;. r-or example. Ill..: writings of 
Archimedes (287- 2]2 It.C. ) deal wilh the principle of the le\'er. Studies of 
the pulley, inclined plane, and wrench arc also recorded in ancient 
I'.Ti tings- al limcs when the requirements for cnginc~'ring were limited 
primari ly \0 building conmuclion. 

Since the principles of dynamics depend on an accurate measurement 
of lime. Ihis subject developed much later. Galileo Qalilci (156+-1642) 
was OIH: a rlh.:: first major COnl ribmors [0 this field. "lis work consiSted of 
experiments using pendulums and falling bodies. The most significant 
cont ributions in dynamics. howc\'cr, wcrc made by Isaac Newton 
(1~2-1727), who is nOlcd for his formulation of Ihe Ihree fundamenlal 
1:lws of motion and Ihe law of uni\'ers.11 gr:wil:l lional all raction. Shonl)' 
3fter these laws were postulated. important techniq ues for their 
3pplkation were developed by such nOl:lblcs as Eukr, D'Alem!len, 
ugrangc. and others. 

1.2 Fundamental Concepts 

Before we begin our study of engineering mechanics. it is important to 
understand the meaning of certain fUnd:lment:l1 concepts and prinCiples. 

Basic Quantities. The foll0\\1ng four quantities arc us<.>d throughout 
mechanics.. 

Length. Lmgtlr is US('d lQ loc,w.: the posit ion of a point in space and 
thereby describe the size of a physical system. Once a stand:lrd unit of 
length is defined. one can then use it to define distances and geometric 
propcrtks of 3 body as multiples of [his uni t. 

Time. Time is conceived ,IS a succession of events. Although the 
principles of statics aTC time independent. this quantity plays 311 
important role in the study of dynamics. 

Mass. MIISS is a measure of a quantity of mailer that is used to compare 
the ac tion of one body wi th that of another. This propeTly manifests itself 
as a gravitational allraction between IWO bodies :lnd provides a measure 
of the resistance of mat ter to a change in "elocity. 

Force. In gencral.fim·e is considered as a "push" or "pull "' exerted by 
one body on anolher. This interaetion can occur when there is di reci 
oontac[ between the bodies. such as a person pushing on a wall. or it can 
occur through a distance when the bodies ,I re physically scparat;;)d. 
Examples of the l:lller Iype include gfll\'ilalional. eleclric:ll. and magnetiC" 
forces. In any case. a force is completely characterized by its magnitude. 
din.:.;:tion. and point of application. 



Ideal izatio ns . Models or idcalizmions arc used in mechanics in 
order \0 simplify applicat ion of the theory. Here we ..... iIl consider three 
important idca lil~llions. 

Particle. A pI/nidI! has a mass. but a 5i7£ that can be neglected. For 
example, the size of the earth is insignificant cornpilrcd 10 the size of its 
orbit,a nd therefore the carth can be modeled as a panicle when studying 
ils orbital mOl ion. When II body is idca1i7.cd as a particic.lhe principles of 
mechanics reduce to a rather Simplified foml s ince Ihe geometry of the 
body ... iII ' 101 bl! ;m'okf(i in Ihe analysis of the problem. 

Rigid Body. A rigid botly can be considered as a combination of a 
large number of p(lrIidcs in which all Ihe part icles remain a \ a fixed 
dis l.mcc frolll one another. both before and after (Ipplying a Joad. lbis 
model is importanl because the mMerial properties of <l ny body Ihal is 
assumed 10 be rigid will nOl han: to be considered when studying Ihe 
d fecis of forces (ICling on the body. In mOSI eases the llctual dcfomlations 
occurring in structures., machines. mechanisms. and Ihe like arc relatively 
small . and the rigid-body assumption is suitablc for analysis. 

Concentrated Force. A crmCt'mrllft'(J j"rrt represents Ihe erfect of a 
loading which is assumed \0 act at a point on a body. We can represent a 
load by a concentrated force. prO\.ided the arca o\"cr which the load is 
:lpplied is vcry small compared to the ovcrnll size of the body.An e.~amplc 
would bc the oontaet force bctwcen a wheel and the ground. 

nuee forces act On tht hook at A . Since Ihesc 
f(lrces all mcet at a point. thtn for any ((lrce 
analysis.. ""c can assume Ihe hook 10 be 
,eprcscnted as a partick. 

Sled is a cOmmOn enllineerinll n ... tcri~llh~1 docs OOt deform 
,"Ct)' mllCh unde.I(l:>d.Thcrcfon:. "'"C can oonsilkr lhis rail.oad 
"'hed tobe a rillid body aeled upon b)· thc oollttntrntcd force 
of the mil. 

5 
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Newton 's Thre e l aws of Motion . Engineering mechanics is 
formulated on the basis of Newton"s three laws of mOlion. the validit)' of 
which is based on I:.~pcrimcn lal observation. These laws appl)' [0 the 
motion of a particle as measured from a /lQIII/cedeNt/ilIS rcfcrcneo.:: 
frame. They may be bricny Slated as follows. 

Firs t law. A part ide originally al rest. or moving in a straight line wilh 
constant velocit)'. lends to remain in this Slale prO\ided the particle is 1101 

subjected [0 an unbalanced force. Fig. I- la. 

"'Y" 
" Equ,hbf;um ,.) 

" 

Second law. A particle acted upon by an UllIN/lillie!'" force F 
cxpcricnC'cs an acceleration a Ih:1\ has the same di r('~ lion as the force 
and a magnitude Ihal is directly proport ional 10 the force. Fig. I- l b.­
If F is applied to a particlc o r mass III, this law mar be exprcssed 
malhernatil;'a llyas 

F = ilia ( I - I) 

Third Law. The mlllu:.1 Cortes of al;'tion aud rcal;'lion belween two 
particles arc eqllal. opposite. and collinc;lr. Fig. l- lr. 

/ 'pm: of A on H 

'~ F 
A H I... fo",",ofHonA 

fijt. I_ I 

'Slaled ~n<>lher w~l'. Ihe unb;llan«d force IICIln8 on Ihe parllck;$ Il""ponionallo lhe 
Ijme nile of change 0( Ihe pa",ck'5 liMa. momenlum, 



Newton's Law of Gravitational Attraction. Shorlly arter 
fommlating his three laws of mOl ion. Newton postulated a law governing the 
gravita tional attraction betwccn any t".-o j)drliclcs. Stated mathematically. 

where 

,.. '" Forcc of gravitmion between the two panicles 

G = universal constant of grnvitation; nu:ording to 
ellJXrimcntal evidence, G = 66.73( I O-t~) mJ/(kg· s!) 

lilt. III ~ = mass ofcm;h of the lWO panicles 

r = diSlal"lcc betwccl"llhc two panicles 

(1- 2) 

Weight. According 10 Eq. 1- 2. any two particles or bodies have u 
mutual attractive (gravi tational ) force acting between thelll. In the casc 
of a partide 1000:aled :.t or ncar the surface (If the earth, however, the only 
gravitational force having any sizable magni1Ude is thM between the 
e;lrth and the part ide. Consequently. this force. termed the weighl. will be 
the only gnll'il(lIional force considered in our study of mechanics. 

From Etl. 1- 2. we can develop an appro.~imate expression for finding Ihe 
weight IV of a particle having a mass lilt = III. U we assulllc the earlh to be 
a nonrotating sphere of cort~tant density and having 11 mllSS r112 = M,. lhen 
if ris the distancc between the earth's center and the particle. we have 

Letting X = GM,I' ! yields 

111M, 
IV = G--,­

r 

IV - 1118 I (1- 3) 

By comparison with F '" ilia. we can s..."<: th:lt Ii is the accclemtion due to 
gravity. Since il depends on ,.then the weight of a body is 11m an absolute 
qu(tntity. lnslead, its magnitude is detennined frOIll where the measurcm~nt 
was llIade. For most engineering clliculatiuns, huwever. g is detCmlinoo at 
sea level and at a latitude of 45°. which isconsidcr,,"(] the "standard location." 

1,3 Units of Measurement 

The four basic quan1ities - Ieng1h. time. mass. and force - arc nOI all 
imlcpcncJcnt from one another:in fact. they arc ,elllled b}' Newton's second 
law of mOtion, F = 111 >1 . Because of this. the IIl1ilS used 10 measure these 
qU11llli1ies cannot Ill! be selected arbitrarily. The equality F 0: mll is 
maintained only if three of the four units. called bal'C Imils. arc deft/It'll 
and the fourth unit is then derivl'(! fromthc eq uation. 

1.3 UNITS 01' MEASUREMeNT 

Th~ astronaut is wcighrl,,~ for all 
practical purpos~ ... since she is far 
removed from Ihe gravitational r",ld of 
Ihe earth. 

7 
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,.) 

fig. 1- 2 

SI Un its. The intcmmiomal System of units. abbrcvi;,h:d SI aftcr the 
French "Systemc In!Crn:llionai d'Unitt's," is .. mcxkrn \'crsion of the metric 
system which has received worldwide recognition. As shown in Tabk \- 1. 
the SI system defines kngth in IllCICrs (m).limc in seconds (s).and mass in 
kilograms (kg). The uni t of force. c;!lied a newton (N). is dl.'ril'clf from 
F = mao ThUs, 1 newton is l'qualto a force required \0 gh'e I kilogram of 
mass an acrclcmlioll of J m/ s2 (N :0 kg· m/s2). 

If the weight of .1 body located at .he "standard location" is \0 Ix: 
determined in newtons. then Eq. 1-3 must IX: applied. Here measurements 
give g = 9.806 6S m/ 52: however. for calculalions..lhc val ue 11 '" 9.8J 111/ ;;2 
will be used. Thus. 

IV = 1118 (g = 9.81 m/s~) (1-4) 

Thcrdorc. a body of mass I kg has a weight of9.81 N.:I 2· kg bod)' weighs 
19.62 N. and so on. Fig. 1- 2a. 

U.S. Customary. In the U.S. Customary s),stem of units (FPS) leng.th 
is measured in fec t (fl). time in seconds (s). ;md force in pounds (lb), 
Table I-\. 'Illc uni l of mass. e.[!led a .f/ug. is tleril'l.'(i from I' "" mao )-knee. 
I slug is equal to Ihe amuunt of mailer accelerated al I fl/ S2 whcn acted 
upon bY:I force uf 1 III (slug "" lb· s2/ft). 

Therefore. if the measurements arc made at tho.: "standard location:' 
where g "" 32.2 f1/52, then from Eq. 1- 3, 

I\' 
II! "" -g 

And SO;l body weighing 32.2 Ib has a mass of 1 slug. a fi4.4·lb body has a 
mass of2 slugs. Hnd so on. Fig. 1- 2b. 

TABLE 1- 1 Systems of Umt~ 

Name Length Time Mass Force 

Inlcrn~tional meter sccond kilogram I newton-I 
System of Units N 

51 m , k, (k'/) 
u.s. Customary roo' second Islug-I pound 

FPS (";:.:) " , ,. 
.I><.., .... ~ WIn 



1.4 THE INTERNATIONAl S~1€M OF UMlS 

Conversion of Units. Table 1-2 pro\'idcs a sct of direct conversion 
factors between FI'S and SI units for the basic quantities. Also. in the 
FI'5 system. recall that I fI ". 12 in. (inches). 5280 fI '" I mi (mile). 
1000 Ib =- I Idp (ki lo-pound).;\IId 2000 Ib '" I 1011. 

TABLE 1-2 Conversion Filctors 

Unilof Unit of 
Quantity Measurement (FPS) Equals Measurement (SI) 

Force Ib 4A48N 
M,u slug 14.5<) kg 
LenS1h " 0.30-1 8 m 

1.4 The International System of Units 

The 51 syslem or units is uSl!d eXlcnsivcly in this book since il is intended 
10 becollle Ihe worldwide standard for measuremcllt.l11ercfore. we will 
now present some of the rules for its use ~nd some of ils terminology 
relevant to engineering mechanics. 

Pref ixes . When a numerical quantity is either very IMge or vcry 
small. the units used to define its size may be modified by using a prefix. 
Somc of the prefixcs used in thc 51 system are shown in Table 1- 3. Each 
represents a multiple or submulliple of a unit which. if applied 
successively. moves the decimal point of a numerical quantity to every 
third platt.· For cxample. 4 000 000 N = 4 000 kN (kilo-newton) '" 4 MN 
(mega-newton). or 0.005 m = 5 mm (milli·meter). Notice th"t the S[ 
syslCm d~s nOI include the multip!.:: deca ([0) or the submultiple centi 
(O.O[). which form part of the melric system. Except for some volume 
and area measur,·menls.. the use of these prefi.~es is to be l\1'oidcd in 
science and engineering. 

TABLE 1-3 Prefu(e~ 

Exponential Form Prefi)( 51 Symbol 

AlIIWple 
I 000 COO COO 10' 111113 G 
1000000 Ill' mella M 
I 000 Ill' ~ilo , 
Submulliple 

0.001 10 ' milli m 
O.COO 001 10' micro • O.COO 000 00 I 10' nano " 
• n.., k'togrnnl is 'hf onty baloC uni, ,1", i. defined wilh" p,cI;". 

9 
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CompU!C";3,e ohen uscd in enginee,ing ror 
:><.h·anced d ... ign and anal)·~is.. 

Rules for Use. Here arc:. few of Ihe imponant rules Ihat describe 
the proper usc of the \'l.riOUS SI symbols: 

• Quantitiesdefined by scveml units which arc multiples of onc another 
arc scpar:lled by a rim to avoid confusion \lith prefL'I: notation. as 
indical<:d by N = kg· m/ sl = kg· m· s-2. Also. m . s (meter·second). 
wll\."reas ms (milli·second). 

• The exponential power on a unil having a prefix refe rs to both the 
unit 111111 its prefix. For cxample.~N! = (JLN)t = j.JN· p.N. Likewise. 
mm! rcpresents (mOl)! '" 0101· mm. 

• With the exception of the base unit the kilogram. in gener:.] avoid 
the usc of a prefix in the denominator of composite units. For 
cxample. do not wri te N/ mm. but rather kN/ m; also. m/ mg should 
be written as 1\·lm/ kg. 

• When performing calculations.. rC'p resent the numbers in terms of 
their btrst or t/cril't"d IlIIil~' by convcrting all prefix~'$ to pow\'rs of 10. 
The final result should then be expressed using 11 singlr PUfi.l . Also. 
after calculation. it is best to keep numerical values bet ll'een 0.1 and 
10Cl0; otherwise. a suitable prefix should be chosen. For CX1,mple, 

(50 kN)(60 nm) = [5O(IOl ) NI[6O(1O-9) mJ 
"" 3000(10-6) N· m = 3(IO- J ) N· m = 3 mN · m 

1.5 Numerical Calculations 

Numerical work in engincering practice is mOSt often pcrfonned b)' using 
handheld calculators and computers. It is important. hOIl'e\'er. that the 
answers to any problem be reported with both justifiable accuracy and 
appropria tc significant figu res. In this section we will disellss th\'se topics 
together with some other important aspects in\'olved in all engineering 
calculations. 

Dimensiona l Homogeneity. The lemlS of :lIly etluation used to 
deseribe a physical process must be Ilillle/ll'iOllllfly IWlllogelll.'o/ls: Ihat is. 
each term mUSI be expressed in the Slime unlls. Provided this is the case. 
all the IcmlS of an equalion , an Ihen Ix: combined if numerical va lues 
are subslilnted for the variables. Consider. for example. thc equation 
s '= ~'t + ll1fz, where. in SI units.s is the position in meters. m. t is time in 
seconds. s. v is \·docit)' in ml s :md II is acceleration in III/ SZ. Rcgardless of 
how this equation is evaluated. it maintains its dimensional homogeneity. 
In the form staled. each of Ihe three terms is expressed in lIleters 
[m.(III/ t)3', (m/ sl)sl.J or soll'ing for 11.11 = 2.s/' ~ - lV/ I . the temlS arc 
each c~prcsscd in unilS of III/ S! 1m/s!o m/sz, (III/S)lSJ. 
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When soh'ing problems. do lhc work as 
ocatly as possible. Being OC3t w<l l stinlulacc 
dear and orderly thinking. and vice \'CI'Sa. 

1.6 General Procedure for Analysis 

The most efkeli,'e way of learning the principles of engineering mechanics 
is to soll'l! probll'lIu. To be successful at this. it is important to alw3Ys 
present the work in a logiclll and oflkrly /lUI",,,:r . as suggested b)' the 
following sequence of steps: 

• Read Ihe problem carefully and Iry 10 correiate the aclual physical 
situation wilh Ihe Iheory studied, 

• Tabulate Ihc problem dala and draw an)' nl.'cess.u y diagrams. 

• Apply the rcle,'ant principles. generally in mathematical form. When 
writing any cquations.. be sure they ;Ire dimcnsionally homogcncous. 

• Solve the neceSS'IT)' equalions, and reporlthc answer with nO more 
than three signifkant figures. 

• Study thc answer wi th tcchnic'l l judgment and common sensc to 
determine whethcr or not it seems reasonable. 

Important Points 

• Statics is the study of bodies thaI arc al rest or move with 
constant veloci ty. 

• A particle has a mass but a size thaI can be neglected . 

• A rigid bod)' docs not deform under toad. 

• Concentrated forces arc assumed to act at a poi nt on a bod)'. 

• Newton's Ihree lawS of motion should be memo rized. 

• Mass is measure of a quantit ), of maHer that docs not change 
from one location to 3nother. 

• Weight refers to Ihe gravitational attractiOn of the eanh on a 
body or quantity of mass. Its magnitude depends upon the 
elevation at which the mass is located. 

• In the SI system the unit of force. the newton. is a derived unit. 
The meter. second, and kilogram are base units.. 

• Prefixes G, M.I:. m. j.I., and n arc used to represent large and small 
numerical <Iuantilies. Their exponential size should be known, 
along wilh the rules for using thc SI units. 

• Perform nume rical calculations ",ilh several Significant figures. 
and then repon the final answer to three significant figures. 

• Algebraic manipulations of an equation can be checked in part by 
verifying that the equation rcmains dimensionally homogeneous. 

• Know the rules for rounding off numbers. 



1.6 GENEAAl PROC~OU~E FOR ANAI.'I'SIS 1 3 

Convert 2 kmj h 10 lU/ S How many rtfs is Ihis? 

SOLUTION 
Since I kin " lOOOm and 1 h = 36005,lho:: f(lC lors of conversion arc 
~rnl1lgcd in Ihc following order. so Ihal <1 canccllation of Ihc unils C<ln 
be applied: 

Zk m/ h = 2~Co:m)(~J 
2000m 

~ -- = o 556 m/' 3600 S . 

Frain Table 1- 2. 1 fl :0 0,3048 In. Thus. 

O / _ (~)( If' ) .556 m S - "'''8 S O . .>Vi m 

,. 1.82 fl/S Ails. 

NOTE: Rc m.::m bcr 10 round of[ Ihe final answer 10 Ihre.:: significanl 
figures. 

Com'eri Ihe quantilics 300 lb· sand 52 slug/ ft l to appropri<lle 51 unils. 

SOLUTION 
Using Table 1- 2. 1 Ib ,. 4.448 2 N. 

3OOIb · s " 3OOU1,s(4.~N) 

= 1334.5N·s = 1.33kN's All$. 

Sinc.:: 1 slug '" 14.5938 kg and I fl :0 0.304 8 m. then 

52slug/rt3 = 52~(14.59kg)( J. )' 
k' 1~ 0.3048m 

= 26.8( HY) kg/m3 

= 26.8 Mgjm1 Ails. 
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EXAMPLE 1 .3 

EvalulIIc each of the following and express with 51 units having an 
appropriate prefix: (a) (50 lllN)(6 GN). (b) (400 mm)(0.6 MN)l . 
(c) 45 MNJ/ 900 Gg. 

SOLUTION 
First convert cach nUlllb<':r to bas.:: units., perform Ih..: indicated 
operations.. tht'n choose an appropriatc prefix. 

Part (a) 

(50 mN)(6 GN) = [50(10-.1) N][6(1O~) N] 

= 300{1d') NZ 

~ 300('0' N'(~)(~) 
) \OJ ~ I!YX 

= 300 kNl 

NOTE: Keep in mind the convcntion kN2 = (kN)2 = ldi Nl . 

Part (b) 

(400 rn lll )(O.6 MN)2 = ]400(10- 3) rnIl0.6(10") Nf 

= [400(10- J) rn][0.36(1O!2) N2J 

= 144(109)rn·N2 

= 144 Grn-N" 

We can also write 

Part (e) 

45 MNl 45{ltr N)' 
900 Gg = 900(Hf) kg 

Am:. 

Am:. 

Am:. 

Am: 



• PROBLEMS 

I_ I. Round of{11\e followmg numbers 10 three signifICant 
figures: (a) 4.6S7J.~ m. (b) 55..S7S So. (el 4555 N. and 
(d) 276!! 1;;. 

1_2. Repre~nl each oIllIe follo'Mog combinations of units 
In the corrccI SI form usmg an appropnale pre6x: Cal ",MN. 
(b) N/".m. (c) MN/ tr. and (d) kN/ ms. 

1-3. Represent each of 11M: following quanli,,,,'s In Ihe 
com:<:1 SI form using an appropriate prefix: (a) O.OO)..jJI kg. 
(b) 35.3(10' ) N. and (el 01WJ2 km. 

·,_t Represent eath of the following tombinalions of 
units In Ihe rom:CI 51 form: (a) MgJms. (b) N/ mm. and 
(e) mN/ (l.:g· ~). 

1 -.~ Represent each of the follov.ing combinations of 
I,mils in the OOITOO 51 fonn using an appropriate prefi~: 

(a) kNt ,..!.(b) MYrnN.and (e) MNf (kg· msl, 

1-6. Represent each of Ihe fOllowing 10 three significam 
figures and express C~d1 answer in SI units using an 
approprilUe prcfi.\: (a) 4S 320 kN. (b) S68(](f') mm. and (e) 
0.00563 mg. 

1-7. t\ rork':l has a mass of 250( ]()l) s]ugs on eanh. 
S~cify (D) ilS mass in SI unils and (b) ils weighl in SI uni.s. 
If Ihe rorket is on the moon .... here Ihe acceleralion due 10 

gmvily is r •• 5.30 fl / Sl . determine 10 Ihree significanl 
figures (e) it! " 'Clghl In SI unllS and (d) ils mass In SI units. 

°1-8. If a u r IS .ra,·ehngal 55 mij h.delermine ilssp«d in 
kIlometers per hour and meters ~r serond. 

1_9. 'Ibe P'IJ(u/ (Pa) is aclualt)· a "ery smalt unil of 
pressure. To show lllls, con"ert I Pa _ I N/ml 10 lb/ lt!. 
1\lmosphenc pressur~ at sea lel'd is 1-I .7Ib/ inl . How many 
p;lS(als IS thIS? 

I- Ill. What is the ... eighlln ne ... tonsof an objca Ihal has a 
mass of: Ca) \0 kg. (b) 0.5 g. and (e) 4.50 Mg? B:prcss lhe 
result to three sigmficant figures. Usc an appropriate prefi:t. 

I- I I. Evaluate each of the following to three sigmficant 
figurcs and express each ans ... cr in SI units using 
an appropriate prefi~: (a) 3S-1 mg(45 km) / {O.Q356 kN). 
(b) (O.rot 53 Mg)(201 nls). and (c) 435 MN/ 23.2 mm. 
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° 1_1Z. lbc speCIfIC "''Clght ("" ./ , '01 .) of br:J.S5 IS 520 lb/ fIJ• 
Determine lIS denSily (maS$/ ~oI.) In SI unil" Use an 
appropriatc prerLl. 

I - IJ. Con"':rt each 01 the follOl',mg 10 three sigmficant 
figures: (a' 20 lb· II to N· m. (b) -150 Ib/ le to kN/ ml. and 
(e)]S ft / h to mm/'" 

1- 14. 'Il\c demll)' (mass/ volume) of aluminum IS 
5.26 slug/ft). Determine liS dcnsily 10 SI units. Usc an 
appropnate prcfi:t. 

I- IS. Water has a deMlty of 1.9~ slulYft). What IS the 
density u preucd in SI units'/ Expre$li the ans"·cr to three 
sigmfic:anl figures. 

*1- 16. 1' .... 0 particles hal'e a mass of II kg and 12 kg. 
re~pc(,1iwly. If they are 800 mm ~vart. de termine the force 
of gm"ity aCllng bet ... ·een Ihem. Compare this r~sult "ilh 
the weight of ~lIch pa rticl~ . 

1- 17. Detcrmine Ihe m~ss in kilograms of an object that 
has a .... eight of (a) 20 mN. (b) 150 kN. and (c) 60 MN. 
Elc:press the ans .... er to three significant figurcll. 

I- III. E"alume each of the fol1o .... ing 10 Ihree SIgnificant 
figurcs and urr~ss ~ach an$ .... er In SI units uSing an 
appropriat ~ prerlX: (a) (200 kN)l, (I)) (0.005 mm)! . and 
(c) (400 mIl. 

1- 19. Using the ba'IC umlS of the SI system. show that 
Eq. 1- 2 is a dImensionally homll&eneous equallon .... hich 
gI"c' Fin newtons. Detenntne 10 three signIficant figures 
the gravitational forec acting bc' ... ·een t .... o spheres that 
are touch,"! each othe r. The mass of eKh ~phere is 200 kg 
and the radius is 300 mm. 

"1- 20. Evaluale each of the foliOll'ing to three sLgniflcant 
figu res and express each ans ... u 10 SI units uSing an 
appropriate prefix: (a) (0.631 Mm)/ (8.60 kg)!. and 
(b) p5 mm)l(4S kg»). 

1- 21. £'1Ilu3te (21}.t mm)(O.OOa7 k,)/ (J-' .6 N) to three 
significant figures and expr~ss Ihc answ~r in SI umts using 
an approprinlc prcfi:t. 



This bridge tower is stabilized by cab1es that exert forces at the points of connectIOn. 
In thIS chapter we will show how to e><ptess these forces as CarteSIan vectors and then 
determine the resultant force 



Force Vectors 

CHAPTER OBJECTIVES 

• To show how to add forces and resolve them into components 
using the Parallelogram Law. 

• To express force and position in Cartesian vector form and explain 
how to determine the vector's magnitude and direction. 

• To introduce the dot product in order to determine the angle 
between two vectors or the projection of one vector onto another. 

2.1 Sca lars and Vectors 

All physica l quanlitit.-s in engineering mechanics arc measured using ei ther 
scala rs or vectors. 

Scalar. A 5Cf/lllf is any posilh'c or ncgalh'c physical quantity that can 
be compklCly spcdficd by lIS 1I111!;lIiIW/", Examples of scalar quantities 
include length. mass. and lime. 

Vector. A I'~C/Q' is any physical qvamity that requires both a 
m(lgl/illl/le and a di(utiQn for its complete description. Exilmples of 
,'ectors encountered in statics arc force. position. and moment. A ,'ector 
is shown graphically by 3n arrow, The length of the urrow represents the 
IIIl1gllilllll" of the ,'ec tor, and the angle 0 betweell the vector and a fh:ed 
axis defines the directioll of its lille of Of Ii Oil, The he,ld or tip of the arrow 
indicates the Sl'IISt' of dirn:filJll of thc "eclor, Fig. 2- \' 

In print, v\.'(:tor quanlilies are rcpreSo.'nled by bold face ICllers sueh as 
A . and ils magnitude of Ihe ,'eelor is italicized. A, For h.mdwriuen work. 
it is often oon,'e~i<:!!! 10 denote a ,'cctor quantity by simply drawing.m 
arrow on top of It, JI • 

Fi~. ! - I 
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2.2 Vector Operations 

Multiplication and Division of a Vector by a Scalar. If a 
\'e:c tor is multipl ic:d by a posit il'c scalar. its magnitude is incrcascd by th~lt 
amount. When multiplied b)' a negative scalar it will also change the: 
di rectional sense of the ,·ector. Grdphic examples of these opcr.ltions arc 
shown in Fig. 2-2. 

Vector Addition. AIl .. eclor quantities obey the (JllflIlld(,g,om/ow 
of IUfdilimr. To illustrate, the two "compO/rem" "ee/ol'S A and B in 
Fig. 2- 311 arc added to form a ",,.SII/'I11"" ,·t'c/or R = A + 8 using the: 
following procedure: : 

• First join the tails of the components al a point so that il makes 
them concurre:nt. Fig. 2- Jb. 

• From the: head of n, draw a line p3rallclto A . Draw anothe: r line 
from the he:ad of A that is parallel 10 B. These twO line:s inle:rseet at 
point P 10 form the adjacent sides of a paralldogrum. 

• The diagonal of this parallelogram that eXlends 10 I' forms R , which 
then re: prcsenls the rcsulHlnl l'ector R .. A + B. Fig. 2- 3c. 

/ < 
•• 

" 
" 

~ • 
K _ ,\ -+ R 

l'aml"'l<J&r:I"' Low 

(0) (0' ,,) 

fig. 2- J 

We can 81so add B to A. Fig. 2-40. using the 'filllrglt' TIfft'. which is a 
special casc of Ihe parallelogram law. wh(:rcby vector H is added to 
I'<:Clor A in a "head-Io-Iail"' fashion. i.c .. by connccling the head of A 10 
the tail of B. Fig. 2-4b. The resultant R e~lends from th,;: tail of A to the 
he:ld of n . ln a similar manner, R can also Ix! obtained by adding A to n . 
Fig. 2-4c. By comp:lrison. il is see:n thai \'ector addition is comrnul1llil'c: 
in ol l\e: r words. the "cctors can Ix! added in dthcr order. i.e: .. 
R = A + B = B + A. 



,.) 
R _ ,\ + 8 

T1i~nKlc rule 

Ib) 

1l _ 8 + A 

Tr.angle rul~ 

,<) 

As a special case, if the IWO "CCIOn> A and 8 arc W/lill((lf, i.e .. bolh 
h:l\'c the lI:lmc line of aClion. the parallelogram law reduces 10 an 
/I/g~b",ir or l"CI,llIr mltfirioll R = A + 8. as shown in fig. 2-5 . 

• : . • , 

Addillon of rolti J\C~' ' "«tOB 

Fig. 2- 5 

Vector Subtraction. The resu ltant of the tfiffrrmCl' between Iwo 
VCC;[ors A and n of lhe same I)'PC may be expressed as 

R' = A - II = A + (-8 ) 

This vtClor sum is shown graphica lly in Fig. 2-6. Subtraction is therefore 
defined as 11 special case of addition. so the rules of "CClor addition also 
apply 10 vector subtract;oll. 

I 
• 

2.2 VECtOR OP€RATlONS 

Triangle OOIImunioo 

'9 
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The p~talkloglam bw muse he used.o 
determine .he rcsullall' <If the ,wo 
fOKes at1ln1 On rhe hook. 

2.3 Vector Add ition of Forces 

Experiment,tl evidence has shown Ih;lt a force is a ' "CeIOT quanti l)' since 
il has a specified magnitude. direction, lind sensc and il adds according [0 
the parallelogram Jaw. Two common problems in Sl31ics in\'oJve either 
finding the resultant force. knowing its components-or resolving a known 
fo rce iOio two componentS- We will now describe how each of these 
problems is soiv(!d using lhe parallelogram Jaw, 

Finding a Resultant Force. The Iwocomponcnl forces F, and Fl 
acting on Ihe pin in Fig. '2- 711 can be added together to form the resultnnt 
force F II :;;: FI + F!. 3S shown in Fig. 2_711. From th is tonslruttion. or u~ing 
thc tri:mgle rule. Fig. 2- 71'. wc can apply the law of cosines or the law of 
sines to the triangle in order to obtain the magnitude of the resultant 
force and its direction. 

< 
" y~ 

'. '. . 
t·, t·, 

.'~- .',+ I', 

Us,", Ihe parallelogram 13,,· force f 
ClIur.cd by rt.c "cnic:ll member can be 
resoh'w inlocomponcn15 Dering along 
the suspt"llsion ... bles II ~nd b. 

,.1 'M "I 
Hg. 2_7 

Finding the Components of a Force. Sometimes it is 
necess;lry to resolve a force into two COWPOllt'll/S in order to study its 
pulling or pushing effect in two specilk direc tions. For example. in 
Fig. 2-&1. F is to be resolved in to two components along the two 
memhers. defined by the /I and II axes. In ordcr to determine the 
magnitude of each component. a parallelogram is constructed first. by 
drawing lines staning fro m the tip of )<". one line paral1clto I' . and the 
other line par"Uclto tI. These lines then intersect wi th the tI and /I axes. 
forming a parallelogram. The force components F. and F~ arc then 
established by simply joining the tail of F to the intersection points on 
the ,. and II axes. Fig. 2-8b. This p:.rallelogram can then be reduced 10 a 
triangle. which represents the triangle rule. Fig. 2-&. From this. the law of 
sines can then be applied to determine th.:: unknown magnitudes of th.:: 
COmponents. 
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" , 

"""""-------" 
", ,>, 

Addition of Several Forces. If more than twO forces arc to be 
added. successive applications of the parallelogmm law can be carried 
out in ordt'r to obtain the resultant force. For example. if three forces Fl' 
."2. FJ act at a point 0, Hg. 2-9. the resultant of any IWO of the forces is 
found. say . • \ + F!-:lIId then this resultant is added to the third (orce. 
yielding the resultant of all three forces: i.e .. • "If = (Fl + F2)+FJ . Using 
the parallelogram law 10 add morc Ihan t ..... o forces. as shown here. of len 
requires extensive geometric and trigonometric c:deulalion 10 determine 
Ihe numeric .. l \' ~Iues for the magnitude and direction of the result~nl. 
InSlead, problems of Chis type are easily solved by using lhe "reCltlOgular­
component method." which is e.~plained in Sec. 2.4. 

"b~ r~suhan1 fore<: F. 0 11 Ih" hook 
"''lui",. lhe :>ddilion of F, + .. ,. Ihen thi~ 
,esu\1nnl i. added 10 . ... 

,<, 

t·, 

, . • 

21 
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0 ,., 
" "-

'. 
"I 

n ' . 
C 

Cosine law: 
C · ,'AI .. & ZA lJro< c 
Sinc la,,: 

;I --1L""ii~ ~,o a sio b ~'n r 

,<, 
~11:.l- lO 

" 

Procedure for Analysis 

Problems lhat involve the addition of lWO forces can be solved as 
follows: 

Parallelogram law. 

• Two "componenl" forces Fl and F2 in Fig. 2- 106 add according to 
the parallelogram law. yielding a re:m/lalll fo rce F Rthat fonns the 
diagonal of the paralle logram. 

• If a force )- is to Ix: resolved into ('IJmfl(Jltl'lII$ along two axes 1/ 

and v, Fig. 2- IOb. Ihen start allhe head of force. F ,lnd construct 
lines parallcl to Ihe axes. thereby forming Ihe paralleIOgr~m . The 
sides of the parallelogram represent the ,omponents. F~ and For 

• Label ~11 the known ~nd unknown force magnitudes and the 
angles on the sketch and identify the two unk nowns as Ihe 
magnilude and direction of Fl!. or the magnitudes of its 
components. 

Trigonometry. 

• Redraw a half portion of Ihe parallelogram 10 illustrate the 
triangular head'lcrtaii addi tion of Ihe componenls. 

• From Ihis triangle. the magnitude of the resuhant force can Ix: 
determined using the law of cosines. and its dir.::clion is 
determined from the law of sines. The magnitudes of two for,e 
componentS arc determined from the law of sines. The formulas 
arc given in Fig. 2- lIk 

Important Points 

• A sc:alar is a posi tive or negaliV!! number. 

• A vector is a quantity that h3s a magnitude. direclion. and sense. 

• Multiplication or division of a vector by a scalar will change the 
magnitude of the \·ccIOT.llle sense of the vector will change if Ihe 
SC:lllar is negative. 

• As a special case. if Ihe vectors arc eollinl'ar. Ihe resullant is 
rormed by an algebraic or scalar addition. 
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EXAMPLE 2.1 

The screw eye in Fig. 2-11a is subjetled to 11'.'0 forces. . '1 and F 2• 

Determine the magnitude and direction of the resultant force. 

(., 
SOlUTION 

Parallelogram Law. The parallelogram is formed by dr'lwing a line 
from the head of FI thai is parallcl lO F!. and another line from Ihe 
head of F! Ihat is p,lraUelto Fl' The resultant force F II extends to where 
these lines intersect at point A. Fig. 2- 1 lb. The two unknowns arc the 
magnitude of .'It and the angle 0 (theta). 

Trigo nometry. From the parallelogram. Ihe vector triangle is 
constructed. Fig. 2-lic. Using the law of eusines 

F II = '1'(100 N)2 + (150 Nf 2(100 N)(150 N) cos liS" 

= '1'10000 + 22500 30000( 0.4226) = 212.6N 

= 2l3N 

Applying the Il,w ofsincs to detcrmine 0, 

150 N 212.6 N 
sinO sin 115° 

sin 0 = 150 N (sin 1[5°) 
212.6 N 

0 '" 39.So 

TIIUs. the direction", (phi) of F,... measured from Ihe horizontal. is 

4> = 39.8" + 15.0" = 54.8" A m: 

NOTE; The results secm reasonable. since Fig. 2-llb shows F li to ha\'c 
a magnitude larger than its components and a direction that is 
between Ihem. 

<Kr - 25"" 65' 
(>, 

,", 
"'" 

Fig. l-I I 

23 
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EXAMPLE 2.2 

..,,, 

(., 

Rcsoll'e the horizontal 6OO-lb force in Fig. 2- 1211 inlU eomponcms 
acting along the II and v a~l-S and determine the magnilUdl's ofthesc 
components. 

" 

""" '. 
c /' 

(,' 

/ , 
'" fig.l-12 

SOLUTION 

The parallelogram is constructcd by extending a line from the /reml of 
thl' 600-lb force parallel 10 the u axis until it intersects the II axis at 
point 8. Fig. 2- 12b. 'The arrow from It to 8 n::prescnts F.,. Similarly. 
the line extended from the head of the 6(X}.lb force drawn parallclto 
the /I axis intersects the v axis at point C. which gives F<, 

1111; \'cctor addition using the triangle rule is ~hown in Fig. 2- 12c. 11lc 
two unknowns arc the magni tudes of Fu and F., Applying the law of 
sines. 

F" 0: 1O]91b 

~= 600lb 
sin 300 sin 300 

All$. 

NOTE: The result for FlO shows that sometimes a componcnt can ha"c 
a greau:r magnitude than the resultant. 
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EXAMPLE 2.3 

Determine the magnitude of the component force F in Fig. 2- 1311 and 
the magnitude of the resultant force FR if FR is directed along the 
positive y axis. 

" I 

" 
" 

,.) '" 
fig. 2- 13 

SOLUTIO N 

The parallelogram law of addition is shown in Fig. 2- 13b. and the 
triangle rule is shown in Fig. 2- 13c. The magnitudes of F Rand .,. are the 
two unknowns. They can be determined by applying the Jaw of sines. 

F 2001b 
sin 60" sin 45" 

F = 2451b 

~ = 2001b 
sin 75~ sin 45" 

Am: 

re) 

2S 
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EXAMPLE 2.4 

F,. gooN 

,~1-+-' 

,., 

It is req uired that the rcsultant force acting on th~ eyebolt in 
Fig. 2- 14a be dircl:ted along the posHi"e .r axis and thaI F2 have a 
minimum magnitude. Determine this magnitudc. the angle O. find the 
,orresponding rcsultant for,e. 

F, _ SOO N 

SOLUTION 

'. 

(>, 

, 
• 

H I!;. 2-14 

, 
F, _ SOON I , , , 

L ":"'L,;J'---'---- -'-, ,". . .... 

,<, 

The triangle rule for FI( = F, + F2 is shown in Fig. 2- I-lb. Sine:.:: the 
magnitudc~ (lengths) of F I( and Fz arc not specified. then Fz ,an a,tually 
be any vector that has its head touching Ihe linc of action of 1-'1(. 
fig. 2- 14c. Howt\'cr. as shown. the magnitude of F2 is., minimtlm or the 
shortcst length whcn ils line of action is fU"I'~lIllklll(Jr 10 the line of 
aClioll of Fl(. that is. when 

0 = 90° An$. 

Sin,,, the ve,tor 3ddilion now forms a right triHnglc, the two unknown 
magnitudes can be nhl"ined by trigonomctry. 

F I( = (800 N)<:os 60" = 400 N AIlS. 

Fz = (800 N~in 60" = 693 N 



• FUNDAMENTAL PROBLEMS' 

f"..-I. IXlcrminc tlie magnitude of the r .. sultan! force 
acting on Ihe 5(rew eye and ils direction measured 
clockwise from the.r axis. 

HN ' '1-1 

P2- l. Two forces a.1 on the hook. Determine Ihe 
magnitude o(\he resultant force. 

H - 2 

F2- J. Determine llie magnimdc of the resultant (ora: 
and it~ dire"lion measured counterclockwise from the 
posi lh'c .,' axis. 

t'2- J 

2.3 V€CfOR AoortION 01' FOItCES 27 

t"Z- t Resolve the JO..lb force ;1110 components along Ihe 
"and I) a.~cs. and determine the magnitude of each of Ihew 
components. 

''1-< 

t"!- S. The force F '" 450 lb acts on Ihe (rame. Resolve 
this (orcc into componenls aC1ing along member.; AS and 
AC. and delcml;nc Ihe mUJ;Ilitudc of cacti companelll. 

t'2-5 

t'2-<i, If force F is 10 have a component along the" axisof 
1'. _ (>I:N, delermine the maj;l1itudc of . ' and lhe 
magnitude of its component F" along the !J axis. 

• P3,":tl :«,Nul;,,"! 3nd 3n$W~" 10 all Fund:lm~nl.1 Problems ar~ given in Ib~ b.ct uf the bQok . 
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• PROBLEMS 

.2-1. If 8 - 30" and T - 6 kN. determine the magnitude 
of Ihe rC$ullant force acting on Ihe 1.')'1.'0011 and its dir.::clion 
measured clockWise from the posi tive .( axis.. 

2-2. If (J _ fI.'f' and T _ 5 tN. determine Ihe magniludl.' 
of the resultant force acting on the eye boll and its direction 
meflSurcd clockwise from Ihe posi li\'c .J axis.. 

2-3. If the magnitude of the resultant forre is 10 be 9 kN 
directed along Ihe posit;"c xaxis,octcrminc the magnitude of 
force T ~Iing on the eyebolt and ils :Ingle O. 

T 

~-IJI-~-··' 

('robs. l- l/lIJ 

. 2-4. Determine Ihe magniUlde of the resultant forcl.' 
acting on Ihe bracket and ils direction measured 
oo\mtcrdod:wisc from Ihe po$it;I'C II a_~is. 

·Z- 5. Rcsoll'c FI inlo components along llie" and v axes. 
and determine the magnitudes of these components. 

2-6, Rcsol,·c F! ;n10 components along Ihe " and 1/ axes., 
and delCrnl;ne Ihe nlaJllillldcs of Ihcse oo"'pQnenl$. 

l' rob!<.l-4I5I6 

2-7. If foB - 2 kN and the re~ultanl force acts along the 
positive" axis. delermine Ihe magnitude of the resultant 
force and the angle 9. 

"2-3. If thc resultant force is required to aet along Ihe 
posilh'e" uis and ha"c a magnitude of S kN.dclermine the 
required magnilude of f Band ils direc.ion 9. 

Probs. 2-718 

' 2-9. 1lIc plDIC is subjttled to the t,,·o forces at A and 8 
as shown. If 9 - «1'. determine Ihe magnitude of the 
resultant of these two forces and its direction measured 
clock,,·ij.C from the horizontal. 

2-10. Determine the angle of 9 for connecting nlcnlbcr A 
to lhe plate 5() Ihat the resultant force of f A and f a is 
directed Iiorizontally to.he right. Also.. wll." is the nlagnitude 
of lhe rcsUI13n! force? 

• 

~ F. _ f>kN 

I'ml~ 2-9/10 



2- 11. If the tellsioll in the table is 400 N. detennine tbe 
tn:Igllitudc and di rection of the resultant fon:e acting on 
the pulley. This angle is the same angle 0 of lille AB on the 
tailboard bind:. . 

, 

I' roo. !-Il 

*2- 12. The devke is used for surgical replacement of the 
knee jomt, If the force 3"illg along the kg is 360 N. 
de tennine its componenls along the .f and y ' axes. 

oZ_IJ. The device is used for surgical replacement of the 
knec joint. If the force acting alollg the leg is 360 N. 
de termme it5 components along the.t· and r axes. 

!'rob§.. 2- IUIJ 

2.3 V{CTOR AOOl110N 01' FO!tC€s 29 

!-14. [ktennine the design angle 0 to" s 0 s 90") for 
strul JI B so that the 4OI).Ib horizontal force has 3 

component of 500lb directed from A to ..... ards C. What is the 
component of force acting along member AB? Take 
<b - 4Q". 

!-15. Delennine the design angle <b to" s <b s 90") 
bet"'ecn StrulS AB and lie so thai the 4OI).Ib horizoncal 
force has a tomponem of 600 lb which aclS up 10 the left. in 
Ihe same direction as from B to,,·ardsA.Takc 8 - 30" . 

.100 Ib A 

" 

c 

!'rob!>. !-14I15 

*2-16. Resolve t'l inca components along the" 8nd u axes 
and (\ctermine the magnitudes of these tOnlponents. 

02-17. Resolve f ! into components along Ihe" and u axes 
and dete rmine the magllHudes of these componenls. 

F, - ZSON 

!'robs. 2- 16117 
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2- 1 ~. 'l'he truel: is to be lowed using IWO ropes. Delcnn;nc 
the magnitudes of forces f " and F II acting on each rope in 
order 10 dC"clop a resultant force of 950 N directed along 
lite positive:r axis. ScI 6 .. 50". 

2- 19. The truck is \0 be lowed using two ropn. If the 
resultant fOIT(: is 10 be 950 N. directed along the posit'I'c:r 
axis. determine llie magniludcs of forces FA and FJI aCling 
on each rope and the angle II of Fs so thallhc magnitude of 
FII is a m;II;"'''"" F II acts at 20" from the ~' :uis as showo. 

, 

- ... -- ~ 

Prob. 2- 18I19 

· 2-20. If 4> _ 45°, Fl .. 5 ~N. and the rcsuhaot (orIX is 
6 tN dira:lcd along the Jl'O$ith'c )' axis.. determine lhe required 
magnitude of Fz and ils direction 11. 

' 1-21. If It> .. 3l)" and the !'e.,ullan! fon:c is 10 be 6 k.N 
directed along !he positive y axis.. determine the magnilUOCs 
of F , and Fz and the angle 0 if '"1 is required 10 be a minimum. 

2- 22. If <I> - 30", FI - 5 kN. and the resultant force is 10 
be direcled along the positil'e y a~i!. delenninc the 
magnitude of the resultant force if '"i is to be D minimum. 
Also. what is '"1 and the angle 8"! 

"robs.. 2-211/11/21 

2-ZJ. If 0 - 30" and 1-2 - 6 kK (\ctermine the magnitutk 
of the resultant fom: acting on the plate and its dircrtion 
measured dock"isc from the positi"exaxis; 

· 2-24, If the resultant force .·R is directed along a 
line measured 75' clockwise from the positi"e x axis and 
the magnitude of F2 is to be a minimum. determine the 
magnitudes of F R and •• ~ and the angk 0 s 90". 

I'robs. 2- lJI24 

°z.-2S, Two forces f j and f t act on the Kreweye. If their 
lin..-s of aenon ar..- at an angle 9 apart and the magnitude 
of each force is FI - 1-i - F, determine the magnitude of 
the resultant force FR and the angle bel,,'eCn . '/1 and . '\' 

I'rob. 2-25 



l-16. ' Ibe log is being towcd by two tractors , I and n, 
(}ctcrmine Ihe magniwdes of the \1'10 10"'ing forces t"" and 
) "/1 if it is required that the resultant force ha"c a magnitude 
1'" '" IOkN and be direCled along the.l axi'!. Sct 0 _ ISO. 

2-Z7, 111e resultant . '" of tbe two foren acting on the log is 
to be directed along the positive.l a.~is and rum: a magnitude 
of I 0 kN. determine the angle tl of the cable, aHaehcd 10 B such 
Ihal lhe In.1gnitude of foTCt Fa in this (;lblc is a minimum, 
What is tl\o;> magnitude of the foTCt in each (;lblc for this 
siluation'! 

I'robs. 2-21>127 

0l-l8. l'hc heam is to be hoisted using twO chain'!. Deter, 
mine the magnitudes of foTCts t"" and .'~ acting 00 each ell-1in 
in order to de,'clop a re:lultant fom: of 600 N directed along 
the posilive)' a.~is. Seltl '" -15°. 

02-29. 111(' beam is to be hoisted using t"'O ehains. lf the 
resultanl force is to be 600 N directed along the positi,"C " 
axis. determine the magnitudcsofforecs F" and . '"acling on 
each chain and thc angle Bof . "/1 so thaI the magnitude of ) "/1 

is a minimllm. FA aCtS M 3fr from the)' uis. as shown. 

, • , , 

'9-----. 

Probs. 2- 2lII!9 

2.3 V{CTOR AOOl110N 01' FO!tC€s 31 

l-3Il, ' iliree chains aCI OII lhc bracke t slICh thatlhey create 
a resultant force ha,ing a magnitude of 500 Ib, If two of thc 
chains are subjected to knO"ll forces. as shown. determine 
the angle Ii of the third chain measured d ockwis<: from the 
positive A' a~is. so that the magnitude of force . ' in this chain 
is a ",;",'mllm , All forces lie in the .t-)' plane. What is the 
magnitude of .~! lIillr. First find the rcsultant of the 11'10 
known forces. Force )" acts in this direnion. 

, 
I 

'" 

""'" I' rob. 2- 30 

2-JI, Three cableli pull on Ihe pipe such thatlhe}' create a 
rcsul\3nt for~e having a magnitude of 900 lb. If two of the 
abies arc subjeetcd to known forces. assho"'n in the figure. 
determine the angle /I of the third cable so thm Ihc 
m.1gn itude of force F in this ~able is a m;lIjlll"'". All forces 
lic in the x-y plane. Whm is the magnitude of F? "ml: Firsl 
find the resultant of the two known forces. 

, 

l'roh. 2- J I 
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2.4 Addition of a System of Coplanar 
Forces 

When a force is resoh'cd in to two components along the x and,. axes. the 
oomponcnis arc then called ft'CIIJIIJ,]lIlor compolIl'/lfs. For analytical work 
we can represent Ihese components in one OflwO ways, llsing either scalar 
nOlalion or Cartesian \ 'cCl o r nOlalion. 

Scala r No ta tion . The rectangular components of forte F shown in 
Fig. 2- 1511 arc found using the parallelogram law. so IIial f :: .. :, + F,. 
Because these components (oml <I righllrianglc. their magnitudes can be 
dctcrmirll'd from 

Fs '" Fcos O F,::: F sin O 

Instead of using the angle O. hown 'cr. Ihe dir;:Clion of )O' ca ll also be 
defined using a small ··slope" triangle. such as shown in Fig. 2- 15b. Since 
Ihis triangle and Ihe larger shaded triangle Me similar, Ihe proporl ional 
Ic: nglh of the sides givcs 

F. = !!.. 
F , 

Here Ihe)' component is a neg:III-'c scalar since ", is directed along Ihc 
negativc)' axis. 

It is impoTl11nt 10 kecp in mind that this posith'c (U1d ncgative SC;lI:.r 
nOl31ion is 10 b.:: used only for computational purposes. nOI for graphical 
repre$Cnlat ions in figures, Throughout the book. the hell/I of II ,'ttctor 
(lrrow in any fi gure jndie.lles .he sense of . he \'CClOr grapbicllll)': 
algebraic signs arc not used for Ihis purpose, ThUs. thc \'ectors in 
Figs. 2- 1511 and 2- 15h arc designated by using boldface (\'cclor) 
notation.· WhcnCI'cr italic symbols arc \\Tinen nc~ r vcctor arrows in figures, 
they indicatc thc lIIug/linfile of the \'cctor. whieh is alwll}'s a positil'r quantily, 

'N(&311\'c signs arc used only in figureJ ",.It bold/>('C nOla.ion "ben lholfli ng CqU3\ bu. 
~.c p;.irs \If \'('('Ion. it' in fig. 2-2. 



2.4 AoolllON OF A SYSTEM OF CoPlANAR FO!tC€s 

Cartesian Vector Notation . It is also possible to representthc x 
.!Od >' components of a force in terms of Cartcsian unit \'ec:tor5 i and j. 
Eac:h of these unit \'ct"tors has a dimcnsionlc$S magnitude of one, nnd so 
they t"an be used to dcsignate the IlirUI;1JI1$ of the x and )' axes. 
respct"tivcly. Fig. 2- 16 . • 

Since the IIIlIgllillll/1' of each component of F is i l/II'II>'S /I I'(}litil'l' 

ilium IiI)'. which is repTescrlled by the (positi\'c) scalars F. and F" then we 
can exprcss F as a ClIrtl'!ilm ,'«lOr, 

.' ;; F, i + F,. j 

Coplanar Force Resultants, We c:an usc either of the twO 
methods just described 10 detcTllline the rcsultmll of ~\'cnt1 Cop/lll1l1r 

[orers. To do this. each force is first resolved into its x and>, components. 
and then the respcctive componenlS arc added using SCl/1t1T IIlgl'brn since 
they arc collinear. The resultant force is then fomled by adding Ihc 
resultant components using the parallelogram I ...... For example. consider 
the three concurrent forces in Fig. 2- 1711. which have x and ),components 
shown in Fig. 2- 17b. Using Ctlrll'Silll1 ,'ntor lIolllfitm. each force is first 
represcnted as a Cartesian vector, i.e,. 

FI = FI~ i + F,y j 

Ft = - Ft, i + Fh j 

F,I = FlJ i - F1,j 

The vcctor rcsullant is therdore 

FR = Fl + .'z + F.I 

= FI. i + F" .j - Fl. i + F!yj + Fj , i- F3y j 

= (Fl. - f b + f1.) i + (FI~ + f i._< - , .j,.)j 

= (FR..L)i + (FRJ)j 

If sca/or 1I0/lIlim, is used. then we have 

(.±. ) 

(+ II 
FH, = Fh - Fl>, + FlJ 

FR.- = FlY + Fz) - FJ_" 

These arc the SWill! results as thc i and j componcnts or F I/. detcrmined 
abo"e. 

' For hnnd"l U!(Q wO/k . uni! .·«ton arc usuall )' indio;o.lcd us,ns a r:j'('\Imnex. (.s.. / and 
j . ~ .="" """c ~ dunensionlC'$S magnitude t)( unil)" and Iheir sen", (0/ ar,o,,'l\(ad) 
will M tk$cribW an . I)·I;o;o.\I)· by a plus /), m;nuo Jign. dcptnding on ,,·I\(IIIe. the y arc 
poin'ing along lbe ~'iw or ""I al"'( " Of ,. axi$. 

, 
,1 

~,~F 
-,-=;=-, ~ ' - --F, 

Fig. !-t6 

~.~ 

F. 

F, 

'oJ 

, 

" > ' .. '~ ~~~~ ---" 1":., ". --- f .. . '-" • • '> ~ 

'>J 
tlg, 2- 17 
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The .eo .. hant ror~ of the rOUf ~al>lc fnrce. 
""ling on Ihe suppo rt ing bmckct Can be 
dclc nnincd by addi ng algcbraic.l!y the 
separate x and }' components of each cable 
force. This fe.ulla nt Fit produces the '<1'1" 
1>II1I;"g ~Jf«' on the bracket astl lJ foorcahlc:<. 

We:: can rcpTt,:scnl the components of Ihe resultant force of any number 
of copl,lnar forces symbolically by Ihe IIlgcbraic sum of the .x and y 
components of all the forces.. i.e .. 

(2- 1) 

Once these comp<mcnls arc determined. they may be sketched along 
the x and ), axes wilh thdr proper sense o f direction. and Ihe resultant 
force can be determined frOIl1 vector addition. as shown in Fig. 2- 17 . 
From this skl:lch. Ihe magnitude of Fit is then found from the 
Pythagorean theorem: that is. 

Also. the angle fl. which specifics the direction of the result,lIIt force. is 
determined frolll trigonometry: 

'nle above concepts arc illustrated numerically in the examples which 
follow. 

Important Points 

• The resultant of se\'eral coplanar forces can casily be:: delemlined 
if an x. )' coordinate system is established and the forces arc 
resolved along the aKeS. 

• The direction of each force is specified by the angle ilS line of 
action makes willi one of the aKes, or by a sloped triangle. 

• lbe orientatiOn of the x and ), lIKes is :trbitrary. and their positive 
direction Clln be specified by the Cartesian unit vectors i and j . 

• The x and ), compono::nts of the rl':;ulwllI tOTC/' arc simply the 
algcbraic addition of the components of all Ihe coplanar forces. 

• The magnitude of the rcsultllnt force is detcmlincd from the 
Pythllgorean theorem, and when \he components arc sketched 
on the _~ and)' axes, the direction can be detcmlined from 
trigonometry. 



2.4 AooITION OF A SYStEM OF C oPlANAR f OltCES 

EXAMPLE 2.5 

Determine the x and), components of 1<', and F2 acting on the boom 
shown in Fig. 2- 180. Express each force as a Canesian vector. 

SOLUTION 

Scalar Notation. By the parallclogram law. F, is resolved into x and 
y components. Fig. 2- 1Rh. Since Fb acts in the - x direction. and 1<\ ). acts 
in the +)' di rection. we have 

Fls "= - 200 sin 30° N '" - lOON '" IOON­

F, v'" 200cos30o N = 173N = 173 Nt 

AIlS. 

The furce F! is resolved into ilS x ~nd )' components as ShO"11 in 
Fig. 2- 17r. I-Ien.! the slope of thc line of action for the force is 
indica ted. From this "slope tri~ln!lle" we could obtain the anglc 0. c_g., 
0 = tan- '(n ). and then proceed to determine lhe magnitudes of the 
components in lhe same manncr as for Fl' The easier mel hod. how. 
ever. consists of using proportion;11 parts of similar triangles. i.e .. 

F, = 260 N(!.?) = 240 N 
" 13 

Similarly, 

Notice how the magnitude of lhe lrorizonwl colllpollem. F~ •. was 
obtaincd by mulliplying lhe force magnitude by lhe ratio of the 
huri:olllill 1"8 of lhe slope lriangle divided by thc hypotenuse: 
whereils the magnitude of the wmiC/lI cOIIII'0/lt·m. F~ .•.. was obtained 
by multiplying lhe fon;.; magnitude by the ralio of the \·tmiCll lleg 
divided by the hypoh.'nuse. Hence. 

FZc< = 240N = 240N-­

F l y = - !(XIN = looNl Ails, 

Cartesian Vector Notation. I-Iaving determined the magnitud~s 

and directions of the components of c;1ch force. wc can express each 
force as a Cartesian \"cctor. 

Fl : {- 100i + 173j) N All$. 

Am:. 

" 

F, - 200 N 1 
\ , , 

, "'. 
'" , , 

" 

F" _ 200 ro:\ .J(t' N 

Flo - Zl))",n)(l" N 

(>, 

, 

" 
, -"" (" )' . , ]j I 
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EXAMPLE 2 .6 

,.) 

'OJ 

, 
I • 

~'T? ' 
jE. "._"'.7,,---- ' 

(,) 

111c lillk in Fig.2- 19a is subjected to tWO forel;"s FI and "'1' Delcrmine 
the magnitude and direction of thc rcsultant force. 

SOlUTION I 

Scalar Notation. First we resolvc cllch forcc into its .f and )' 
components, Fig. 2- 19b.then wc sum Ihese eomlXlllcnts algebraic.1Ily. 

±. PIlr -= ~F. : Fb: 600oos30o N - 400~in45~ N 
= 236.8 N ..... 

F fly :0 600 sin 30° N + 400 cos 45 0 N 

= 581.8 NT 
111<: resultant force. shown in Fig. 2- 1&. has a II/flglli/IU/C of 

F /I = V (236.8 N)2 + (582.8 N )2 

= 629N 

From the vcctor addit ion. 

0 = tan- --- = 671)0 ,('8208 N) 
236.8 N . 

SOLUTION II 

AIlS. 

AIlS. 

Cartesian Vector Nota tion. From Fig. 2- 19h, c;)eh force is first 
expressed as a Cartesilln vector. 

Then, 

F I = {600 cos 3O"i + 6QO sin 300j} N 

t'1 = {-400 sin 45°j + 400 cos 45°j} N 

F/I '" FI + F2 = (600 cos 30° N - 4OO5in 45" N)i 

+ (600sin30" N + 4OQcos45" N)j 

'" {236.8i + 5K2.8j } N 
The magnitude and direction of F/I arc detc::mlined in the S.1nle 
manner as before. 

NOTE: Comparing the two methods of solution. notice that the usc of 
scalar notation is more efficient since the comlXlncnts can be! found 
(/ir;'Clly. wi thout first having to cxpress each force as a Cartcsi;ln I'cetor 
before lidding the components. Utter. howcvcr. wc will show that 
Cartesian "ector analysis is vcry beneficial for solving three-dimensional 
problems. 



2.4 AooITION OF A SYStEM OF CoPlANAR f OltCES 

EXAMPLE 2.7 

lbe end of thl,: boom 0 in Fig. 2- 2OtI is subjl,:ctcd 10 three concurrent 
and coplanar forces. Detemlinc thc mugnitudc and direction of thc 
rcsultant forcc. 

, 

(.) 

SOLUTION 

Each forcc is resolvcd into its .{ and y compon"nls, Fig. 2-2Ob. Summiug 
the x components. wc have 

..±;. FR. = "iFs: FR. = -400 N + 250 sin 45° N - 200m N 

= - 3S3.2N = 383.2N-

The negative sign indicates that FR, acts 10 the left, i.e., in the negntive 
.r direction, as noted by the small arrow. Obviously. this occurs 
because Fl and FJ in Fig. 2- 20h contribute a greater pull to the left 
than Fl which pulls to the righ t. Summing the y components yields 

FRY = 250oos45° N + 200Ul N 

= 296.8 Nt 

The resultant forcc. shown in Fig. 2- 20(". has a IIWgllillll/1' of 

F R = V( 383.2 N)~ + (296.8 N)~ 

= 485 N 

From the vector addi ti\ln iu Fig. 2- 2Oc. the direction lmgle 0 is 

0 = tan- 1(296.8) = 378° AIlS. 
383.2 . 

NOTE: Applicat ion of this method is more con\'enienl. eomllared \0 
using 1'.1'0 applications of the parallelogram law, first 10 ,ldd F I and Fl 
then ~ldding FJ I(llhis resul1;Ul\. 

.' 

(b) 

'. ',.-----

(0) 

" 

f ig. 2-20 
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• FUNDAMENTAL PROBLEMS 

."2-7. RC50I, 'c each fOTCC acting on the post into ils.r and 
y romponcnls. , 

I 1', .. ..100 N 

Fl-' 

t'241. Dc\cmunc Ihe magnilud<: and direction of Ille 
resultant force. 

15c> .. .J~"-N-'---' 

"2- 9. O"lCmlinc the magnitude of llie rcsultant forre 
aCling on Ihe corbel and its direction II measured 
counterclockwise from Ilte.r nis. , 

I Fl - 4001b 

."2- 111. If the resultant force aCling on the bracket is \0 be 
750 N directed along the posi'h~ x axis. dcu:rmim: the 
magnitude of F and ils direction O. 

, 

F'2-11. If Ihe magnitude of Ihe resultant force aCling on 
lhe bmekcl is 10 1M: 80 lb direclcd along Ihe /J axis. 
determine the magnitude of F and ils direction O. 

Fl- I I 

!-"2-12. Dclcnninc the magnitude of the rcsullam force 
:md its dire<:lion 0 mcasur ... d rounlcrclockwise from lhe 
positive .f axi5. 

Fl - I! 



• PROBLEMS 

*2- 32. Determine llie magnitude of llie rcSUllan! force 
acting on Ille pin and ils di rection measured dock" 'isc from 
the positil·"' .r axis. 

"''' 

1"011.2-32 

02-.B. If 1', _ 600N Dnd 4> - 30". deteml;nc the 
magnitude of the resuhant force :lCling on the eyebolt and 
its dircClion measured clod\\isc from Ihe posith'c x axis. 

l-J4. If the magnitude of Ihe resultant force acting on 
lite cycboll is 600 Nand ilS direction measured clockwise 
from Ihe positive ,r 3.'(;$ is 8 - W. determine Ihe magni­
tude o f . '\ and Ihe angle <1>. 

Prohs. l-3J1)..1 

2.4 AoolllON OF A SYSTEM OF CoPlANAR FO!tC€s 39 

2-35. The oontac\ IlOint bel""Cen the femur and tibia 
bonn or the leg is 3\ A. lf a ,·crlie .. l forr:e of 1751b isllpplicd 
al this poin!. determine the romponcnls along the .r and y 
axes. NOle Ihal tile y component rcprcscnl~ the noroml 
force on Ihe load·bearing rcgioll of Ille bones. BOlh Ihe x 
and y componenls of Ihi5 forcc cause s)'lIo\;al nuid 10 be 
squeezed OUI ofille bearing space. 

I' rob. 2-35 

0Z-J6. If <b - 30" and F! .. 3 kN.dclcmlinc: the magnitudc 
of the resultant force OCIing on the plate and ilS direction 6 
measured clockwise from the posilivcx axi5. 

' 2-37. If thc magnitude for Ille rcsultant force actillg on 
lite plale is required to be 6 kN and its d ireel;oll measured 
clockwise from Iltc posi li,'c x axis is 6 - JO".de lermille lite 
magnitude of F2 and il$ dire<:tion 4>. 

Z-38. If 4> - 30" and tile resultant fortt acting on Ihe 
gusset p13tc is directed olollg Ille positi>'c x axis. determine 
lite magnitudes of t"2 and Ihe resultant fortt. 

~ kN 

l'rOIlS.2- J6f37/JIS 
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2-39. DClcmlinc the magnitude of FI and its direction (I 

so Iha\ the resullanl forte is din:clcd \'crlicalir upward and 
has a magnitude o(SOI) N. 

*2-40. Determine the magnitude and direction measured 
coun terclockwise from the posit;,·c x a:cis of the re$uhanl 
force of the three forres acting on the ring A . Take 
f '\ - SOONandlJ - 20· , 

I'robs. 2- 39/40 

'2-4 1. Determine the magnitude and direction /I of F 8 so 
thaI Ihe rC$ullam force ;s dirc(lcd along the posilj"C y axis 
lind has a magniHldc of ISO) N. 

2- 12:. Iklcrminc the magnilUdc and anste measured 
counterclockwise from lhe positil'c )' uis of the resultant 
force acting on the bracket if F. - 600 Nand fJ - 20' , 

I',eobs. 2 ..... 11-'2 

2-43. If d> - 30" and Fl - 250 lb. determi ne Ihe 
magnitude of the resultant force acting on the bracket and 
ils diredion measured clockwise from the positi,'e of axis. 

. 2-44. If the magnitude of the rC$ultant force acting on 
the bradel is 400 Ib directed along the positive x axis. 
determine the magnitud~ of Ft and its direction </>. 

.2-45. If the resul tant force act ing on the bracke t is to be 
directed along the positive.T axis and the magnitude of . ' 1 is 
required to be a minimum. determine the magnitudC$ ofche 
rcsultam force and F L' 

, 

F, .. 260 Ib 

2-46. The three concurrent forces acting on the sere'" e~'e 

produce a resultant force 1'/1 - O. lf " 2 - i F L and t't is to 
be 90" from . '2 as shown. detumine the required nmgnilude 
of Fl expressed in terms of FL and the anll-Ie 8. 

" 

I'rob. 2-46 



 

2_ 17. Dctcnnine the ma" utude of t·" and 1t5 direction 6 
so that thc resultant force is dm~ctcd alon, the posiu,'~ .l 
.lXI' and has a rnapitude of 1250 N. 

0l-4ll. Dt:1~rminc the magrutude and dn«tlon measured 
~ollntcr~lock ... ,se f,om the posiu,'c x u's of the resullant 
force acting on the ring al 0 if 1'" _ 750 Nand tJ '" 45". 

' ~'.I. Dcl~nnine thc magnitude of Ih~ r~sultanl force 
and liS dlr«1ion measured OOIIn terdockwise from the 
poslti'·c .r a: .. 1 

, 

"'-
F. '" SO Il! 

"rob. 2---4'.1 

2.4 AooInof.I Of,. Sm£M Of' C()IV.N.tJt FOIIICES 41 

2-50. The thrcc forces are apphed to the brackct. 
DelumlOc thc runge of values for thc rnagnitu<tc of force P 
so thai the resultant of the three forces docs nOl c:c~ecd 
2400N. 

, 

l'rub. 2-511 

2-51. If 1'1 - ISO N and ~ - 30". det~nnl~ the rnagmludc 
of lhe resultant force acting on the brnctet and ilS direction 
mcasUt«! dod: .. -I:SC from thc pailti'~!l a.ris. 

°1_5l. If the m3'"'tude 0( thc resultant fOKe aclln, 01\ 

the brxkcl IS to be:.ISO N direcled alon, the posiu,'c I/.IX~ 
de tcnnmc the magnitude of " , and its directlon~. 

02-53. If the resultant force 3("\ing on thc brKket IS 
rcquir.::d to be: a minimum.detcrminc the magnitudes of F, 
and 11K: resultant force. ScI ~ '" 30". 

" 

Probs. 2- 51/SU.!iJ 
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l_~ 'Ibree forces act on tile brad;ct IXtcrminc th~ 

magnitude and dircClion 6 of t'l so that the resultant force is 
directed along the p<l6iti\"c II axis and has a magnitude orso lb. 

2-55. If f : '" ISO Ib and II .. 55~. determine the 
magnitude and di reCTion measured clockwise from the 
positive .r a~is of the resultant force of lhe three forces 
acting on the bracket. 

, 

F, _ SOII> 
--, 

'" 
• 
" " 

I' robs. 2-5-1155 

*2-56. 111c tllrc~' concurrent forces acting on the post 
produce a resullam force t'R .. O. If F: .. J F ,. and f l is \0 
be 90" from .' z as shown,determine the rcquir ... d magniwdc 
of F} expressed in terms of F, and the angle 6. 

, 

"~ I II' '--, 
", 

l'rob. 2- 56 

' 2-57. Determine tbe magnitude of force f so tllat Ille 
resultant [orce of llie three forces is as small as possible. 
What is Ihe masnitudc of Ihis smallest resultant force'! 

IHN 
, 

I'rob.2-57 

2-58, Expre§5 each of Ihe Ihree forces aCling on Ihe 
brackCI 11'1 Carlcsian ,-celor form wilh .('spectto Ihe;t and }' 
:ues. Determine Ihe R'l3gninlCie and direction 0 of 10-1 so Ihal 
Ihe re~ulmnl force is dircded along the posilh"e;t' axis and 
h3S a magniludc of Fit - 600 N. 

Prob. 2- 511 



2.5 Cartesian Vectors 

The opo::ral ions of \'CClor algebra. when applied \0 solving problems in 
Ilm~e dimt'lls;<J/IS. arc greatly sim plified if the vectors arc first represented 
in Cartesian "<-'ClOT form. In Ihis $Cclion we will present a gellera] method 
fordoing this: then in the next seclion we will usc this method for rinding 
[he resu llant force of a system of concurrent forces. 

Right-Handed Coordinate System. We will usc a righl' 
handed coord inate system \0 develop lhe theory of "cclor algebra [h<ll 
follo\\'S. A rcaangul3r coordin!u c S),SII!rn is said 10 be rigll1.111111111'11 if the 
thumb of the righl hand points in the direction of Ihe posi tive z axis 
when the righl.hand fingers arc curled aboullhis axis and directed from 
the POSi li-'c .r towards the positin:), axis. fig. 2- 21. 

Rectangular Components of a Vector. A vector A may have 
one. two. or three rect,mgular components along the .1". y. ~ coordinate 
axes. depending on how the vector is orientcd relative to the axes. In 
general. though. when A is directed within an octant of the .r. y . .:: frame. 
Fig. 2- 22. then by two successive applications of the parallelogram law. 
we may resolve the vcctor into components as A = 1\ ' + A: and then 
, \ ' :0 A, + A,.. Combining these equations. to eliminate A '. A is 
represented by the vector sum of its rim'!' rectangular components. 

(2- 2) 

Cartesian Unit Vectors. In th ree dimensions, the set ofCartesi,m 
unit vectors. i. j . k. is used to designate the directions of the .1'. y. ~ axes.. 
respcctil'cly. As stated in Sec. 2.4. the Sl'/ISI' (or arrowhead) or these 
vectors will be represented analytically by a plus or minus sign. 
depending on whethcr Ihey arc directed along thc posilive or negalive x. 
y. or.:: axes. The positil'e Cartesian unil vectors arc shown in Fig. 2- 23. 

, 

, 
fig. l-~J 

43 

fig. 2-21 

A, 
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A 

- ' " , j - -)' 

A, i _-",( 
,/ 

r 
A 

~A. J , 

Cartesian Vector Representation. Since the three components 
of A in Eq.2- 2 act in the positive i. j . and k dire<:tion:i. Fig. 2- 24. we c~n 
write A in Cartesian \'eClOr foml as 

(2-3) 

1lleTe is a distinct advantage to writing vectors in this manner. 
Sep:trating the 1II/l8llifUl/I! and diri'c/iull of each CUl/JflOIIi'1lI ,'«wr will 
simplify the operations of vcctor algebrn. panicul;Jrly in three 
dimensions. 

Magnitude of a Cartesian Vector. It is ill ways possible 10 

obtain the magnitUde of A provided it is expressed in CHTtesi<m vector 
form. As shown in Fig. 2- 25. from the blue right triangle, 
A - V A '! + A~ . mid from the gray right triangle. A' '"' V A~ + A~, 
Combining thcse equations to eliminate" '. )iclds 

I " V A~ +,,~ + ,, ~ I (2-4) 

HellCt', lile IIl<18I1i/wli' of A is elJlwl w fill'. flUsilil"i' slJl/llre mOl vf/he Slim 
of/he Slfl/(l'i'.~ of its ct)n{f'OIU! /II.t 

Direction of a Cartesian Vector. We will define the tiiuClilm 
o f ,\ by the ("lJwdi,wlI: (fin:fliu/J IIIlgleJ' a (alpha), p (beta). and 
y (gamma). measured oc\wcen the wil of A and the posilil't' .\", y. ;: axes 
provided they are located at the ti,il of A . Fig. 2- 26. NOll' thai regardlCSll 
o f where A is directed. each of these llngles will he between 00 and 1800. 

To determine a,p, ,lIld Y,consider the projection of A onto the.l". y, z 
axes. Fig. 2- 27. Referring 10 Ihe bluc colored righl triangleS shown in 
each figure. we havc 

A, 
coo(3= ­

A 
(2-5) 

These numbers arc known as the direcrion cm-ilrt'l' of A . Once they 
hayc been obtllincd, the coordin~lte direction angles a. /1 r "til then be 
dctcmlined from the in\'ersc cosines. 



1 

rl=:l 

/ 

An cas)' way of obtaining these direct ion cosines is 10 form a unit 
vector u" in the d irection of A . Fig. 2- 26. If A is expressed in Cartesian 
vector forll1, A = Ii,! + A,.j + A},; .lhen u,\ will h:l\'<: a magnitude of 
one and be diml'nsionlc!>S provided A is divided by ils 1I111gnilUdc. i.e .. 

A A •. A., . A , 
u "'-=-I + ---'-J +-k 

" A II A II 
(2-6) 

where A '" VA; + A~ + A~.Bycomp~tison wilh Eqs.Z- 7.il is seen Ihal 
Ihe i. j . k com/lOII"lIIs of u" rt'p,",sellf Ihe direclio/l emil/a of A . i.e .. 

u,\ = cos u i + co:; fJ j + oos y k (2- 7) 

Since the magnilUdc of a veClor is equal 10 the positive square rool of 
the sum of the squll rcs of the magni tudes of ils ,omponcnts. and uti has 11 
magnitude of one. then from 1he above equation an important rdation 
belwc.::n the direction cosines Cit" be formulated as 

I cos: £\" + cosl fJ + cos2 'Y : I I (2-8) 

l-i cTI! we can see that if only rw(} of the coordinate angles arc known. 
the thi rd angle Clln be found using this C<llIlIIion. 

Finall y. if the magnitude and coordinate direction angles of A arc 
known. then A may be exprcssed in Cartcsi,1II vector form as 

A = Au" 

= A cosa i -+ A c{)s/3 j + A I;OS ')' k 

"" A~ i + IIJj + A,k 

(2- 9) 
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A, 0 

, 

(A. ,,, B,ll .i">"'-------, 

",,+.,J 
fig. 2- 29 

Somelimcs. the direction of A can lM: spo;cificd using twO anglcs. 0 and 
fb (phi). such as shown in Fig. 2- 28. Thc components of A can th(!n be 
d(!termined b)' applying trigonomctr)' first to the blue right triangle. 
which yields 

;lIId 

A ' .. Asinrb 

Now applying trigonometry to the other shaded right triangle, 

A, = A' cosO = t\sinrbcosO 

A y= A' sinO -= A sin q, sin 0 

111crc(ore A written in Cartesian I'ector fonn becomes 

A -= AsinrbcosO i + AsinfbsinO j + A cos q, I.: 

You should not memorize this equation. rather it is import:lIIt to 
underst;md how the compoll<::nls were determined using trigonometr),. 

2.6 Addition of Cartesian Vectors 

l"hc addition (or subtraction) oflwo or marc l'cetoTs arc greatl)' simplifi~'d 
if the vcctors arc expressed in terms of their Cartesian components, For 
example. if A = A~i + Ayj + A~l.: a lld 8 = B.,i + B). j + B" I.: .Fig.2- 29. 
thcn lhe rcsultant I'cctor. R, has components which arc thc S(!al3T sums of 
the i. j . 1.: components of A and R. i.e .. 

R = A + 8 :: (A, + B, )i + (A y + B,,)j + (A ; + B,)k 

If this is generalized and applied to it system of S<!I'eral concurrent 
forQ!s, then the force resul tant is the I'ector sum of all the forces in the 
s)·stcm and can be writh:n a~ 

(2- 10) 

Here IF" IF, .• OInd "E.F. represent the OIlgebraic sums of the respo;c tive .t. 
y, Z or i.j . k componcn~s of each force in the system. 
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Important Points 

• Cartesian vcctor analysis is often used to soh'e problems in three 
dimensions. 

• 'Illt:, positi\'c directions of the x. y. ~ axes arc dcfin .. d by the 
Cart .. sian unil \'ectors i.j . k, respectively. 

• The 1I1(11;IIilutle of a Cancsian vector is A ,. V A.~ + A~ + A~ . 

• The lIiTtClio/l of a Cartesian vector is specified using coordinate 
direction angles a. (J. y which the tail of the vector makes with the 
positive x. y. l axes, respectively. The components of the unit 
vector "A "" A/ A reprcscntthe direction cosines of «. 13. y. Only 
two of the angles «.13. )' have to be specified. The third angle is 
dett:rmim_'1l from the relationship cos1 a + cosl l3 + cos2 y = I. 

• Sometimes the direction of a veClOr is defincd using the two 
angles Band 1> as in Fig. 2- 28. In this case the vector components 
arc obtained by vector resolution using uigonometry. 

• To fin d the T(,l'ufwlIl of a concurrent force system. express each 
force as II Cartesian vector and 3dd the i , j . k components uf all 
the fOKes in the systcm. 

Express the force F shown in Fig. 2-30 as a Cartesian vector. 

SOLUTION 

Since only 11'.'0 coordinak direc tion angles arc specified, the third angle 
Il must be determined from Eq. 2--8: Le .. 

cos2 ", + lx>s2 f3 + cosZy '" 1 

cos2 n + cost 6(}Q + cost 4.'iQ = I 

cos n = V! (u.sf (O.707)t = ±O.S 

Hcncc. two possibilitieS exist. namely. 

0' 

By inspectil)1\ it is necessary that {'f '" 60". since F. must be in the +x 
direclion. 

Using Eq. 2- 9. with F = 200 N. we halle 

F = Fcosai + F cos f3j + F cos yk 

,. (200cos6O"N)i + (200oos6(}° N)j + (200 cos 4So N)k 

= {lOO.Oi + lOO.Oj + 14!.4k} N AIlS. 

Show that indeed the magnitude of F -= 2(Xl N. 

The fCloult anl force acti ng on tbe 00"' the 
shi p can be de tctntined b)' first 
rcprcsc nlingcoch rope furce;.<a C3rtcsian 
vCClor and the n sUll1nting the I. j . and k 
componcn18. 

Fig. 2- 341 
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EXAMPLE 2 .9 

Delermine the magnitude and the coordinate direction angles of the 
resuit:ml force acting on the ring in Fig. 2-3 [u . 

~' ... [501 - .wj + \80&; ) Ib 

r.: - [SO; - 100j + 1000[lb r, - 16Oi + 8Oi<) Ib 

f-7-- --fl'I\----, 

") I» 
" ig. 2.--31 

SOLUTION 

Since each force is represented in CMtesian vector form. the result;!nt 
force . shown in Fig. 2- 3lh. is 

f R = t r '" FI + F2 :o 160j + SOk} [b + {SOi - lOOj + lOOk } lb 

= {5Oi - 40j + 180kl lb 

'rbe magnitude of FR is 

F R = "';"'(5O""'lb")"+-:-;( - 40='b")" 7+-;("18O='b"')2 = 191.0lb 

= 1911b Ails. 

The coordin3te direction angles a. p. yare detennined from the 
components of the unit vector acting in Ihe direction of .'R' 

so that 

f R 50 40 ISO 
UF~ = FR = 191.0 i - 19!.O j + 19 1.0 k 

= 0.2617i - O.2094 j + 0.9.-22 k 

cosO' = 0.2617 

cos f3 = -0.2094 

cos y = 0.9422 

<I "" 74.8° 

f3 = \02· 

l' "'" 19.6° 

These angles arc shown in Fig. 2- 31 h, 

All.!: 

Ani', 

NOTE: In parlieu[3r. not ice Ihal {3 > 90· since Ihe j component of 
UF is negative, This seems reasonable considering how .'1 and F2 add 
3cfording to Ihe parallelogram law. 
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EXAMPLE 2.1 0 

Express the force f shown in Fig. 2- 32(/ flS a CarleSifln "ector. 

SOLUTION 

lbe angles of 60° ami 450 defining the di rection of f aTe Ilotcoordinate 
direction ,mglcs. Two suc~ssi\'c applications of thc parallelogram 13w 
lire needed 10 resolve fo' inw its x, y, z components FirSI f = f ' + F! , 

then fo" "" F \ + f y, Fig. 2- ]2b. By trigonometry. the magnitudes of Ihe 
componenlS arc 

f~ = 100 sin (j()O Ib '"' 86.6 tb 

F' "" 100 cos 60b Ib : 50 Ib 

F. = F cos 45" = 50 cos 45° Ib = 35.4 Ib 

F, = F sin 45" = 50 sin 45° Ib = ]5.4 Jb 

Realizing Ihat Fy hlts 11 direclion defined by - j . we have 

F = {35.4i - 35.4j + SO.ok} Ib 

To show thaI Ihe magnitude of this ,"ector is indeed 100 lb. 3pply 
Eq ,2-4, 

F = v'Fi+ F;'+ F~ 

v'(35.4)~ + ( 35.4)~ + (86,6)! 100 Jb 

If needed. the coord in3lc di rection angles of f C3n he determined 
from Ihe compouenls of the ullit veClOt actillg in Ihe direction of F, 
Hence, 

so thai 

F F F F, 
\I =-=""£i +....! j + "":' k 

F F F F 

= 35.4 i _ 35.4 j + 86.6 k 
100 100 100 

= 0.354i - 0.354j + U.866k 

l"t = cos~I(O.]54) = 69.3~ 

fJ ;: cos- 1(-U.354) = Ill ' 

Y = cos~I(O.866) .. 30.0· 

Thcse results MC shown in Fig.2- 3lc. 

,.. _ lOOlb 

~' - UIOlb 

, 
(,' 

~-c'f'~~~&c------" X .. ..,. 
t " 1', 

F a tOOlb 

----69J·· ~e.--""--- , , 

, 
(,' 
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EXAMPLE 2 .11 

Two forces aCI on Ihe hook shown in Fig. 2- 32t1. Specify Ihe magniwde 
of Fz and ils coordinate di rection angles of F1 that the resultant force 
F R ;lcts along the positive y axis ;Illd has a magniwde of SOO N. 

~ _____ ,. SOLUTION 

, 

'" 
~ 

F, - .lOO N 

(.J 

..,~,. n.6' 

(bJ 
Fi~. l-JJ 

To sol"e Ihis problem. the resul!ant force FH and its tWO COmponents.. 
FI and Fl. will each be ex-pressed in Cartesian veclor form. Then. as 
shown in Fig. Z-33a. il is necessary that I'/! = FI + Fz. 

Applying Eq. 2- 9. 

FI = FI cos a li + FI cos I3 d + FI cos )' \k 

= 300 cos 45Q i + 300 cos 6if j + 300 cos 120" k 

"'" {lIZ.1i + lSOj - 150k} N 

Fl = F2, i + Ftyj + F!,:k 

Since F/! has a magnitude of BOO N and acts in Ihe +j direClion. 

F/! = (SOON)(+ j) '" {SOOj } N 

We require 

FR = Ft + F2 
SOOj '" 212. 1i + 150j - 150k + Ii, i + Fzd + Fl, k 

800j '" (212.1 + F2.0 )i + (150 + Fl,·)j + ( - 150 + ri:,)k 

To satisfy this equ31ion the i.j . k components of FR must be cqU:11 to 
the correspollding i. j . k componcll1s of (Ft + Ft). Hence. 

0 = 212.1 + F2.0 Fb; "" - 212.1 N 

800 = 150 + Fl .v F2y '" 650 N 
0 = - 150 + Fl , Fz! = ISDN 

-111<: magni tude of Fl is thus 

F 2 = .,;"( -:," ,:;-,.:-, "N")'-:+-(;;";;O" N:;;)'" -'+-:(CC,,"O"N"')' 

= 700N 

We can use Eq. 2-9 10 determine a 2. 13 2. )' 2. 

-212.1 cos a , = --_. 
• 700' 

"0 
cos 132 = 700: 

'SO 
COS)'2 = 100 : 

These results arc shown in Fig. 2- 32b. 

A II$. 

Am: 

AIlS .. 

Am:. 



• FUNDAMENTAL PROBLEMS 

F2- U . Determme its coordinate direction angles of the 
force. 

, 

I' - 7Sth 

~'1- U 

~'2- I ·t Express Ihe force as a Cartesian "ector. 

500N 

1'2.- 15. E~prcss the force as a Cartes ian ,·cctor. 

::I'I" "lA' 
F - 500N~ (IJ' 

, .~ 

~'2- 1 S 
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Fl- 16. Expn:ss the force as a Cartesian ' ·ector. 

F - SOtb 

) ' 

t'2- 16 

n - 17. Express Ihe for('\! 3S a Cartesian vector. 

) ' 

~·2- 1 1i. Determine the resultant force acting on the hook. 

". 

-!.' - SOOtb , 

---F~ _ tIOO lb 

F2- 18 
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• PROBLEMS 

!-S9. IXlcrmine Ille ooordinate angle y for ."! .1J1d then 
express each force acting on the bracket as a Cartesian 
":(Ior. 

- 2-'0. Determine the magnitud!.' and coordinate direaioo 
angles of Ike resul tant force acting on the bracket . 

"rob~ 2- 59160 

02-61. Express each fOll:c aC1ing on the pipe assembly in 
Cartesian \'ector form. 

l-6Z. IXlcrminc the magnitude and direction of the 
rcsul1ant force ~cting on the pipe assembly. 

" mbs. 2-61/62 

~\. ' Illc force .. acts on the bracket wilhin Ihe (l('lant 
sliown. H F .. 400 N. {J .. 60". and y .. 45· ,dclcrminc tile 
x .)', ~ compollcnls of F. 

"2--64. The force F acts on the bracket within tile OCIOIlI 
shown. If the magnitudes of the x ~nd z components of f 
arc F, .. 300 Nand F, .. 600 N. n::spcclil'cl)', and fJ .. 60". 
determine the magnitude of F and its y component. Also. 
find the coordinate direction angles <'I and )'. 

" 

, 
"robs. 2-6.\164 

.2-65. The t,,·o forces Fl and Fl a(1ing at II h~,'c a 
resultant force of FII _ {- I~llb. Determine the 
magnitude and coordinate dirtttion angles of "'~. 

1-66. Determine the coordinate direction angles of the 
force "'I and indic:uc Ihem on the figure . 

• 

, 
F, _ 6O th 

~., 



2~7, The spur gear is subjected to the two forces caused 
by rontaCl " 'ith other gears. Express each force as a 
Cartesian veClor, 

"2-'S. The spur gear is suhj;:cled 10 the 1"'0 forces caused 
br conlact wilh other gears.. Determine lhe rcsuhant of tbe 
two forces and express the result as a Cartesian \'eeIOr, 

f ', _ 5(111, 

·~9, If lhe resuhant force llCling on the bracket is 
F" .. ! - JOOi + 650j + 250" ) N, determine the magnilude 
and coordinate d,reClion angles of t', 

2-70, If tlte resuilanl forte acting on tlte bracket is to be 
t'li .. (8OOj ) N. determinc tlte magniUlde and coordinate 
direction angles of .... 

• 

1', _ 7501'1 

53 

2-71 , If 1I .. 120", fJ < 90' . y .. 60' , and F .. 400 lb, 
determine the magnitude and coordinate direClion anglcs 
orthc resulwnl force acting on the hook, 

· 2-72. If thc resultant fOKe acting on the hook is 
F" .. ( - lOOi + 800j + lSOk)lb.lktcrmmClhcmagmtude 
and coordi nate direction angles of F. 

, 

,. 

·2-73. lhe sltart S exerts three force components on the 
die D. Find tlte magnitude and coordinate direction angles 
of the resultant force, Force "'J acts "'ith in the octant sho"l1, 

, 
1). 2001'1 

Prob.2- 7.J 
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2- 74. Th~ mast is subjected \0 Ihe three forces shown, 
[)ctermine Ihc coordinate direction anglC$ 0 ,_ (1 '.YI of 
t', so 1ha1 Ihe H,'sullan! force acting on Ihe mast is 
FR = {35Oi} N. 

l - 75. 'Ille mast IS subjcrtcd \0 Ihe three forces shown. 
o.:lcnninc the coordinate direction angles ill.!JI. l'l of 
f , so thatlhc resultant force acting on the mast is zero . 

. , --f', _ JOON -::/f~-~-_ 

" .. 

Probs. L-7.u75 

-2-76. Determine tile magnitude and coordinate 
direction angles of f l so thm the r(',ullanl oflrn: IWO forces 
aclS along the positive x uis and hu a magnilUdc of SOO N. 

· 2-77. Determine the magnitude and coordinate direction 
angles of . '2 SCI1hat the rcsullllm orlhe twO forces is 7.C To. 

'. 

)i/;;.......,>.-...".-,. 

Probs. 2-76177 

2-7lI. If lite resullant foree Jlctingon Ihe bracket isdircclW 
:lIong tile positi,'c y axis. dt:lC rminc the magni tude of the 
rcsuhant fofI."C and the coordina te direction angles of F so 
that.8 < 90". 

F,_600 N 

I'rob. 2-7lI 

2-711. Specify [he magnitude of F) and its ooordin~ [ e 

direction angles OJ. (jl. Y) so thaI the resultant force 
tOR - {9j) kN. 

'. 

F,_ 12kN 

f'roh.2-79 



*2-110. lffj- 9kN.1J - 3O".and"' : 45·.determjn~the 

magnitude 3nd coordinate direclion angles of the resultant 
force acting on the ball·and·socket joint. 

( "i- IOkN 

W' 

I'roh. 2-80 

02-81. The pole is subjcrted to the force F. ,,-hid! has 
oomp<lnents 3eling along Ille .1", >~ Z :ues as sllown. [f the 
magni tude of F is J !tN. fJ - 30". and y - 75· . delermine 
the magnitudes of its three components. 

2-82. The pole is subjected 10 lhe foree t' ..... hich has 
COI'1'p<lne nt$ f, - 1.5 kN Dnd f , - 1.25 kN. If fJ - 75· . 
detennine the magnitude:! of t" and ~",. 

I" 
t -, I' , . 
~ 

I' rorn.-. 2-lI 1/lt! 

,. 
-'--, 
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2-33. Three fo rces 3ct on Ihe ring. [r ille resultant force tOR 

has a magnitude Dnd dircrlion lIS sllo ..... n. determine the 
"",gnitude and the coordinate di reclion Jnglc$ of forcc FJ. 

*2-84. Determine Ilic coordinate direction angles of Ft 
and FR' 

1 " 
F:_ 1I0N 

--rt--y- , . 
• 

• 
Probs. 2--8JJS4 

ol--85. Two forces t", and f' ) act on the bolt. If the resultant 
forcc f'R has a mJgnitude of 50 lb and coordinate direction 
angles 11 _ 110' and fJ _ 80". as shown. determine llie 
magnitude of f'z and tiS coordina le dircrlion angles. 

I 
1;"",,=,;---> 

" 

Proh.2-85 
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" 'm 'm 
. I 
" 

2.7 Position Vectors 

In this section we will introduce the concept of a position veclOr. lt will be 
shown that this "ector is of importance in formulating a Cartesian force 
.. ectOr directcd betwccn twO points in splice. 

x, y, z Coordinates. Throughout the book we \\ill usc 3 right· 
IW/Illcd coordinatc s)'s tcm to rderellcc thc locmion of points in SpllCC. We 
will also usc thc convcntion followed in many technical books. which 
requi res the posit il'c z axis 10 be directed /If/wanf (the zeni th dirl'Ction) SO 
thaL it measures the height of an object or the al titudc of 11 poin\. The x. y 
axcs then lie in the hori7.ontal plane. Fig. 2-34. Points in space arc located 
rclati"e to the origin of coordinate$. O. by suecess;"e measurements along 
the .r. y, z axe$. For cxamplc. thc roordinat<.·s of point ;I arc obtaincd by 
st1'Tting at 0 and mellsuringx" = +4 01 along the .r axi$. thcn y" = +2 01 
<llong the y axis. and finally z" = -6 m along the = axis. ThUs. A{4 m. 2 m, 
-6 m). In a similar manncr, measuremcnts along thc x. y. z axes from 0 
toB yicld the coordin111es of B. i.c .. B(6 m.-l 01.401). 

Position Vector. A p(J~'i'it)ll "te/Qr r is defined as a fixed I'cctor 
which loc111e5 a point in Sp<lce TclMiI'e to another point. r'Or cxample. if r 
extcnds from thc origin of coordinates. O. to point P(x. y. l). Fig. 2-35n. 
then r can be cxpn:ssed in cartesian Vcctor fonn as 

Note how the hcad -lo·tail veClOr addition of thc threc componcnts 
yields vector r. Fig. 2- 3Sb. Starting at the origin O. onc "lral·cls" .r in thc 
+i direction. then ), in the +j direction. and finally;;:: in the +k direct ion to 
arTh'c at paim r (r, y. l). 

tig.2-35 



[n the morc general case. the position vector may be directed from 
point It to poinllJ in Sp~ICC. Fig. 2- 300.'11;5 vCClOr is also dcsign;l1cd by 
the symbol r.As a malleT of convcntion. we will sometimes refer \0 this 
vector with tWQ si/bsai",s to indicate from and to the point where it is 
dirccted. ThUs. r can also be designated as r,18' Also. nOle that rA and Til in 
Fig. 2- 3&, arc referenced wilh only one subscript since they eXlend from 
the origin of coordinates. 

From Fig. 2- 300, by Ihe head-IO-Iail vector addition, using the triangle 
rule. we requi re 

Solving fur r and expressing r .... and rll in Carlesian \'eclor fonn yields 

0' 

(2- 11) 

TlIII.\ Ihl.' i . j . k rOmpOlIl'IIIS of Ihe JlOlitioll "I!ClOr r /lilly hI' jorml!l/ by 
IIlkillS Ihe courtfillllll'S of Ihe rail of Ihl' 1'('('Wr A(x ". y .... tA) IlIId 
slIhtrtlc/;,rg them from lire cor'l'.I'pmlllillg CQortlilllllts of Ilu' 1,1.'(1(/ 

2.7 PO$rTlON VECTORS 

.. 
'" ::J<'----------," 

,.) 

BC.tll' YR. '::8). We can also form these components llirec/ly. Fig. 2- 36b. by 
starling li t A anu moving through a dis tanc.:: of (xn - .fA) along the:: 
positive x axis (+i). then (1'8 - YA) along the positive y axis (+j). and 
fina lly (;:8 - z,,) along the positive ~ axis (+k) [0 gcl to B. I 

, .. _ ,.)1 y' ~~~ 

If an it.y. ~ coordi03IC ~YSI~Ol i, c~lnbljshctl. then the COOrui03t(. 
of point' .l1 Dntl H can be tlctcm,intlctl . f mn' Ihis Ihe r-><ition 
"CClm r acling along Ih~ uble can he fo,nmlaletl . it. m3gnitooc 
represents Ihe length or tbe cable. and jl ~ on;t "<>MOT, O • rl" 
gi,·c. the dire<:tion dcfined by R , IJ, ). 

, 
/ ' (y" - ~A}j ~ ' 

" ) 

57 
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EXAMPLE 2 .12 

.•. J 

A,. 
(.) 

• 
'~ , 

( ' ) 

(,) 

An dastic rubber band is au .. chl.!d 10 poilUs A ,lI1d B as shown in 
Fig. 2-37a. DClconine its length and its direClion measured from A 
toward B. 

SOLUTION 

We first es tablish a position wctor from A to 8. Fig. 2- 37b. In 
accordance with Eq. 2- 11, the coordinates of the Illil A(I m.0. - 3 01) arc 
subtracted fro11lthc cuordinatcs oFthe head B{- 2 111. 2 rn. 3 m). which 
yields 

r = 1- 2 rn - I rnl i + [2111 - OJj + [301 - {- 3 rn)lk 

"" {- 3i + 2j + 6k )m 

These cornponl.!nls of r can also be deterrninl.!d din-cfly by rl.!alizing 
Ih .. t they rcpresl.!nllhe direction and distance one must trallel along 
each axis in order to move from A 11.1 B. i.e .. along the x axis 1- 3iJ m. 
along the y axis p.j J m, and finally along the:: axis 16kJ rn . 

TIlc length of the rubber band is Ihercfore 

All .... 

Formulating a unit vector in thc direction of r, wc Iml'c 

r 3 2 6 
u = - : - - I + - j + - 10; 

, 7 7 7 

The cornponents of this unit vector givc the coordin:!tc din:etion 
angles 

Am. 

Am:. 

NOTE: These angles <lTe rneasured from the posif;"/" axe-sof a localized 
coordinalc system placed al the tail of r, as shown in fig. 2- 37c, 



2.8 Force Vector Directed Along a Line 

Quite oflcn in three-dimensional statics problems. the direction of a force 
is specified by Iwo points through which its line of action pa~s. Such a 
situation is shown in Fig. 2-38. where Ihe f(lree F is directed along the cord 
AB. We can formulaIc F 3S a Cartesian wClor by realizing Ihal il has the 
.mme tfirl'CI;ml and Se/lU as the posit ion Vedar r directed from poinl A [0 

point BOil Ihe cord. This commOll direction is specified by the UII;I l'trlOr 

It .: ri r, Hence, 

Allhough we have represcnted r s),mlwlica lly in Fig. 2- 38. note Ihal it 
has IlIIi/s offoru. unlike r. which h~ls units of le ngth. 

llI<c fOl'tt t ' ~;n, along .he <haln ran be .~p=nl.d :as a Cafle<i.n , '«tor by o<ubtishinJ. 
~ .y.: ~= a nd first lornn",. . po<&l;OO "« tor . along the k:nglh of lhe dl.lin. Then lh~ 
C'O"c~l'0nWn~ unn '"«.01 .. .. rt, .h.l dctlnC$ lhc di,Nlion of bolh lhe chain and lhe: rot'" 
<:In be.- dcl<.mllled. Finally. lhe m3gnnudc: of lhe rotCC " conlbn",d " 'ilh n ~ dnNli(>n. 
1' . 1" • . 

Important Points 

• A position vector lOOlles onc point in space rela tl\'c to another 
point. 

• The easicst way to formulatc the components of a posit ion "ector is 
10 dctcnnine the dislancc and diTCC1ion that must be trll.\·elcd along 
the x. y,! directions-going from the tail to the head of the "ector. 

• A force F acting in the dir«tion of a position "ector r can be 
represented in Cartesian form if the unit \'cctor u of the position 
"ector is determined and it is multiplied by the magnitude of the 
force. i.e. , F = Fu '" F(rfr). 

S9 

, 

r----' 

H je. l-JiI 
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EXAMPLE 2.13 

"' '' 

'" r-07"-#-~-' 
'/" 12 II 

I') 

1'1 
tig. 2-,\\I 

The man shown in Fig. 2- 39u pulls on the cord with a (orce of 70 lb. 
Represent this force acting on the support A as a Cartesian vector and 
determine its direction. 

SOLUTION 

Force f is shown in Fig. 2- 39b. The dirt'ctivI/ of this vector. u. is 
determined from the position vector r. which extends from A to B. 
Rather than using the coordinates of Ihe cnd points of the cord. r t;an 
be dctcnnincd dirt""Clly by noting in Fig.2-3911 that onc must travcl from 
A 1- 24kf ft.thcn [-Sj f ft. alld lina lly [12il ft to get to B. Thus. 

r =: {l2i - 8j - 24k} fI 

The m<lgnitudc of r. which represents the 11'II8th of cord AB. is 

r : V(12 ft)2 + ( 8 ft)2 + ( 24 ft) l = 28 ft 

Forming the IIllit vector thaI delines the directioll 31ld sellSe of both 
r and F.lI'e have 

T I2 . 8 . 24 u : - : - I - - J - - k 
r 282828 

Sillce to. has 3 magl/il/uft' of 70 Ib and a diN'Clioll specified by II . then 

(
12 8 24) 

F = F u : 70Ib 2S i - 18 i - 28 k 

: pOi - 20j - 6Ok} Ib 

The coordinate direct ion allglcs arc measured between r (or F) and 
the pos;t;\·.: 1I.ri'S of a loeaJi7.t!d coordina te system with origin placed at 
A. Fig. 2-3911. From Ihe compont;nts of the unit vector: 

/1' : c05 I - = 646" _ (12) 
28 . 

Am: 

(-24) y = eos- I 28 : 1490 AI/s. 

NOTE: l besc results nmkc sense when compared with the <Ingles 
identi lied in Fig.2- 39b. 
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EXAMPLE 2.14 

The force in Fig.2-4<K1 ;lets on tile hook. Express it as 3 Cartesian I'eetor. 

Cj )(5 m) 

, , 
,., 

SOLUTION 

As shown in Fig. 2-40b. the coordinates for points A and 8 arc 

A(2m.O.2m) 

0' 

8(-2 m. 3.464 m. 3 m) 

") 

Therefore. to go from A to 8.one musttr.lvcll4i) m.then 13.464 j ) m. 
and finally II k) m. Thus. 

(
, ,) (-4i + 3.464j + lk}m 

ul,I = '8 = ~V7(c='4~"~')~'~+~(~3~.4~64;=:m~),F+~( ~, m'5"), 

= - O.742Si + O.6433j + O.IS57k 

f orce F 8 expressed as a Cartesian vector Dccomes 

F/l = FI/ u /I = (750N){~O.74281i + O.6433j + O.18S7k) 

'" 1- 557i + 482j + 139k) N 

" 
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EXAMPLE 2.15 

, 

I-+-\----.-r- , 

,.j 
c 

~' .. ~ \/ 
89'----·C 

'" 
Fill.. 2-41 

The roof is supported by cables as shovm in the photo. If the cables 
exert forces FilR - 100 Nand F,IC - 120 N on the w~11I hook at A as 
shown in Fig. 2-40u,determine the resultant force ,Icting at A. Express 
the result as a Cartesian vector. 

SOLUTION 

The resultant force F II is shown graphically in Fig.2-41b. We can express 
this forcc as a Cartesian vector by first formulating "' , \1:1 and File as 
Cartesian I'cctors and then adding their components. The di rections of 
F il l:I and F,I(' arc specified by forming unit vectors u,'" :md u"c along 
the cables. These unit vectors afC obtained from the associated posi tion 
vectors rilB and rAC_ With reference to Fig. 2-4111. to go from A to B. we 
must Iravel { - 4k } III and. then { - 4i } III . ThUs. 

r A8 -= ( .:Ii - .:Ik } III 

r A 8 = \ / (4111)2 + ( 4111)2 = 5.66m 

(,,,) ( 4 4) 
F"H "" FilS r ,IIJ "" (](lO N) 5.66 1 - 5.66 k 

F"8 = {70.7i - 70.7k} N 

To go from A 10 C. we muSllr~lVcI { - 4k } m ,then {2j } III. and finally 
{.:Ij }. Thus. 

F"e = 

{4i + 2j - -I k }1Il 

V(.:I m)1 + (2 III)Z + ( "mf = 6 III 

F, e ( ,~) = (IZON) (:' i + ~j - :'k) 
r..IC 6 6 6 

{8Oi + 40j - SOk ) N 

The resultant force is therefore 

""/I = F"I< + File = pO.7i - 70.7k} N + {SOi + .:IOj - SOk} N 

= (15 1i + 40j - ISl k ) N AlI.f. 



• FUNDAMENTAL PROBLEMS 

f2_ 11I. E.~press tile position \'ector r"R in Cartesian vector 
form. then determine its magnitude and coordinate 
direction angles. 

2m 

1"2- 1'1 

Fl- Ill. Determine the length of llie rod and Ihe position 
,·cctor directed from A to fJ. What is the angle /1'1 

~'2-2 1 . Express the force as a Cartesian \'cctor. 

, -

~
c ,:.m 

2m 

r 3m I YT F . 630~\ 4m 

.J. 

'm 

F2-21 

" 
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"1_21. Exprcss tile force as a Cartesian ' "cctor. 

F2-B. D etermine the magnitude of tile resultant force 
al A . 

A I 
Om 

Fc .. .j20N 

I 
• 

!J. 
'm 

• 'm , 'm " ~ 

C 

Fl-!4. Determine the rcsul1anl force at A. 

,. 
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• PROBLEMS 

2-S6. Determine the position ,·~tlor r directed from point 
A to point IJ and tlie length of cord AB.Takc; = 4 m. 

2-87. If tile cord AH is 75 m long. determine Ihe 
coordinate posi tion +: of point II 

J' robs. 2-116187 

02-811. I)ctermine the distance be\wecn the end points A 

and IJ on the "ire b)' first formulating a position "CCIOT 
from II \0 IJ and then determining ils magniHldc. 

" 

r roh. 24IlI 

02-89. Dctcm,inc Ihe magnItude and coordInate 
dircClion angles of the rcsuhant force acting al A. 

'" 

'" 

r rob. z.-g') 

2-11'0. Determine the magnitude and coordinate direction 
angles of the resultant force. 

I ,. 
I , 

,. c 

Pmb. 2-90 



2-91. Determine che magnitude and coordinate direction 
angles of the re5UltalH force acting at A . 

, 

o. 

, 

I' roll. 2-91 

"2- \12. [ktcmline the magnitude and coordinate direction 
angles of the resul1ant force. 

, 

l'roo.2-92 

2.8 FORC€ VECTOR DIRECn:O ALONG A UNE 65 

02-'13. ·Illc chandelier is supported by three chains which 
are concurrent at point O. If the force in each chain hos a 
magnitude of 60 lb. express cach force as a Cartesian ,·ceCor 
and determine the magnitude and coordinate direction 
angles of the resultant force. 

2-94. The chandelier is supported by three chains \'ohieh 
arc concurrent al point O. If the resultant force at 0 has a 
m~gni tude of 130 Ib 31ld is dirccted along the negac ive ~ axi!.. 
determine the force in each chain. 

I' rob" .. 2-9l/94 

2-95. Express force t" as 3 Cartesian ,·ector; then 
dc teTnllnc its ooordillate directioll angles.. 

.... . Il'i YJA 
/ / ~_ Iort 

"rob. 2- 95 
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- 2-96. The lower ii held In plxc by three COlb!e$. If Inc 
forn: of nch C'llblc actlllg 011 t~ to",'" is shown, dl.'lcrmine 
Ihe m~gniludc and coordmate dlr«uon angks It. fJ. y of 
Ihe rC'lUllanl force. Take x - 20 m.,. - IS m • 

... 
c 

A 

, 
I'roh. !-'.16 

'2_97. The door b; held opened by means of '''0 c:haim. If 
the Icn5lon In JIB and CD IS F" - 300 N and Fe - 250 N. 
InpcC1I'-cly. nprcss each of these (orca In Canesi:ln 
\"1:('101 form. 

- c. 

o. , 
, , 

1' , ,,h. l-97 

2-91l "The gu), ,,'Ires arc mcd 10 support ,tie Iclep/1ooc 
pole. Rcpn:sc:nt Ihe fOll:c In each \On", in Cartesian ,·c!;tOT 
form. Neglect the dHlmetcl of the pole. 

• 

I'tob. l-¥II 

l.-9\l. TIIo'o (abies an: usc:d towellrc the o\"crliang boom III 
position and support 1M ISOO-N load. If the resultant forti.' 
is directed along Ihe boom (rom pomt II towards O. 
determine the magMudc$ of the !(:jullanl force and (orces 
F. and FC.~I.l - Jmand ~ - 2m. 

"!-I(IO. T ..... ocabLes Ut u~ 10 secure lhe o"crhang boom 
in posillon and suppon the LSOJ..N load. If the rcsullaDt 
fo= IS d.redtd alon& lilt boom from POint i l towards D. 
delenninc the vlIlUC$ of,r and : for tht coordinates of POint 
C and the magnitude of the .e5ullanl foret. Sci 
F. - 1610N and Fe - 2.aooN. 

, 

LSOON 

I'rob~ !-'J9/ I00 



02- HlI. lbc table AO exerts a force on the lOp of the pole 
of t· .. \ - 12Oi - 90j - SO"' } lb. If the cable has a length of 
34 ft. determine the height: of the pole nnd the location 
(.r.y) of ilS basco 

A 

'" 

r rob. 2- IOI 

2-1t12. If the force in each chain ha5 a magnitude of -ISO lb. 
determi ne the magnitude and (oordinmc di.('("tion angles 
of the resultant fo.ce. 

2-103. If the resultam of the three forces is 
. '11 .. {-9001,; } lb. determine the magnitude of the force in 
e3ch chain. 

• 
, 

"rubs. 2-Hl!fHl3 

67 

-2-10-1. lbc anten na tower i!supported by th ree cablts. If 
the forces of these cables acting on the antenna arc 
,.'" .. 520 N. Fe .. 680 N. and "'p .. 560 N. determine the 
It1.1gnitude and coordinate direction angles of the resultant 
force acting 3t A. 

-.. A 

24m 

....-'"-1(1 m 

• 

02-IOS. If the force in each cable tied to the bin is 70 Ib. 
deh.'mline lhe magnitude and «>ordinale direction angles 
of the resultant force. 

2- 106. If the resultant of the four forces is 
F II .. {- 36Ok J lb. determine the tension del'eloped in each 
cable. Due to symmetr),. the tension in the four cables is the 
same. 

" rohs. ! - IOSlI06 
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2-1117. The pipe is supported at ils end by a tord AH. 1f the 
cord c~crts a force of F - 12 1b on the pipe 31 A . express 
lhis force as a Cartesian "c<ctor. 

8 

'f< 

,. 

l'rob. 2-1117 

"I - Hili. The load al A creales a force of 200 N in ,,"ire AS. 
E~prcss this force as ~ Cartesian ,·cdor. ad;ng on II and 
directed towards 8 . 

l' rob.l-UIS 

02- 109. The cylindrical plate is subjected \0 the three cable 
forces wllich arc concurrent al point O. E~prCSli cacti fom: 
whick the cables excrt on the plale as a Cartesian ' ·CClOT. 

and dc\cnninc the magnitude and !;OOrdinate direction 
angles of the resultant force. 

0 1 

F" _6 1r.N 

I'rub. l-HI9 

2-110. The cable a1ladlcd \0 the sllenr-leg derrick exerts a 
force on the derrick of ,.. - 350 lb. Express IllIs force as a 
Cartesian \"Cctor. 

'~ A 

8 

I"roh.2-1I0 



2.9 Dot Product 

Occasion~lJ}' in sta tics one has 10 find the anglc be tween IWO lines o r the 
com poncnlli ofa force par.tllcl and perpendicular to a linc..inlwodimcnsions. 
these problems can rc~tdiJy be solved by trigonometry since the gcomcuy is 
casy 10 \·isualize. In three dimensions. howcl'Cr. this is often difficult . ;lnd 
consequently vector methods $hould be employed for the solution. The dOl 
product. which dcfint'S a pan icular method for "ruultipJ)'jng" IWO \'ector.;. 
will be is used 10 solve the aOOvc·mcntiont'd problems. 

The dot product of "ceiOTS A and B. wriuen A . 8 , and read"A dOl 8 " 
is defined as the p roduct of the ll1<1gnilUdcs of A and 8 and the cosine o f 
the (Ingle 0 between their tails.. Fig. 2-41. Expressed in equation form. 

I A.n a JlBcoso l (2-12) 

where O~ :s O :s 180~. The dOl product is ofl<!n referred 10 as the sClllllr 

prodllcl of ,'cetors since thc rcsult is a sCI/fllr and not I I vcctor. 

Laws of Operation. 

I. Commutativc law: A · 8 = n · A 

Z. Mult iplica tion b)' a scalar: I/(A ' 8 ) c (1/1\ ) - 8 '= A - (ull) 

3. Distribu tivc law: A· ( 8 + D ) = (A . 8 ) + (A - I» 

II is easy 10 pTOve lhe fiTS! nnd seeol\d laws by using Eq. 2- 12. The proof of 
lhe dimibu!ive Inw is left as an eltercisc (set: !'rob_ 2- 111)_ 

Cartesian Vector Formulation _ Equation 2- 12 must be used 10 
find the dot product for an)' t\\"o Cartesian uni t ' ·cctors. For cxample. 
[ . j = (l)(\ )eosOQ 

"" I and i ' j = (l)(I) cos 90" = O. lf\\"e want to find 
the dot product of two gcnerJI vectors ,\ and B that arc expressed in 
Cartesian vector form. then we have 

+ A}.8,(j· j) + (A .• .8}O -j) + AyB,(j -k) 

+ A:B.,(k · i) + A: B,(k ' j ) + A,8;(k · l.; ) 

Carrying ou t the dot-product operations. the final result becomes 

(2- 13) 

1"lms. 10 (1t:I~rll/il1t Ih~ (/(,' PfIJ(/uc/ oI/U"" C(Jr/{"$ill/l \·uwrs. multiply Ihfir 

corrr$pomlilig X. y. t comflOlll!lIIS (!lid $11m IfrC$C prodllcu (i/sehraimlly. 
Note tha t the resul t will be eit hcr" positive o r ncg.llh·c !im!'''_ 

2.9 Dol PIIOOOCT 69 
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The 3",1.: /I bclw"~n the .ope and the 
oonncC1ing hc:am Can t>c: determIned toy 
fotmulalmg uni, ,~clO.S alonglbc ~~m and 
rope and then using the dOl product 
". ' 11, - (1)(I ) oos6. 

1lw:- proje<:tion of ,he ublc for" ~. along Ike 
beam can be tklcmnncd hy fi .. , finding the 
unit \'crtor .... thaI dcfin~ lhi. direction, Then 
apply the <k>II',QduCi . F. _ f , " .. 

Applicatio ns . The dOl product has IWO imponanl applic:.[ions in 
Ilh:chanics. 

Tht aI,g ft!tJntl t d htl"'un 111'0 ,'UlII,.,., Itr ;nttr)'tcling lill tS- The 
angle 0 belween the llIils of \'cctors ,\ and 8 in Fig. 2-41 can be 
dc::tc rmillcd from Eq. 2- 12 and wriw:n as 

0" s 0 s 180" 

Here A · B is found from Eq. 2- 13. In panicul;t r, notice Ihal if 
A . n e 0.0 :: t'OS- 1 0 "" 90' so that ,\ will be p"rllt'm/iclllllr 10 n . 

Th t wlI/ponrnls 0/ II \'UfUr part/lit!! mId pl'rptmlinllur to /I 

lillt. The romponcnl of 1'l.'Clor A parallel 10 Of oollinear wilh Ihe linC' 
lUI ' in fig. 2-43 is defined by Aa where II~ ::: A oos O. This oomponenl 
is somdimes referred 10 as Ihe proj«lioll of A onlO the line, since a 
righllmgfe is fomled in Ihe CQllSlruction, If Ihe dirt'e/i"'l of the line is 
SJX~ified b)' lite unit I'eelor u",then since lIa: I, we can delemline the 
magnitude of A. direcily from the dol product (Eq. 2- 12): i,e .. 

11.= lIeosO '" A' u" 

Ilt'lIce, (he setlfar pmjl'Cli(J/I of A IIfolll; II filiI' is ilelermille(f {mm/he 
11m pm(fuel of A (ml/ Ihe /llI it "felor n" ... /tirh Ifeji" es If,,: I/irrxlioll "f 
If It' lille, Notice Ihal if this result is posi live,then A. has a direclional 
sense which is the Slime as II" , whereas if A~ is a negative scalar, then 
A_ has Ihe opposi te sense of direction 10 u" 

The component A" represenled as a ,'eClor is therefore 

The component of A Ihat is perpendicular to line 1111 can also be 
oblained. Fig, 2-43. Since A '"' A" + A l ' then A 1 = A - A ... 
There arc two possible ways of oblaining Il l ' One way would be to 
detcmline 0 from Ihe dOl product. 0 = cos-1(A'u,I/ II), then 
A ,L = A sin O. Alternatively. if A. is known, Ihen by Pythagorean's 
theoremwccll ll alsowritcA ,L = V II! - A~!. 



 

Important Points 

• The dot product is used to determine the angle between two 
IIL~tOrs or the projection of a lIector in a specified direction. 

• If lIectors A and R arc expressed in Cartesian I'ector foml. the 
dot product is determined by multiplying the respect ille x. y. z 
scalar components and algebraically adding thc results. i.c., 
A ' R "" A~B.;r + A}.8,. + A ,B, . 

• Fronl the definition of tht' dOl product, the angle formed between 
the tails of lIectors A and H is 0 = cos- t(A ' HI AR). 

• l 11e magnitude of the projection of lIector A along a line aa 
whose dircction is specified by U~ is determined from the dot 
product Au := A . Uu. 

2 .16 

Determinc the magnitudes of the projection of the force t" in Fig.2...-W 
onto the 1/ and II axes. 

" 

SOLUTION 

Proje<tions of Fon::e . The graphic;!1 reprl'SCnlation of the projections 
is shown in Fig. 2-44. From this figure,the magnitudes of the projectiuns 
of F onto the II and II axes call be ubtained by tr igonomctry: 

(Fu)!,,",,! = (100 N)eos 450 = 70.7 N AIlS. 

(F,.)p!cj = (100 N)cos 150 := 96.6 N AI1.I:. 

NOTE: 'Illesc projcctions arc nOI equal to the magnitudes of the 
components of force F along the II and II axes found from the 
parallelogram law. 111ey will only be equlll if the II and I) axcs ;Ire 
perpem/icrilllT 10 one another. 

2.9 Dol PROOVCI 71 
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EXAMPLE 2.17 

,.j 
t1~ 2-45 

The frame shown in Fig. 2-4511 is subjected to :, horiwntal force 
F = l300j ). Delemlinc the magnitude of the components of this 
forcc pamlld and perpendicular 10 mcmbo:r AB. 

, 

It.---, 

,» 
SOLUTION 

Tho: magnitude of lhe component of F alung AIJ is e([ual to lhe dOl 
pruduct of F and the unit \·cctor u!;_ which defines the direction of A8. 
Fig. 2-4411. Since 

TB 2i + 6j + 3k 
u /j = - = 0;;§'r:~Cf"";"" = O.286 i + U.857j + 0.429 k 

r lJ \1'(2)2 + (6)! + (3)2 

then 

F"II = F cos 0 = I' · uB = (JOOj ) . (0.286i + O.857j + 0.429k) 

::: (0)(0.286) + (300)(0.857) + (0)(0.429) 

= 257.1 N Ails. 

Sincc the result is a positive scalar. FAil has 1111; same sensc of direction 
as UII_ Fig. 2-4511. 

8pressing F,IJ/ in Cartesian \'ector form. we ha\'e 

I·,,u,. = FAlJus =- (257.1 N)(O.286i + O.857j + 0.429k) 

= {73.5i + 220j + 1I0k jN 

The perpendicular component. Fig. 2-45b. is therefore 

F .l. = F - FIIIJ = 300j - (73.5 i + 220j + IlOk) 

= {-73.5i + 80j - IIOk } N 

Ails. 

lis magnitude can be delCrmincd ei ther from this vector or by using 
the Pythagorean theorem, Fig. 2-45b: 

F .I. ::: \I' Fl F\B ::: V'"(300=N"')" ~(2"5'7."1 N" )'" 

= 155N Ails. 



2 .18 

l be pipe in Fig. 2--4&, is subjected to the force of F .. 80 lb. Determine 
the angle 0 between F and the pipe segment BA and the projection of 
F along this segment. 

c .• , 
F _ 80 th 

(. ) 

'" ~ 
H 

SOLUTION 

Angle O. Firstwc will cstahlish position vectors from 8 [0 A and B 
to C; Fig. 2-46b. Then we will determine the angle 0 Ix:twecn the tails 
of these two vectors. 

ThUs. 

l B,' '=' {-2i - 2j + Ik}fl. '8" '" 3fl 

rOC = {-3j + Ik} fl. r OC = ViOfi 

rB,,· rOC ( - 2)(0) + ( - 2)(- 3) + (1)(1) 
cos 8 '" --- = = 0.7379 

Tl/A1OC 3 ViO 
o = 42.5° AII.I: 

Components of F. l bc component of F along 8A is shown in 
Fig. 2-46b. We must fi rst formulaIC the unit vector along. 8)\ ~nd force 
F as Cartesian vcctors. 

f8A (- 2i - 2j + 11;. ) 2. 2. I 
UBA = - = =- - I - - J + - k 

'8A 3 333 

... "" 80 Ib(;::) '" so( -3~l k) = - 75.89j + 25.301;; 

F8A = I'· u/:IA = (- 75.89j + 25.30k)· ( - ii -ij + ~ k ) 

= 0 (-5) + <- 75.89)(- D + (25.30)(1) 
= 59.01b AIIl: 

c .. 

NOTE: Since 0 is known. then also. FIlA = F cos 0 = 80 Ib cos -l2S = 59.0 lb. 
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(.) 

tig. ! -46 
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• FUNDAMENTAL PROBLEMS 

t"2- l S. D<::\cTnnnc the angle Q between the force and 
thc line AD. 

" " [- 6 1 +9 j +) kjkN 

I. 

2~ ____ -C?<~,~:"-__ __ 
.>'- 2 m 

t'2-26. Determine the angle 11 bel"'ccn Ihe force and the 
line , 18 . 

, 

t'Z- l6 

t"2- !7. Determine Ihe angle f) between Ihe force and 
the line OA. 

F'2- !.II. Determine the component of projection of the 
force along lhe line OA. 

r 
I A 

F E ~ :l~ ~ 
Fl- 271lR 

F2- 29. Find Ihe magnitude of the projected component of 
Ihe force along Ihe pipe. 

" 

F!- 3Il. Determine Ihe components of Ihe force: acting 
parallel and pcrpc!ldlcula r \0 Ihe axis orthe pole. 



• PROBLEMS 

2- 11 1. Given Ihe three "eeu:I1"$ A. S, and 0 .. $11011' thaI 
A ' {S + 1» .. (A ' U) + (A · D). 

-2-112. Determine Ihe projected component of the force 
F .oS .. 560 N HCling along cable tic. Express rhe rc~ull as a 

Cartesian ' "cctor. 

, 

J'mb.Z-II Z 

02-113. I);::l cnnillC Ihe magnitudes of Ihe romponcnls of 
force ,.. .. 56 N aCl ing along and perpendicular 10 line AO. 

• 

, 

~ ,. 
f 
, r·:J"!cj~E:':~"':;;::;"'~!>" 

, ,. 

"roll. 2-111 

, 
-'"''' ...... 15 m , 

2.9 Dol PIIOOOCT 75 

2- 114. Determine lite '<'"glll of side He of tl\e triangular 
pialI'. Soh'c tile problem by finding Ihe magnitude of ' $(': 

then check the r~sul1 by first finding 8. '" •. and fAr alld 
tlle n using Ihe cosine 1:1.11'. 

I'rob. Z- 114 

2-115. I);:lcrminc Ihe magnillCdcs of Ihe oomponcrlls of 
,.- .. 600 N acting along and perpendicular 10 segment 1)£ 
of Ihe pipe 8'1Semhly. 

, 

, 
~, 

E 

"'rob. 2- 115 
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· 2_116. Two forces act on tile hook. Determine Ihe 3ngle 
6 bct"'cen them. Alw. " 'hal are Ihe projections of t', and F: 
along !he y a~is? 

oZ_1I7. Two (orres act on 111<, hook . Determine the 
magnitude of Ihe projection of . '2 along Fl_ 

"', . 6001" 

, 

I'rob~!-II 6I 11 7 

2-1111. Determine Ihe projection of fOTC;: F .. &l N along 
line Be. Express the resuh D5 a Cartl!5ian \'C'Clor. 

L 

Prob. 2-1 III 

2-1I? lbc clamp is used on 3 jig. If Ihe \"Crt;';al forre 
aCling on Ihe boll is t' " 1- 5()()t;) N. rn:lcrminc Ihe 
magnitudes ofils components F La nd f l which DC! along Ihe 
OA axis and perpendicular 10 il . 

" 
.• .-L--", ",m --i:=--=-=-".kJ~ 

•· .. t - SOO kIN 

I' rob. l - 119 

· 2-120. Determine 1he magnitude of the projected 
component of force . 'A8 acting along the z axis. 

' 2-121. Dc1Cnninc Ihe magnilUdc of Ihe projected 
oomponcnl offorce t '..v; acting along the : axis.. 

Pro'lS. l - IlW U ' 



2-122. Iklennine the projection of force F .. 400 N 
acting along line AC of the pipe assemhly. Express the result 
as 3 Ulrtcsian ,"ector. 

2-123. lk1Crmine the magnitudes or the components of 
force F - 400 N aclinll parallel and perpendicular \0 
segment BC of the pipe assembly. 

A 

l' rnbs. l - 12UIZ-\ 

· 2- 124. Cable OA is used \0 supporl column O/~. 

Determine the angle II II mukes ",ith beam OC. 

' 2- 125. Cable 011 is used to support column 08. 
Determine the angle <p it makes with b.!am OD. 

, 

::..:''---7- , 
'm 

Probs. !- IW I.!5 
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!-U 6. ·Ille cables each exert a force of 400 N on the post. 
Determine the magni tude orthe projected component of t\ 
alonlllhe line of aclion of Fl. 

2- 127. Determine the angle II bet"'·ecn the two cables 
anached 10 the posl. 

Prom. 2- 126/121 

· !-lll:\. A force of F ., 80 N is applied to the handle of 
the ",·reneh. Determine the angle II between the tail olthe 
force and the handle A8. 

, 

Prnb. !- I !II 
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02- 119. D.-leonine tlte angle 0 bcll'o'c~n c:ahlc$J\H and Ae. 

2-130. If F has a magnitude of 55 lb. determine tlie 
magnitude of ils projected components actmg atoll! lhe ,r 
axis and along t"3blc .. Ie. 

L ioJ'-1--' 

• 
f'rohs. l-I!9I1JO 

2- D I. Determine the magnitudes of Ihe projected 
componen ts ar l hc force F .. 300 N acting along Ihe x and 
)' axes. 

Proh. 2- 131 

- 2-132. Determine Ihe magnitude of Ihe projc(1cd 
component of Ihe force F .. 300 N acting along line 0 11. 

l'roll.2- 132 

02-133, TII'o cables exert forces on Ihe pipe. D.:lerminc 
Ihe magnitude of lhe projected component of ti l along Ihe 
l ine of action of t"z. 

2-134. Determine Ihe angle 8 bel"'ccn Ihe 11'0'0 cables 
attached 10 Ihe pipe 

1', _ .10 Ib 

Pmhs, l- I.H" ' .J.4 
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CHAPTER REVIEW 

A S(J!~ r ;, , positive " negalive 

I-number; c.g.. mass and temperature. 

/' A ,'cclor has a magni tude and direction. 
wllcrc ", arrowhead rcprescnlS ", 
scnse orlhe \·eClor. 

Muhipllcation or division of a vec\or by / 
3 scalar will change only the magnitude ")< of the ,"ector. If the scalar is nC!!,Blive. 

7: - '.>A "'Y the scnsc of Ihe vector will ch~ngc so 
Ihm il acts in the opposite sense. 

I f VCClOI'$ arc collinear. the resultant • " simply the algcbrak " sc~lar R - A + H . • :. 
addition. A " 

PllnIUdogrym La .. 
Two forccs ,dd according '0 ", " parallelogram taw. Th, rompollim/s \ r Resuhant 

form tile sides of the parallelogram and 

~;y~_, the TtSlI/lII1II is Ihe diagonal. 

To find the components of a force JIang 
V " any IWo a~es,extcnd lines from Ihe head 

of the force. pamllcllo the axes, 10 form 
Conl[>O""ms 

the componcms. 

To oblain 'h, componenls "' oh, 
resultant. show how lhe forccs add by F/( _ Vl'l l + F ll '2 "I"lcos fJ" 
lip-lo-l311 using lhe triangle rule. and y.~~ lhen usc lhe law of cosines and lhe law ~ "" -.!.L ~ --.!JL 
of sines 10 cakulalc lheir ~alues. sin 01 sin 92 sin OJ( \ 6, 6R : 

" 
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Rectangular Compo nents; 1\'-0 Dimensions 

VeClol"$ F, and F. arc re"angular components 
of F. 

The rcsultnnl fOl\":c is del~rmined from the 
algebraic sum of ils components. 

FfI. .• = iF, 

PRJ = ~ /'~ 

0 = Il1n- l ] 

Carte.~ian , 'cclon; 

"The unit ,'('Clor u bas a length of one. no units. 
lnd il points in the dirCl::l ion of the ,"('ClOr F. 

A force ClIO be resolved inlo ils Cartesian 
cOluponcnlS along Ihe 7:. )'. : axes so th3\ 
F .., F~i + F,j + F,k. 

The magnitude of F is determined from the 
posi tive square rool of the sum of Ihe squares of 
il~ components. 

The coordinate di rection angles a. p. l' arc 
determined by formulating 3 unit .. eclor in Ihe 
direction of F. The .T. y. Z components of II 
represcn t OOS a , COS {J.cos y. 

I , 

"~-, 
'" 

F 
" o-

F 

t" t-, . F, F: 
u" 7" "' F 1 +7j +7 " 
u '" rosa i + cosfJ j + cosy " 



 

81 

lO, coordinate direction angles '" re lated so llia( only \WO of the three cosla + cos1p + cos11' '' 1 
angles ftTl' independent of one another. 

I-'!b find Ihe resultant ora ronrorrcn\ force 
S)'Slcm. ~prc:ss each force as a Canesian I'R " ~ F '" :H , i + U :,j + U.,k 
\'eclor and add Ihe i.j . k components of 
aU the forces in the s)'stem. 

Pmilion and For« Vecton , 
A position VCCWT locales one point in 

r -(xs - x ... )i ~~'~. spxc ["('lalil'e 10 anolhcr. l 'hc easiest way 
10 fommlmc Ihe componcms of a position 
"ector is \0 dcH~mlinc Ihe distance and + (YH - Y,l)j 

A ' 1 
direction that one must Inl\'cl along the x. + (ZR - t,,)1.: "-
y, and z directions-going from tile laill0 

('<8 y-'- V'~ - ' A)J 
, 

the head of Ihe vector. 

• , 

If the li"e of 3";011 of a force passcs / ' through points A and B, then the forre 
1Ktl; in Ihe same direction as the position , . ,". ,(;) rr. -;: 
vCClor r. "'hidl is defined by the unil 
vector ". Th' force can lh.en '" expressed as a Cartni,1n "ector. Y 

, 

Dot l' rOOuct 

The dot product belwe.::n IWO ,"cctors A AA and 8 yields a M:alar. If A and B are A ' 8 " AHcoslJ 
e~prcssed in Cartesian I"ector fonn.lhen ... A , 8, + A).8~ + A z8 : 
the dOl product " 'h, ,"m of the 
products of their x.y. and t components • • 
Th' do< product '"' be "~d ,. (A") dctenninc the angle between A and 8 . 6 - oos' --

A~1Z __ . _. ". Th, do< product i, .I~ "~d ,. 
" determine the projectcd component of a A. _ A cos6 u~ " (A · u. l" . ,\~ . " .... (J .... 

vector A onto an axis (/U defined by ils 
unit ,·ector Uu' 
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• REVIEW PROBLEMS 

2- 135. Delcrmine lhe ,f and)' components of the 7\XI-lb 
force. 

I'rob. 2_ 135 

-2- 136. J)eu!Oninc the magniwdc of the projected 
componenl of tile lOO·lb force aeling along the axi5 BC of 
lhe pipe. 

· 2-1J7. Delermine the angle t! belween pipe segments 
811 nnd Be. 

, 
• ' " "'-

'" ." v' 
2 !!.v'!,,·-'--';··.· IOO Ib 

I'mlls. 2- 1361137 

." ::y 

2- IJIl J)etcmlinc Ihe magnitude and dIrection of Ihe 
rc:sultant FI\' '"' F, + f : + t ' ) of the lllfee forces b)' fil'$l 
finding the resu!1anl t" - .'\ + t'J and then forming 
1'/1 - F' + F!_ Spedf)' its dirooion measured coumer­
cloch,-ise from Ihe positive x axis. 

11 _--'-___ , 

" rob.l- US 

2-139. DClcmlinc Ihe design angle /I (/I < 90") between 
Ihe \11"0 Siruts so thai Lhe S4JO.lb hori1.onlal fo rce has a 
component of 600 III directed from , lloward C. Wlm, is the 
wmponcnI of force acting along member BIt? 

• 

• 
c 

I'rub.2-lJil 

"'''' -A 



· 2- 1411. Determine the magnitude and direC1;on of the 
51111111<'51 fo rce t·) so that Ihe resullanl force of 311 Ihree 
forces l'\as a magnilUdc of 20 lb. 

/-i- lOlb 

I' rob. Z- I -W 

02- 141 . Resolve tile 250-1'1 force in lo componenls aaing 
along Ille II and 1I axes and delermine the magnitudes of 
these componenls. 

" rob. 2-14 1 

8J 

2-142. Cable 118 exerts a force of 80 N on thc end of the 
-'_m_long boom OA . Determine the magnitude of the 
projeC1ion of tllis force along the boom . 

• i 

-'.------,~, 

" rob. 2-14! 

! - 14J. Thc thrcc supporting cabies cxe/1lhe forces shown 
on Ihe sign. Represent cach force as a Cartesian '·CClor. 

, 

I'roll. !-14J 



Whl!f1ever cables are used for hooStingloads, they must be selected so that they do 
not fail when they are p/<l(:ed at their poinu of attachment. In th;,; chapter, we WIll 

show how!O cakulille cable loiKhngs for such cases. 

L 

III!i! 



Equilibrium of a 
Particle 

CHAPTER OBJECTIVES 

• To introduce the COflcept of the free-body diagram for a particle. 

• To show how to solve particle equilibrium pioblems using the 

equations of equilibrium. 

3.1 Condition for the Equilibrium 
of a Particle 

A particle is said \0 b<! ill equilibrilllll if il remains 3\ rest if originally 3t rcst, 
or has a constant velocity if originally in motion. Most often, however, the 
term "equilibrium" or. more specifically, "SIalic equilibrium" is used \0 
describe an object 31 resl. To maintain equilibrium, il is III'Ct'SSllry 10 salisf)' 
Newton"s first lawor rnation. which requires the 'I,'SlIllIml jor(/' acting on a 
p.1rticJc 10 be equal 10 urI/.This condition may be staled malh.::m:llically as 

(3-1) 

where ~ F is the \'eclor slim of (III lire foret'S acting on the particle. 
Not only is Eq. 3-1 a Ilcccss<uy condition for equilibrium. it is also a 

!mfJici .. 1II condition. This follows from Newton'S s(:C<)1ld law of motion, 
which can be \\Tittcn as :i: F '" mao Since the force s)'stem satisfies Eq. 3-1 , 
then mil = O. and then::fore the particle's acceleration a = O. 
Consequenlly. the particle indeed mo,'es with constant "elocity or 
remains (1\ rcs\. 
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'. 

, 

3.2 The Free-Body Diagram 

To apply the <: quation of <:qui librium. w<: must account for Ilf/the known 
and unknown forces (r .') which act 0/1 the particle. The best way to do 
this is to tbink of the particle as isolatcd and "frec" from ilS surroundings. 
A drawing that sho ..... s the particle willi III/the forces that act on it is c'llIed 
a frft"/wll" ,/illgrlllll (FHO). 

Before presenting a ComH11 procedurc as to how 10 draw a free-body 
diagram. we will first consider two types of connections often 
encounl<:r<:d in particle equilibrium problems.. 

Spr ings . U 11 lillt'MI)' t'/(mit' sprillg (or cord) of undeformed l<:ngth I" 
is used to support a pOiTticle. the length of the spring will change in direci 
proportion to [h<: force F acling on it. Fig. 3-1. A charact<: riSlic Iha[ 
defines the "elasticity" of a spring is the sprillg COIIJfml/ or sfiff"rss k . 

The mOlgnitud<: of force exerted on ;a Jin<!arly eI<lstic spring which has a 
stiffness k and is deformed (<!longaled or compr<!sscd) a distance 
J .; I - I". measured from its ImluDded position, is 

(3-2) 

If s is positive. causing an dongalion. Ihen F must pull on the spring; 
wh<!reas if sis n<!ga[ive. causing a shortening, [hen F lIIuSI push on it. For 
example, if th <! spring in Fig. 3-1 has an unstn;:lch<!d length of 0.8 m and a 
stiffn<:ss k :: 500 N/ m lllld it is str<:l<:h<:d to a length of 1 m. so 
IhOlI s = / - I,,= lm - O.8m = 0.2 m. [Ii<:n a force F : ks : 
500 N/ m(O.2 m) = 100 N is needed. 

Cables and P u lleys. Unless otherwise stated. throughout this 
book. <:xcept in Sec. 7.4. all cables (or cords) will be assumed to have 
ncgligibi<: w<:igh[ and the)' cannot stf<! ICh. Also. a cable can support 011/)' 
a tension or "pulling" force, and this force al"'ll)'s acts in th<: direclion of 
[11<: cable. In ChOlptcr S. it will be shown Ihatlhe tension force dc,'c!opcd 
in a cOIUil/lllms cabll!' whkh passes O,'cr a frictionless pulley IIlUSt h~l\'c a 
((JllSIIml lIlagnitude 10 ke<:p the cable in <:q uil ibrium. Hence. for an)' 
angi<: 0, shown in Fig. 3-2. the cabi<: is subj<:cled to 3 constant tension T 

throughout its leng[h. 

T 
Cab1<-" in l~n';on 



Procedure for Drawing a Free-Body Diagram 

Since we must account for all Ih~ f orCl!Y Ilcling on Iht. plmid( when 
applying the equ:uions of equilibrium. the importance of first drawing 
a free-body diagram cannot be overemphasized. To construct a free· 
body diagram. the following three steps arc no::ccssary. 

Draw Outlined Shape. 

Imagine the particle to IX:: iyo/Illed o r cut "free" from its surroundings 
by drawing its outlined shape. 

Show All Forces. 

Indicate on this sketch aI/the forces that actl)ll Ihe paflick "Illese 
forces can be a e /i vt' forces. which tend to set the panicle in motion. 
or they can IX:: f t'IIClil't' /or ce.I' which arc the result of the constraints 
or supports that lI:: nd 10 prevenl mOlion. To Ilc(ount fo r allthcsc 
fo rces, it may be helpful to trace around the panicle 's !xlundary. 
carefully noting each forct! acting on it. 

Identify Each FOI'"ce. 

The forces thaI arc klloll"n should be labeled with their proper 
magnitudes and directions. Letters arc used 10 represent the 
magni tudes and directions of forces 1h,1I arc unl.:nO"11. 

X 
T" Tr 

3.2 THE FR~·BOOY DIAGRAM 

Th" buckct i~ held in equilibrium~· 
the cahte. and onstincti\'ci)· .... " kno .... 
thaI the force in Ihecahlc mUSI cqu.ol 
Ihe .... c ighl of the l>uekct By dra" ing 
a free-body Iliagran. of 1hc bucke1 we 
can undersland why Ihi. is JO. Th is 
,jiagram ~bo",s Ihallhel"<' arc on ly 
Iwo forcc. QCl lIIg Oil lil t bll~ktl. 
namely, ils ,,·c;ghl W an,j Ihc force T 
of Ih. ~ahk For o<\uilibriom. Ihe 
re.luhanl "r Ihcsc for~es m".1 be 
c<\uallo.cro.anllsoT _ IV. 

87 

1hc spool has a weighl IV an,j is susf"'"dc<l fron. 
1hc cra"", boom. If we "'ish looblain!he fOff'CS in 
""bles A B and AC. IMn we should consider Ihc 
frcc .body diagram oflh" ringal "- I [el"<' 1hc c.abb 
AD c.'<er! a =ull:rnl foro:: of W on 'he ring and 
the condi lion of equilibrium is uscd 10 ()ht~in T /I 
and Tl". 
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EXAMPLE 3.1 

Fa (Fu= of cord CE :>Cling on ,phcrc ) 

5lj .~ N (Welghl or gruvily acliog 00 sphere) 

(0) 

f u ' trorce or knol :lCling 00 cord CE) 

fcdForct or'l'bcr~ acting on cord CE) 

,<, 

l"he spheTC in Fig. 3-~ has (I mass of 6 kg and is supported as shown. 
Dn,w" free-body diagram oflhe sphere. the cord CE. and the knot al C. 

, 
o 

'0' 
SOLUTION 

Sphere . By inspection. there arc only two forces aCling on thc 
sphen::.namely. its weigh1.6kg (9.81 m/ s2) = 58.9 N. and the force of 
cord CEo The free-body diagram is shOwn in Fig.3-Jb. 

Cord CEo When the cord CE is isol"ted from its surroundings. ils 
free-body diagram shows only two forces acting on il . namely, [he 
force of the sphere and Ihe force of the kno!. Fig. 3-3c. NOlicc thai 
Fa shown here is equal bUI opposite to Ihal shown in Fig. 3-3b. a 
consequence of Newton's third law of action- reaction. Also. FCE. and 
F E.C pull on the cord and keep il in tt'n$ion so that il docsn't collapse. 
For equilibrium. F CE. = F E.C' 

Knot. The knot al C is subjected 10 thn'e forces. Fig. 3-3li. They arc 
caused by the cords CBA and CE and the spring CD. As required. 
the free-body diagram shows all these forces labeled with their 
magnitudes and di re(:tions. It is important 10 recogni7.c Ihat the weight 
of the sphere docs nOI directly act on the knot. lostead. the cord CE 
subjects the knot to th is forcc. 

f c .. ~ (Fom: of cord CHA aclinJ\ o o knOl ) 

f,.~ (Force of cord C£ oa",S on knol ) 

'" 
~1~ . .1-J 



3.3 CoPlANA~ FOI!Cl: SYSTEMS 

3.3 Coplanar Force Systems 

If a particle is subjected 10 a system of coplanar forces Ihal lie in the .l- Y 
plane as in Fig. 3-4. then each force can be resolved in to ils i (Inti j 
components. For equilibrium. these forces must sum \0 produce a 7.ero 
force resul tant . i.e., 

::i: F = 0 

For Ihis vector equation 10 he sa tisfied. the forcc's x and )' components 
must both be equalto7.cro. Hence. 

(3-3) 

l'hcse 11'.'0 equa tions can be solved for :11 1110$11\\"0 unknowns. generally 
Ttprcscnlcd as angles <Inti magnitudes of forces shown on Ihe particle's 
free-body diagram. 

When applying each of the \1'.'0 equations of equilibrium. we must 
account for the sense of direction of any component by using an 
II/scbmic .\'igll which corresponds \0 Ihe arrowhead direction of the 
component along lhc.I"or y axis. II is impoT!(lntto nOte that if a forr;c has 
an ImkllowlI magl/illllle, then thc arrowhead sense of the forcc on the 
frce-body diagram ean be IIssum{·d. Then if the 50lmion yie lds a n"Kulil'(' 
5CU/llf. this indicatc~ th<l\lhe sensc of the force is opposite \!) thai which 
was assumed. 

For examplc. consider the free-body diagram of Ihe parlicle subjected 
to the Iwo forces shown in Fig. 3-5. l-Icre il iSllS5WII"d thallhe unknown 

!OTC<' F ,lets \0 Ihe right 10 maintain cquilibrium. Applying the equation 
of e(lui librium along Ihe.l' axis. we havc 

+F + ION 0:0 0 

Both terms arc "positivc" sincc both forces act in the positive x direction. 
When Ihis equation is sol\·cd. F = - 10 N. I-Iere Ihe II"Smil'" 5isn 
indicates Ihm F must act to the lefl 10 hold the p:micle in eq uilibrium. 
Fig. .3-5. Notice that if the +.1' axis in Fig. 3-5 were directcd to the left. 
both terms in thc above equation would be negative. but ag~in. after 
solving. F = - 10 N. indicating that to would be directed 10 the left. 

" 1---' ,-. 

~ . • Q 

89 
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j 
t 
/f' 

T.. T ... 

Procedure for Analysis 

Coplanar force equilibrium problems for a particle !;an be solved using 
the fo llowing procedure. 

Free-Body Diagram. 

• Establ ish the x, y axes in any suitable orientatio n. 

• Label all the known and unknown fo rce magnitudes and directions 
all the diagram. 

• Th o: sense of a force having 3n unknown magnitude can be 
assumed. 

Equations of Equilibr ium. 

• Apply the cqualionsof equilibrium. 'i. F~ = 0 and 'i F, = O. 

• Components a rc posit;llc if they a rc di rected along a posith"c axis.. 
and negative if they arc directed along a negative axis. 

• If more Ihan two UnknO"11S exist and the problem invoh'CS a spring. 
apply F "" ks to relate the spring force to the dcfonnalion s of the 
spring. 

• Since the magnitude of a forte is always a positive quantity. then 
if the solut ion for a force yields a negative result . this indica tcs its 
sense is thc rc\'crsc of (hat shown on thc frcc.body diagram. 

The chain< exert Ihr.,., fOrt'C5 un II>( rilll 31 A . 
as shown on il< fr~c·bod)' diagram. The rilli 
will nol mm·c. or ,,·ilI mo" c ",ilh conSlanl 
,·d odl)'. pro" idcd Ihc 5ummalion of Ihese 
force.. along the.r and along Ihc )" axis is zero, 
Ir one <If Ihe Ihree forccs is kn o"ll. Ihe 
magnilu<ks of the olh~r 1,,;0 forCj:s can be 
Oblaincd from the two equalions of 
equilibrium. 



3.3 CoPlANA~ FOI!Cl: SYSTEMS 

EXAMPLE 3.2 

Detemlinc the tension in cables BA amJ BC ncccssary 10 supporllhe 
6O-kg cylinder in Fig. 3-00. 

,.) 
SOLUTION 
Free-Body Diagram. Due to equilibrium. the weight of the cylinder 
causes the tension in c:lb!c BD to be Till) -: 60(9.8\) N. Fig. 3-6b. ll1e 
forces in c~bles 811 and BC can be detcrmined by inycstig~ting 

thc equilibrium of ring 8. 11S frec-bodydiagram is shown in Fig. 3-6t:. Thc 
magnitudcs of TA and Tc arc unknown. outlhcir directions arC known. 

Equations of Equilibrium. Applying the equations of equilibrium 
along the x and y allCs. we have 

..±. rF,"' O: Tceos45"-(~)7~ = O ( \ ) 

+ I"fF, "' 0; Tcsin4So + m TA - 6O(9.81)N '" 0 (2) 

Equation (I) can be written as T A = O.8839T c. Substi tuting this in to 
Eq. (2) yields 

Te sin 45° + m (O.8839Tc) - 60(9.81) N '" 0 

Soth:.t 

7(- = 475.66 N = 476 N 

Substituting this resull into either Eq. (1) or Eq. (2). wc get 

TA = 4WN 

AlI.f. 

II".~ 

NOTE: The accuracy of these results. of course. depends on the 
accuracy of the data , i.e .. measuremenlS of geometry and loads.. For 
most engineering work involving a problem such as this. the data as 
measured to three significant figures would be sufficien!. 

6O(9.llI)N 

'" 

, 
T~ , L T, 

l,-J ~S' 
---~~~.~---, 

" 

,,) 
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EXAMPLE 3.3 

Fn _ l%1N 

(b) 

Fig. }"7 

1ne 200·kg crate in Fig. 3·711 is suspended using the ropes l i B and AC. 
Each rope cnn withstand a maximum force of 10 kN before it breaks. If 
JI B always remains horizontal.determinc the smallest angle 0 to which 
the nate can be suspended before one of the ropes breaks. 

, 
D 

( .) 

SOLUTION 
Free.Body Diagram. We will study the equilibrium of ring A. ·Illere 
arc three forces acting on it. Fig .• l·7b. ·The magnitude of F j) is equal to 
Ihe weight of the erm~'. i.e., F [) "" 200 (9.81) N '" 1962 N < 10 kN. 

Equations of Equilibrium. Applying the equatiuns of eq ll ilibrium 
along the .' and y axes. 

.±. :U, = 0: 

+ r~Fy= (); 

- Fe cosO + Fa '" 0; 
F, 

Fc "'--
00,0 

F("sinO - I962N = O 

( I ) 

(2) 

Frum Eq. (I ). Fe is always greater th:m F B since cos 0 S I. 
TII<:: rcforc. rope Ae will reach the maximum tensile force of 10 kN 
bl'forl' rope AB.Substituting Fc = 10 kN into Eq. (2). we get 

[lO(IO')N lsinO - 1962N '" 0 

0 .. sin- 1(0.1962) = 1l.31 " = Il.3Q 

The force developed in rope JIB can be obtained by substituting the 
values for 0 and F (" into Eq. (I). 

IO(lcP) N = FII 
cos 11.31 Q 

F/I "" 9.81 kN 



3.3 CoPlANA~ FOI!Cl: SYSTEMS 

EXAMPLE 3.4 

Determine the required length of cord li e in Fig. 3--& so that Ihe 
8-kg lamp can be suspended in the position shown. The III/deforml'd 
length of spring AB is 'AB "" 0.4 m, and the spring has a sti ffness of 
k"B '" 300 N/ m. ,. 

(.J 

SOLUTION 
If the force in spring 118 is known, the stretch of the ~pring can be 
found using F '" kJ. From the problem geometry. it is then possible to 
calculate the required length of Ae. 

Free-Body Diagram. The lamp hasa weight W "" 8(9.81) "" 78.5 N 
and so the free-body diagram of the ring at A is shown in Fig. 3--8b. 

Equations of Equilibrium. Using the x . . 1' axes. 

'±' :::":Fx = O: T,IIl - T"CC053Qo= O 

+ly. Fy"" 0: T"c sin 3O" - 78.5N "" ° 
Solving, we obtain 

TAe = 157.0N 

TA8 "" 135.9 N 
The stretch of spring A8 is therefore 

TAB "" kAlP, I II: 135.9 N "" 300 N/ m(s,,/j) 

SAB ::: 0.453 m 

50 the stretched length is 

tAli = IAf/ + SAf/ 

I"n "" OAm + 0.453 m "" O.l:!53 m 

The hori1.(>nlal distance from C to 8, Fig. 3-&/, requi res 

2 m = l"cc053O" + 0,853m 

I"c '" 1.32 m Am: 

" 

". 
---"-=---~>---- , 

II T .... 

(., 
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• FUNDAMENTAL PROBLEMS 

All probkm soIl11iUlIJ ",IIJI melmlt UII f ·8D. 

fl- I. ·lbe craie has a we.ghl of 550 Ib. Delerminc Ihc 
force in each supporting cable. 

B -1 

H -l. The beam has a weight of 700 Ib. Delcrmmc lhe 
shortesl cable ABC Ih31 can be used 10 lifl it if lhc 
maximum force lhe cable can suslain IS 1500 lb. 

B 

• • 
10ft j 

F>-l 

FJ-J, [f lhe 5·kg block is suspended from lhe pulley IJ and 
Ihe sag of Ihe rord is II =0.15 lll.delernILne Ihe foree in cord 
111JC. Neglccllhe SilC Orlhe pulley. 

----- O.~m 

¥J.4. Tbc blClCk has a malli of51.;& and rests QT\ the smoolh 
plane. [)clermine lhe unStrc:lChc:d length of the spring. 

FJ-S. If Ihe mass of cylinder C is 40 kg. delermine Ihe 
mass of cylmder A 10 order 10 hold lhe as.~embJy io Ihe 
pasilion showo. 

0 E 

C 

" " 

¥J-S 

FJ..6. Delermine Ihe lension in cables IIB.IJC. and CD. 
neeess.1T)' 10 supportlhe [()'kg and 15·kg traffic lighlS 31 IJ 
and C. respeclively. Also. find tile angle O. 



• PROBLEMS 

All wob/tlll solulions mllSf inC/wl"/1II FHO. 

oj-I. Delermine tile force in each cord for equilibrium of 
the 200-kg crah~. Cord Be remains horizontal due 10 the 
rolle r al C. and AB lias a length of 1.5 m. Sci)' '"' 0.75 m. 

J-2. If Ihe 1.5-m-long cord AH can wilh~tand a mM;mum 
force of 3500 N. d1!tcrminc the force in cord He and the 
distance y so that!hc 200·kg cralC can be surroMcd. 

T 

1 
" 

Prob .... J-1(2 

J-j, If the mass o{the girde r is 3 Mg and its cenle r of mass 
is 100:tled al point G. determine the tension developed in 
cables AB. Be. and SO for equilibrium. 

*3-4. If cables SO and BC can withstand a ma~imum 

lcnsik force of 20 kN. delermine the ma.~imul1l mass of the 
girder 1hm can be suspended from cable l i B so 1hn1 neithef 
cable will fa,l. The ccnler of mass of the girder is 11X"31cd at 
pointG. 

!'robs. 3-314 

3.3 CoPlANA~ FOI!Cl: SYSTEMS 9S 

· 3-S. 'I"he members of a truss (Ire connected to tile gusset 
plate. If tile forces are concurren t at point O. determine the 
nl~gnitudes of t' and T for equilibrium. Take II - .30". 

3-6. The gusset plate is subjected to tile forC'Cs of (our 
mcmbers. Determine tile fOTC\: in member B J nd its proper 
orientat ion tJ for equilibrium. The forces arc concurrent M 

point O. Take I' - 12 kN. 

,. 
"rub!'. 3-516 

3-7. The 1O"';ng pendant AB is subjected to the force of 
50 kN c);erted by a IUgboal. Determinc thc force in each of 
the bridles. BC and BD. if the ship is mO\'ing forward wi th 
constant "docil)". 

Prob.3-7 
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".\-lI. Members AC and A H support the JOO.Jb ~r:JIC. 

Determine Ihe tensile force dc"eioped in each ml.'mbcr. 

.~9. If members AC and All (an support a nlluimum 
tension of 300 Ib and 250 lb. re~pccll\'cly. determi ne the 
t~ rgC'S1 weight of IIII.' craie thai can be s.afcly supported. 

" robs. 3-&'9 

J-IO. 1bc members of 11 truss are connected 10 the gUS5Ct 
plate. If the forces arc concurrent 31 point O.determine tile 
magnitudes of t" and T for equlhbrium. 1:11;1.' 0 - 'JO". 

'!- II . The gU5SC1 pialI.' is subjcctoo 10 the forces of Ilm::c 
members. Determine the tcnsion force in member C and ils 
angle 0 for cquilibrium.l ltc forcc~ are OOIlCUrTcnt al poim O. 
1:11;(' F - 8 kN. 

, 
I 

9kN 

T 

"robs. J-Uil i l 

°3-12. If block 8 weighs 200 Ib and block C weighs 100 Ib, 
determine the required weight of block 0 and the angle 0 
(or equilibrium. 

03-13. If block D wcighsJOO Ib aRd block 8 weighs 275 lb. 
delcrminc !he rcquired wClgh! of block C and lhc angle fJ 
for equilihrium. 

• 

J-14. DClcmline lhc slrc!eh in springs AC and 118 for 
equ ilibrium of the 2-kg block. The springs are shown in 
Ihe equ ilibrium position. 

J-I S. 111c unSlrctched leng!h of spring AB is 3 m. I f the 
block is held in !hc equilibrium po5i!ion shown. dClcrminc 
lhe mass orthc block al J) . 

,. 

r 
,. i 

A 

D 

Probs. J-14I1! 



· .1- 16. Delumine Ihe ten~ion del'doped in wire~ CA and 
CIJ required for equilibrium of the IO-kg cylinder. T.1ke 
fJ .. 40". 

°.1-17. If cable C8 i~ subjected to a tension th31 is tllitt 
that of cable CA. determine the angie fJ for equilibrium of 
the IO- kg cylindel. Also. wh3t arc the tcnsions in wiru CA 
andCS? 

c 

Probs. .1- 16/17 

.1-18. Determine Ihe forces in cables AC and A8 needed 
to hold the 2O-kg ball /) in equilibrium. Take F .. 300 N 
andd - lm. 

.1-19. lhcbaIlDhasamassof20kg. l(alorccofF " lOON 
is applil'd horizomally to the ring al A. determine the 
dimension tI sa thatth ... force in cable AC is~ero. 

~- , 

" 

!'robs. .1- lllJI9 

3.3 CoPI.ANAR FORa SYSTEMS 97 

".1-10. Determine the tension devcloped in each w;re 
used to support the 5O-kg chandelier. 

0.1-1 1. 1(lhe tension de"eloped in each 01 lhe lour wires is 
not allowed 10 exceed 60Cl N. determine the maximum mass 
01 the chandelier Ihal can be supported. 

Prub. J-10r12 1 

- J-22. A "crtlcal force I' - \0 Ib as applied 10 lhe ends of 
the 2-fl cord A8 and spring AC. I ( Ihc spring hss an 
unstrelched lenglh of 2 It. delermine the angle (J for 
equilibrium. Take k .. 15Ib/ ft . 

.l-lJ. Delermine the unstre tched length of spring tiC i( a 
force I> .. 80 Ib eallSCS the angle 0 .. 60" for equilibrium. 
Cord AH is 2 (I long. Take k .. 50 Ib/ f\. 

2f1---t"---U I---

, 

!'robs. .1-22123 
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· 3-24. If tlte bucket weighs 50 lb. determine lite lension 
den'Joped in cacti of lhe wires. 

oj-H. [)(:temunc Ihe ma;(imum weigh.t oflhe buckellh~l 
the wi re system can support so Ihal no single wire develops 
a tension exceeding 100 lh. 

",obs. J-UJ2S 

.3-26. Determine the 1ensinns developed in wires CD. CH. 
and HA and the angle 0 required for equilibrium of tile 
30·111 cylinder E and the 6().lb cylimkr F. 

3-27. If cylinder t: weighs JO II> nnd 0 - 15", dCicmlinc 
the ",('igh! of cylinder F. 

n 

c ., 

I',n b!i. J..-Z6I2.7 

. J-2lI. T",-o spheres II and H Ita"c an equal mass and are 
clcclroslDlicnlly charged such thatlhc repulsi,'" force acting 
between them has a magnitude of 20 mN and is directed 
along line AB. Delermine the angLe O. tile tension in cords 
lie nnd Be. and lhe mass III of cadI sphere. 

I'rob • .J-211 

. .J-l 'l. The cords BCA Hnd CD can cach support a 
mluimum lo~d of J(JO Ib. De termine the ma.,imum weighl 
of Ihe ernte that ean be hoisted at constant velocity and the 
angle 0 for equilibrium. Neglect lite Sil.e of the $mooth 
pulley 81 C. 

I'rob. J-2~ 



· .1-341. 'Ibe springs on tile rope ;mcmbJy are originalJy 
unstrctched wilen 8 _ fr. Iktermine the tension in each 
rope when F - 90 lb. Neglect tbe sile of tile pulle)"s 3t H 
andD. 

J-J I . 1be springs on the rope MSe mbJ)" ~ re origin~U)" 
stretched I fI wilen /J _ fr. lktermine the vertical forte F 
that must be applied so that /J - 300. 

A 

t .. 30tbjJl k • .30 IbjJl 

,. 

Probs. J-3OIJI 

*J-J.z. Iklermine the magnitude and direction (I of the 
equi librium fortc F .... exerted along lin),: AH by the tractil'c 
apparatus shown. l be suspended mass is iO kg.. Ncglect tllc 
sile of the pulley at A. 

I' rob. J-J2 

3.3 COP\.ANAR FORa SYSTEMS 99 

oJ-JJ. 1bc wire forms a loop and passes O\'cr Ibe small 
pulleys 31 A.H. C.and D. l f its end is subjeeled 10 a force of 
I' - SO N, determine Ihe force in the " .. ire and the 
magnitude of the resultant forte Illat tile wire exerts on 
cacti of the pulley$. 

J-J4. 1bc wire forms a loop and p:lSS<:s over the small 
pulleys at A. 8. C. and D. Uthe maximum "SIIII<IIII/orC"t"that 
the wire can exert on each pulley is 120 N. determine the 
greatest forte P that can be applied to the wire as sbown. 

, 

J-j5. l lte picture lias n weight of JO lb and is to be hung 
owr the smOOl1l pin 8 . If a string is attached to tile frame at 
points A and C. and the maximum force the Siring can 
support is IS lb. determine the Shortest string Ihat can be 
safely used. 

8 

r-- 9 in. - - - 9 in. ---l 

J>rob. J-JS 
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*3-36. lhe 2(1)'lb unifonn tonk is suspended bl' means of 
a 60ft-long cable. which is 3113ched to the sides of the tank 
and passes o\'er the small pulley loca ted at O.1f the cable 
tan be auaellcd al citllcr points , \ and 8 or C and O. 
d~tcnninc which anachmcnt produces the least amount of 
tension in thc cable. What is Ihis tension? 

, 

l'rah. J-J6 

oJ-37. The 10·lb wcight is supported by the cord IIC and 
rolter and by the spring that has a sliffness of k - 10Ib/ in . 
and an unstrctcllcd lenglh of 12 in. DClennine the distance 
{/IO where Ihe weighl is located when it is in equilibrium. 

J-3!l. The 10-111 weight is supported b)' tbe cord tiC and 
roller and by a spring. If the spring has an unstretchcd 
lenglh of 8 in. and Ille weighl is in equilibrium ",hen 
d ,. 4 in .• determine Ihe stiffness k of the spring. 

03-39. A "scale" is conSlruclCd '""ith a 4·f!·!ong cord and 
the 100Ib block D. The cord i5 Ii.xed to a pin 31 A and paSM's 
o,'er IWO ~m,,11 pullers 3t 8 mid C. Determine the ""eight of 
the suspended block al 8 if the syslCm is in equilibriu!l\. 

"rub. J-39 

0*3-40. The spring has a sliffness of k - 800 N/ m and an 
unstrelched length of 200 nllil. Dete rmine Ihe force in cables 
Be and 80 when Ihe spring is held in Ihe position shown. 

,- - 50:1",,,, m mm- -

Proo.~ . J-J7/J8 Pmh. 3-40 



oJ-4 l . t\ continuous cable of total lengtll "' m is wr.lpped 
around tile SIIIII/l pulleys at 11. 8. C. and I ) . I f exll spring is 
stretched 300 mm. de te rmine tile mass III of eacll block. 
NeglecI Ihe weigh! of the pulleys and cords. The springs are 
unstrc lcllcd when <I - Z m. 

I'rob. J-41 

J-4Z. Determine Ille mass of each of tile IWO cylinders if 
Ihey ca~ a sag of s .. 05 m whe n sus]X'nded from tile 
rings at 11 and 8. Note Ihm S - 0 " 'lIen Ihe cylinders arc 
remM·cd. 

I'mb. J-41 

3.3 CoPl.ANAR FORa SYSTEMS 1 0 1 

oJ- H. The pail and its contents ha,·c a mass of 60 kg. If Ihe 
callI<: BAL is 15 m long. determine Ihe distance), of the 
pulle), at A for equilibrium. Ncg]ccllhe size of the pulley. 

l'mb. 3-43 

. - J...44. A scale is constructed using the IO-kg mass. Ille 
2· l;: g pan P. and the pulle)' and oord arrangeme nt . Cord 
BCA is Z m long. If s - 0.75 m. dete rmine the mass D in the 
p.1n. Ncglecllhe S;1£ of lhe pulley. 

Um 

J>tob. J...44 
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• CONCEPTUAL PROBLEMS 

1'3-1. The concrele wall p.11lC1 is hoisted in10 position U$ing 
lhe IWO ubJcs AH and AC of equal length. Establish 

dimensions and use an equilibrium analysis to 
las IIIe force in each ClIhlc. 

I'l-! . l'hc truss is hoiSled using cable AHC thai passes 
through 3 \'cry IimaU pulley at H. If the tru§s is pl.lccd in a 
lipped position. sllow Ih31 it will alwa)'$ relurn to the 
1I0riwntai position 10 maintain equilibrium. 

1'3-3. The de\'icc I)H is used 10 pull on Ihe chain AHC 110 
as 10 hold a door closed on Ihe bin. Iflhe angle IIctween;\H 
and the hori1.ontal segment HC is 30". determine the angle 
IIctween I)H and the hori1.omal for equilibrium. 

" .~. The 1\\'0 chains t l H and AC have equallenglhs and 
are subjected to the ,"enical force F. If A8 it; rcpl:lced by a 
shorter chain tl8 ', show that Ihis chain would ha\'c 10 
support a larger lensile force than 11# in order to maintain 
equilibrium. 



3.4 Three-Dime nsiona l Force Syst e ms 

In Section J.l we stated that the neccssary and sufficicnt condi tion for 
particle cquilibrium is 

(>-4) 

In the casc of a three-dimensional force system. as in Fig. 3-9. we can 
resoh'e Ihe forces inlO their respective i. j , k componenls, so thai 
~F~ i + ~1-~.j + ~F:k :: O.Tosatisf)' this equation we require 

'iF , - 0 
~F,. = 0 
Y.F, = O 

(3-5) 

Thesc thrce equations state that the II/srbmic 511111 of the componcnts of 
all Ihe forces acling on the particle along each of the coordinate 3:\:CS 

must be lero. Using them we can sollie for al most Ihree unknowns. 
generally representcd as coordinMe direction angles or magnitudes of 
forces shown on the particlc's frec·body diagram. 

Procedure for Analysis 

Three-dimensional force eq uilibrium problems for a partide can be 
sol\'ed u.~ing the following procedure. 

Free-Body Di;lgram, 

• Es tablish the x. y. ~ a:\:cs in any sui table oricntation. 

• Label all the known and unknown force magnitudes and 
directions on the diagram. 

• Thc ~nse o f a foree having an unknown magnitude can be 
assumed, 

Equations of Equilibrium. 

• Use the scalar cquations of cquilibrium. ":£F~ = O. ':iF, = O. 
~ F, .,. O. in cases whe re it is casy to rcsolv~ each force into its 
x. y. t components. 

• If the threc·dimensional geomet ry appears difficult . then first 
c:\:press each force on the free-body diagram as a Can csian Ilcctor, 
substitute these vectors into ~ F :o 0, and then set the i . j . k 
components equal to zero. 

• If the solution for 3 force yields a negatillc resuli. th is indicales 
thai its sense is the re\'c rse of that shown on the free-body 
diagr.tm. 

" 

I , 
, 

'. 
Fig. ,l-II 

The ring. a! A i, subjeclcd 10 ,'''' force from 
Ihe hook :IS wdl as fom:s from each of Ihe 
Ihrec ehains.. lf Ihe dcctromag"'" ~nd its load 
11:1,.., a " 'cigln IV. ,hcn lhe force at ,he hook 
"'ill be \Y . and ,he ,hrcc scalar cqu~lions of 
equilibrium can be appli(d,o the frcc·body 
diagram of,hc ring in onler looclermi"" ,he 
chain fom:s. •••• J'e". and J'n. 
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EXAMPLE 3.5 

, .. " 
(., 

" 

(" 

I-ll!; . .J-IO 

A 9Q·lb load is suspended from the hook shown in Fig. 3-100. If the 
load is supported b)' two cables and a spring having a stiffness 
k = 500 lb/ ft.uetemline thc force in the cables and the SIr<:lch of the 
spring for equilibrium. Cable AD lies in the x-y planc and cable A C 
lies in the .~-~ plane. 

SOLLTTlON 

The stre tch of the spring can be determincd once the force in the spring 
is dete rmined. 

Free-Body Diagram. The connection al A is chosen for Ihe 
equilibrium analysis since the cable forces arc concurrent al this 
point. 11le free-bod), diagram is shown in Fig. 3- lOb. 

Equations of Equilibrium. By inspection. each force can easily be 
resolved into its x. y. Z components. and therefore the three scalar 
equations of equilibrium can be used. Considering COmponents 
directed along each posith'e axis as "positive." we have 

r.F~ = 0: 

r.f~ = 0; 

r.F: = 0: 

f;, sin30° - (~) /'c = 0 

- F/)cos30° + J-'B = 0 

(~ )Fc - 90Ib = 0 

( I ) 

(2) 

(3) 

Solving Eq. (3) for Fe. then Eq. (I) fo r Fl). and fin<llly Eq. (2) for F /I. 
yields 

Fc= ISOlb 

Fo = 240lb 

FH "" 207.81b 

The stretch of the spring is tbcn·forc 

F" = bAIf 

207.81b = (500 Ib/ft)(.~'IIf) 

SAB = 0.4 16 ft 

NOTE: Since the results for :111 the cable forces are positive. each 
c;lbk is in tension: IhD! is.. it pulls on point A as expected. Fig. 3-IOb. 



3.4 THREE·DIMENSIONAl FOI!CI: SYSTEMS lOS 

EXAMPLE 3.6 

The IO-kg lamp in Fig. 3-lla is suspended frOni the three equal-Ienglh 
cords. Determine its smalkst vertical distance of from the ceiling if the 
force del'e loped in any cord is nut allowed to exceed 50 N. 

,.j 
fig . .1- 11 

SOLUTION 

Free-Body Diagram. Due to symmetry. Fig. 3-llb. lhe distance 
DA = DB = DC = 60:) mill. It follows that from "i, F, = 0 and 
"i,Fy = O. the tension Tin cach cord will bc the same. Also. the angle 
between ",(leh cord and lhe: axis is y. 

Equation of Equilibrium. Applying Ihe equilibrium eq uat ion along 
Ihe = axi s.. with T '" 50 N. wc have 

'LF, '" 0: 3[(50N)cosy] - 10(9.81) N = 0 

'
98.1 6 y = cos - -- = 49 I Q 

150 . 

From the shaded triangle shown in Fig. 3- l lb. 

60J mm 
Ian 49.l6Q = --­, 

s=519mm Am: 

,/~ 
10(9JH)N r 

,OJ 
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EXAMPLE 3.7 

c 

"J 

", 

" 
~ig. 3- IZ 

Dctcmlinc the force in each cable used to suppon the;: 40-lb cratc 
shown in Fig. J..-12a. 

SOLUTION 

Free-Body Diag ram. As shown in Fig. J- IU).lhc free-body diagrmn 
of point A is t'Onsidcrcd in ordcr to "cxposc" lhc thre::e unknown force;:s 
in the cables. 

Equations of Equilibrium. Fi r.>1 wc will express l:<lch force;: in 
Cartesian vCL10r forill. Sine.:: the coordinat.;s of points Band Care 
8 ( - 3 (1. - 4 fl. 8 fl ) ,Ind C(- 3 fl. 4 ft .8 fl). we havc 

, [:-o=~-~3~i =-~4~j ~+~'~k~",1 f l1 = FH 
2 ( 3)1 + ( 4)2 + (W 

=> - 0.318F8i - 0.424F,d + O.848Fl,l k 

c[ - 3i + 4j + Sk 1 t'c = F. 
2 ( 3)1 + (4)2 + (8 )1 

= - 0.31SFc i + 0.4241-"cj + 0.848Fc k 

"-0 = F,j 

W = {-4Dk ) lb 

E<IUilibriulli rcquire;:s 

FB + Fc+ F,, + W = O 

- 0.3ISF 8i - 0.424F ,d + 0.848F Ilk 

- O.3ISFc i + 0,424Fd + O.S4SFck + Foi - 40k = 0 

Equating the:: TCSp<.!etive:: i, j . k components to zao yields 

~F., => 0: 

IF, =- 0; 

'i.F: = 0: 

-0.318F8 - 0.318Fc + Fo = 0 

- 0.424fi:l + 0.424Fc :;- 0 

0.84SF8 + 0.848Fc - 40 = 0 

(I) 

(2) 

(3) 

Equation (2) states Ihat F 11 = Fe. ThUs. solving Eq. (3) for F /I and Fe 
and substituting the result into Eq. (1) to obtain Fl). we have 

FB = Fc = 23.61b 

FI) = 15.01b 

Am. 

Am:_ 
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EXAMPLE 3.8 

Delermine the tension in each cord used 10 support the JOO-kg craIe 
shown in Fig.3-13u. 

SOLUTION 

Free-Body Diagram. l be force in each of thc cords can be 
determined by invcstigating the equilibrium of point lI. l 11C frec-body 
diagram is shown in Fig. 3-13b. The weight o{ the crate is 
IV = 100(9.81 ) = 981 N. 

Equations of Equilibrium. Each force on the (ree.body diagram is 
first expressed in Cartesian ,'cctor form. Using Eq. 2- 9 fur Fe and 
noting point D( - 1 m,2 nl. 2 m) for "' [)o we havc 

FB = FB i 

Fe = F(.·cos 120"j + Fe cos 135°j + Fc cos60ok 

= - O.5Fc i - O.707Fd + O.5Fc k 

F 0 = Fo ~;=!ii~~~~~ . [-li + 2j + 2k 1 
2 ( I): + (2 )~ + (2)2 

= - 0.333Fj) i + O.667F/} j + O.667Fo k 

W = {-98I k} N 

Equilibriunl rc.:quirts 

~F = 0: I'y + Fe + Fo + W = 0 

FIJ i - O.SFc i - 0.707Fd + O.5Fck 

- 0.33JFl) i + 0.667F/} j + 0.667Fok - 98l k '" 0 

Equating the respective i.j . k components to zero, 

~Fx = 0: Fy - O.5Fe - 0.3331-0 = 0 

~fj. = 0: 

~I-~ = 0: 

-O.707Fc + O.667Fj) = 0 

O.SFe + O.667Fo - 981 = 0 

0) 
(2) 

(3) 

Solving Eq. (2) for Fo in terms of Fe and substituting this intQ Eq. (3) 
yields Fe. Fo is then determined from Eq. (2). Finally. substituting the 
results into Eq. (I) gives Fo. Hence. 

Fc : 813N 

fo= 862N 

Fy = 694N 

An~. 

AIlS. 

AnI". 

, D 

,., 

'" 
fig. )..IJ 
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• FUNDAMENTAL PROBLEMS 

/11/ probl(lll solmi(JIIS mllSI ilJ(~/,,,/r air F/JO. 

F3-7. Di:lermine the magnitude of forces . ',. t'!, t"J' so 
thai the particle is IIcld in equilibrium. 

.oN 
I 

f 3-7 

, 

~"J..4I. Di:tenninc the lension developed in ClIbles AB,AC. 
and ,10. 

."". 

FJ-II. Determine thc tension de\'eloped in cables AH" te. 
and 110. 

,. 
' £t"JTi;7· ~;z;;--, 

"·YO--i 
8 

600N 

t'3-9 

"3-10. Determine the lension dc.-cloped in cables A8. 
AC.andAD. 

, c 

""" 
F3-IO 

t'3- ll . The 154). lb crate is supported by cables AB, AC. 
and tiD. Determine 'he tension in these .... ires. 

'-3- 11 



• PROBLEMS 

All prob/~m so/mitms mUSI il1c1I"/~ lilt FRO. 

· J.....Js. Determine tile tension in Ihe cables in order 10 
supportlhe loo.kg craie in the equilibrium position shown. 

J-46. Dcu:nninc the ma.\lmum mass of the craIe solh.a11hc 
tension dcwlopcd in an),(3b(c docs not exee~'CIcd 3 kN. 

A 2n' n 

l'rolK. J..-45/-Ui 

J.47. The shcadcg derrick is used 10 haul Ihe 200-kg nel of 
lim onl0 the dod. Determine !tic compre$Si\'c force along 
caell of the legs A8 and eB and Ihe tension in the winch 
cable DB. Assume Ihe force in each leg :W;IS along ils a~s. 

r m 

l' rob. 3-47 

109 

- J..48. Dclcnninc lIIe ,elISion dc_doped in cables .liB, Ae. 
and A D required for equilibrium of lhe JOO.lbcralc. 

. )...49. Determine the maximum weight oflhc craIe so thaI 
tile tension dC"eloped in an )' cablc docs n01 c.\cccd 4SO lb. 

c 
I 

'" , 
/ -

" 

HI 

"L--'----K.-'--"'----, 7 
J" 

/ 
, 

l-SO. Determine the force In each cable nceded 10 
support tile ),'i(X}-lb platform. Se l ll '"' 2 (I. 

J..-S I. Determine the fore<: In each cable needed to 
support the JSO().lb platfonn. ScI d '"' .. h . 

Probs. J..-5015 1 



11 0 C",APTER 3 EOU Ill8RIU M OF A PART ICle 

*3-52. Determine tlte force in ellch of the tltree c:'lhles 
needed 10 liftlhe Hactor which has a m~ss of!S ~ I g. 

'.n m 

,. 

I'rob . • l-52 

'3-53. Determine the force aCling along the axisof each of 
Ihe Ihree StrulS needed 10 supporlthc 5O(}..kg blOCk. 

Pmb.3-53 

3-54. If the mass of the flowerpot is SO kg. determine the 
tension dcwloped in each wire for equilibrium. Set 
.1 - I.Smandz - 2m. 

3-55. If tlte mass of tlte flowerpot 1$ 50 kg. determine the 
tension de'"eloped in eaclt wire for equilibrium. Set .f .. 2111 
andt .. I.Sm. 

Om 
,. 

'3-56. The ends of the three cablcsarc alladlcd to II ring 
al A lind 10 Ihe edge of II uniform lSO·kg plate. Detem\ine 
Ihe tellsion in each of the cables for equilibrium. 

' 3-.57. The ends of the three cables:'lfC attached to II ring 
31 A and 10 Ihe edge of Ihe uniform plate. Determine the 
largesl maliS the plate can have if each cable can support a 
maximum tension of IS kN. 

, 

Probs. 3-56157 



 

3-58. Dc:termine the tClUlon de"eloped In cables AB. AC. 
and AD required for equlhbrium of the 75·kg cylinder. 

3-59. If each cable can witllstand a ma~imum tension of 
tOOO N. determine the largest mass of the cyhnder for 
equilibrium. 

°3-60.1111.' SO-kg pot is 5upponed from A by tlK: Ihrce 
cable$. Determine Ihe force acting m each cable for 
equillbnum. Take d = 2.5 m. 

ol-6 l. Delermine Ihe heIght II of cable A81'O Ihallhe force 
In Clbles AD and I IC IS one·hatr as great as lhe fOfU in 
cable A8. Whal is the force in each cable for Ihls ca5C:? The 
nO"'er pot h:l$ a mass of SO kg. 

I ,. 

3.4 THREE·DIMENSIONAL FORCE SYSTEMS 11 1 

3-62. A force of F = 100 Ib holds the .wG.lb craIe in 
equilibrium. Determine Ihe coordinates (0.,..:) of POint A 
iflhe tension in cords , IC and;l8 15 700 lb each. 

~. If Ihe maxImum allowable tension m cableJ ,18 and 
AC 1$ SOU Ib.dctcnnine Ihe maximum height: to "hich tlte 
2OIJ.lb ernIe can tH: lifted. What horizonlal force f'musl be 
npplied'!T~ke y - 8 ft. 

" 

I' robs. 3-6U6J 

o~ The Ihm ring can be adjustcd "cmcally bet",ecn 
threc equally long cables from which the \()().kg chandelier 
Issuspcndcd. lfthe ring remains in Ihe IIorizonlal plane and 
z - 600 mm. determme the tension in eaelt Cllble. 

oJ-65. The thin nng can tH: adJusled \'ertlcally bl:twccn 
Iltree equally long cables from which the \lJO.kg chandelier 
is suspended. If Ihe rmg remains in lite horizontal plane and 
Ihe tension in each cable IS nol allowed to exceed I kN. 
determine the smallest allowable diSlan~ : required for 
equilibrium. 

05. 
C 

IZO:; ",,. 
0 :,.. • , 
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J-66. The buckel has a weighl of 80 Jb and is beinghoisled 
using Iliree springs. cacll having an unSlrClelied lenglll of 
IQ .. 1.5 fl and sliffness of k .. 50 Ib/ f!. Delermine Ihe 
\wtical dislance tI from Ille rim 10 poinl A for equil ibrium. 

"rob. 3-66 

J-.67. Three cables are used 10 suppon a 9OI)·lb ring. 
[)clemline the tension in 1.'31.'11 cable for equilibriunl. 

Prob . .1-67 

OJ.-.6ll 1be tllree outer b]()(\(s e!l(h ha\'e a mass of 2 kg. 
and the central bl()(k £ has a mass of J kg. Determine the 
S<'Igs for equilibrium of Ihe s)'mm. 

I'rub. J-6Ij 

.~. Determine Ihe angle 0 such Ihal an equal force is 
de"eloped in legs OlJ and ~C. What is the force in each leg 
if the forc£ is directed along the axis of each leg? 1be force 
F lies in the x - )' planc.Thc suppons 31 , I. H. C can Cl(CTi 
forces in either direclion along Ihe 3113clled legs. 

, 

Prob. 3-69 



CHAPTER REVIEW 

Partide Equilibrium 

When a IXl rl icie i~ at rest or move:;; wilh 
CQnstanl velocity. il is in equilibrium. 
This requirL'S llial aillhe forces acting on 
Ihe p~Tlidc form 3 lero resultant force. 

In order 10 account for all lhc forces Ihal 
ac\ on a panicle. il is necessary 10 dmw 
ils frec-body diagram. This diagram is an 
outlined shape of the particle thaI shows 
all the forces listed wilh their known or 
unknown magnitudes and dirccliolls. 

Two Oimcnsions 

'i lle Iwo scalar cqualions of force 
equilibrium can be applied wilh reference 
10 an cSlablil<hcd x • .I' COOrdiMlc system. 

The tensile force developed in a 
ooll/imlous ,able thaI passes o,'cr a 
frictionless pullcy must have a rOllSliJ/!/ 

magnillldc throughoullhc cable 10 keep 
the cable in equilibrium. 

If tbe problem involves a linearly clastic 
spring. then the streIch or oompTC$Sion J 

of the spring can be relatcd 10 the force 
applied 10 il. 

Three l)im ... n>ioll~ 

If Ihe Ihr~-dimensional geometry is 
diffiwlt 10 visUIIIi:r.c. then Ihe equilibrium 
equation should be applied U$ing a 
Canc~ian '"CClor ann lysis. This requires 
firsl exprcSliing each force on the free· 
body dia~m as a Cartesian veclor. 
When the forces arc summed and set 
equal 10 -zero. then Ihe ~ j . and II 
components arc also zero. 

tFr = 0 
Y.F, = 0 

F = ks 

:i. F = 0 

:iF, = 0 

:iF, = 0 

:iF~ = 0 

113 

I 
r 

r 

Cable is in tension 

'. 
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• REVIEW PROBLEMS 

3-711. The SOO-Ib cTate is hoisled using Ihe ToreS tlU and 
tic. Each rope can withstand a maximullltcnsion of Z500 Ib 
before it hreaks.. If JIB ah.·u)'S Temains horizontal. 
dctcnnine the smallest angle (J to which the Cr:ltc ('an be 
hoisted. 

Prob. 3-70 

3-71, The mcmben ofa IrUS~ arc pin connected at joint O. 
O('tcrmine Ihe magnitude of FI and it~ angle 8 for 
equilibrium. Sct F! .. 6 1.: N. 

.l-7l. The memben ofa truss arc pin ronllCcted aljoinl O. 
J)ctuminc the magnihl1ks of . '1 and Fl for equilibrium. 
Sct 0 - 6I.Y'. 

7kN '. 
l'rob. 3-71n~ 

03-73. Two electrically charged pith balls. each having a 
mass of 0.15 g. arc suspended from light threads of equal 
lenglh. Detenninc Ihe magnitude of the horil.ontal 
repulsive forre, f ". acting on each ball if the measured 
distance between them is, .. 200 mm. 

"rub.3-7J 

3-74, The lamp has a mass of IS kg and is supported by a 
pole AO and cables AB and IIC.lf the force in tile pole acts 
along its axis. dc\ennine the forces in AO. AU, and AC fOT 
equilibrium. 

'm 

!-~-'lio:"-"l,-~---,. 
c 

- 1,j '1\ 

• 
"roll. 3-74 



J-7!i. Deleon;ne the magnitudc of I' and thc coordinatc 
direction angles of FJ required for equilibrium of the 
panicle. Note that F} ~cts in the octanl shown. 

(- t fl . - 711 . 4 (I ) 

f , .. .l6O Jb 

/ , 
~ 

F, .. 120Jb ,.. , 

t? I f . - 300tb 
F) _ 200t 

, I',oh. J-73 

°3-76. The ring of negligihle si~e is subjected to a vertical 
force of 200 III. Determine the longcst length I of cord AC 
such thallhc tension ;l(ting in AC is 160 Ib. Also. what iSlhe 
force acting in cord AB1 1f,1II: Use the equilibrium 
condition to deteonine the requi red ~nglc II for allachmcnI. 
then dcteonine I using trigonometry applied 10 .l.AHC. 

c H 

200 th I'rub. J-76 

oJ-n. IXtermine the magnitudes of Fl . •. ~. and 
equilibrium of the particle. 

Y" 

/' 
200th 

I , I' roh. J-n 

1 15 

J- 78. IXtumine the force in each cable needed to 
support the 500-lb load. 

." 
,~' 

1 

I'rub. J-7$ 

J-7';I. The joint of a space frame is subjected to four 
member forces. Member OA lies in the .r- y plane and 
member 08 lics in the y- z plane. DeTermine the forces 
;l(ting in each of the members required for equilibrium of 
the joint. 

" 
, , , 

0 '" r 
,.'" 

t', 

, ""'" 

"rob. J-7'I 



ApplicaliOll of forces 10 Ihe handles of these wrenches w!1I produce a tendency to 
rotate eKh wrench about iu end. II'S important to know how to calculate thIS effect 
and, In some cases, to be able to snTlphfy th'$ system to its resultants 



Force System 
Resultants 

CHAPTER OBJECTIVES 

• To discuss the concept of the moment of a force and show how to 
calculate it in two and three dimensions. 

• To provide a method for finding the moment of iI force about a 
specified aKis. 

• To define the moment of a couple. 

• To present methods for detefTflining the resultants of nonconcurrent 
force systems. 

• To indicate how to reduce iI simple distributed loading to a resultant 
force having a specified location. 

4.1 Moment of a Force­
Scalar Formu lation 

When a force is appl ied 10 a body il will prod ute II Icndcnq' for Ihc body 
to rot:!IC about a point thaI is not on thc lille of action of Ihc force. This 
tendency to rolMe is sometimes called a lOrI/III!. but most often it is called 
Ihc moment of a force or simply Ihc /lWIIII'Iil. For example. !;onsidtT a 
wrench used 10 unscrew the bolt in Fig. 4-10. If a force is applicd to the 
handle of the wrench it will tend to turn lhe boll about point 0 (or the = 
axis). The magni tude of the moment is directly proportionill to the 
magnitude of .' and the perpendicular distance or /IIQmelllllflll d. The 
larger the fort't! or the longer the momenl ami. the greater the moment or 
turning effct:1. Note thilt if the force F is appl ied at an angle 0 '* 90". 
Fig. 4-lb. then it will be more difficult 10 turn Ihe bolt sincc the moment 
ami d' "" Ifsin8 will be smaller than d. lf F is applied along the wrench. 
Fig. 4-1r. ils moment arm will be zero since the line of action of .' will 
intersect point 0 (the = axis). As a result. the moment of .' about 0 is also 
zero and no turning c~m occur. 

,., 

,>, 

,<, 
"1 ~. 4-1 

117 
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"OO~ 
, 

~l~ 
I' r Q, 

,., Sense: of rOlalion 

,., 

'" M, / '\. '" ", 
------~O,_-----, 

We can generalize the above discussion and consider the force ." and 
!lOint 0 which lie in the shaded pl:lne as shown in Fig. 4-211.111c moment 
Mo about point O. or about an axis passing through 0 and perpendicular 
10 the plane. is a 1'«lor t{lIlllllil)' since it has a specified magnitude and 
dircction. 

Magnitude. The magnitude of Mo is 

I *'0 - Fd I (4--1) 

where" is the 1II<)1IIt:1If IlfIIl or flerpf'lIdirll/ar dUIIIIIC(' frOIl1 the asis at 
point 0 10 the line of action of the forcc. Units of moment magnitude 
consist of force times distancc. e.g .. N· III or lb· fl. 

Direction . The direClion of Mo is defined by its mOil/till axis. which 
is perpendicular to the plane that contains the forcc F and its moment 
arm il. The right-hand rule is used to establish Ihe scnsc of dirc!;lion of 
Moo According to this rule. the n:uural curl of the fingcrs of the right 
hand. as they arc dr~wn towards the palm. represent the tendency for 
rotation caused by the moment. As this action is perfonncd. the thumb 
of the right hand will give the directional sense of Ma. Fig. 4--20. Notiel.' 
thaI the moment vector is represented thrce.dimensionalJ)' by a curl 
around an arrow. In two dimensions this ,'cctor is reprcsented only by 
thc curl as in Fig. 4-2b. Since in this case the mOll1l.'nl will tend to cause a 
counterclockwise rotation. the moment vector is actuall~' directed OUi of 
the page. 

Resultant Moment. For tWO-dimensional problcms. where all the 
forces lic within the .l-Y plane. Fig. 4- 3. the resultant moment (I\I /()" 
about poinl 0 (the;: axis) can be! de termined by jilJl/illg Iltt illgehmic !.1I111 

oflhe moments caused by alllhe forces in the syslem. As a COIII'cnlion. 
we will generally consider positi,.,! II/OIl/I'lIiS as cowllercfock ... ise since 
they arc dirCded along Ihe positive z axis (OUI of the page). Clockwise 
1II0lllelllS will be! /I('gll/;Vf. Doing th is. the dircctional senSC of each 
moment can be! represented by a (,irIS or II/ill/"~ sign. Using this sign 
oon,'cnlion. the rcsultant moment in Fig. 4--3 is therefore 

If tho:: numerical rCSult of th is sum is a positive scalar. (1\1 /1)" will be a 
counterclockwise moment (OUI of the page): and if the result is negative. 
(MR )" will be a clockwise moment (into the page). 



EXAMPLE 4 .1 

For each case illustrated in Fig. 4-4. de termine the moment of the 
force about point O. 

SOLUTION (SCALAR ANALYSIS) 

The lille of action of each force is extended as a dashed line in order to 
establish the moment arm (/. Also illustrated is the tendcn~y of rotation 
of Ihe member as caused by the force. Funhennore. Ihe orbil of Ihe 
force aboul 0 is shown as a colored curl. ThUs. 

Fig. 4-4a Mo '" ( HX1N)(2 m) = 200N'm) Am.: 

Fig. 4-4b Mo '" (50 N)(0.75 rn ) = 37.5 N· rn ) All'>: 

Fig. 4-4<: Mo = (.:IOlb)(4 (I + 2 cos 300 fl ) = 2291b ·fl ) All'>: 

Fig.4-4d Ala = (60 Ib)( J sin 45° ft ) = 42.4 lb· (I ) All;;: 

Fig.4-4e Alo = (7 kN)(4m - I Ill) = 2\.OkN·m ) All'>: 

, 2m ~ ~) 
0 

/' 

~ '\ ~ 401b 
::L..c I) ~ ,,,---,' 

• SON 2 <(>$ 30' (1 

''l (0) 

'. '" 'm I) l~$in:4S' f1 0 

"',. 
''l o (e) 

tOON 

j 
! • 2 m --~ 

,.) 
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EXAMPLE 4.2 

Fig. 4-5 

Determine the rcsu1t:A nt moment of the four forces ac ting OIl the rod 
shown in Fig. 4-5 about poinl 0 , 

SOLUTION 

Assuming Ihal posit iVI.' mo menlS act in lhe + k di rection, Le .. 
oounlerc1ockwisc. We ha\·e 

(+ MIt" = ::£. Fd: 

"''ff4, = -50 N(2 ml + 60 N{U) + 20 N(3 sin 30° m) 

- 40 N(4 m + 3 cos 30" m) 

M f4, "" - 334 N · m = 334 N· m ) 

For this calculMion. nolt: how lhc moment·aml dis tances for lhe 2o.N 
and 4o.N fo rces arc est3blished fronl the eXlended (dashed) tines of 
(I'lion of each of these forces. 

, 

As illu. t.-ted by t he example problem .. the moment of a 
force docs nOl "t"1I)'SC:l use~ rotalion . Forcx.~mplc.lhc force 
f tcn.ls 10 rot31c Ibe beam clod"i~ abool ils suppo.1 at A 
with ~ nlonlent,ll " ., F,/". "The actual m tali<m "~lUld o<xur 
iF Ihe sopport al B were renlovcd. 

1bc abilil)' torenlo,'c the n3il " 'ill require the moment 
of f l/ ~bout point 0 to be larger tban the mOlllent of 
the force ~\ a!>out 0 th.l is RCCdcd to puU lbe nail out. 



4 .2 Cross Product 

The moment of .. force will be formul:l1cd using Cart.::sian vectors in the 
next section. Beron! doing Ihis. however. it is first necessary to cxp:lnd OUT 
knowledge of vector algebra and introduce the cross-product method of 
I'cctor mulliplica. ion. 

The r;roliS "roilllef of IWO veclOrs A and B yields Ihe I'cctor C , which is 
wrincn 

C = A x 8 (4-2) 

and is !"e:,d"C equals A (.TOSS B.~ 

Magnitude. TIle IIwgJliliUlt of C is defined as the product of the 
magnitudes of A and B and the sine of Ihe angle 0 between tlieir tails 
(0" s 0 :s ISO"). Thus. C = AB sin O. 

Direction . Vector C has a dirf.'Cliolllhal is perpendicular 10 the plane 
containing A and B such thaI C is speci fi ed by the right-hand rule: i.e .. 
curling Ihe fingers of Ihe righl hand from veclor A (cross) 10 vector B, 
Ihe thumb points in the direction of C. as shown in Fig. 4-6. 

Knowing bolh th.:: magnitude and direction o rc. 1"':: can write 

c = A x 8 = (AB sin 0)11(" (4-3) 

where th.:: scalar AB sin {J defines th.:: IIwgllimtlt' of C and the uni t I'ector 
lie dcfines the IJirl,'(lioll of C. "nil! terms of Eq. 4-3 arc illust rated 
gniphic3lJy in Fig. 4-6. 

J= ., . \ 
" 

tig. 4-6 

4.2 CROSS PIIOOOCT 121 
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~::r'- " 

tig. 4-11 

(~~ 
J - • 

~ 

Laws of Operation. 

• Thccommutati\'elaw iSIIQf ,'alid;i,e .. A X B * II X A, Rather. 

A X B = - II X A 

This is shown in Fig. 4-7 by using the right.hand rule. The cross 
produCt 8 x A yields a ,'cctor that has the same nmgnitud.:: but acts 
in the opposi te direction 10 C; i.e" 8 X A :: - C, 

• If the cross prod\l('t is multiplied by a scalar (I, it obeys the assoc· 
iative law: 

I/ (A X R) = (IIA ) x H = ,\ X (tin ) .. (A X n)a 

This property is easily shown since the magnitud.:: of the resultant 
,'ector ([01A8 sin 0) and its direction arc the same in cadi case. 

• The vcctor cross product ,lisa obeys the distributive law of addition. 

A X (8 + D j "" (A X 8 ) + (A X D j 

• The proof of this identity is left as an exercise (sec !'rob. 4-1), It is 
important to note 1hatllroPl'r ordt'r of the cross products must bc 
maintained, sinCe they arc not commutative. 

Cartesian Vector Formulation . Equation 4-3 may be used 
to find the cross product of any pair of Cartesian unit "CCIOrs. For 
example. to find i X j. the magnitude of the resultant \'ector is 
( j)( j )(sin 90") = (1)( 1)( 1) = 1. and its direct ion is dctemlined using 
the right.hand rule, As shown in Fig, 4-8, the resultant ,"ector points in 
the + 10 direction. ThUs. i x j '" (1)k. In a similar manner. 

i x j = 10 j x 10 = - j i x i = 0 

j X 10 = i j x i = - 10 j x j = 0 

10 X i = j k x j = - i k X k = 0 

"l'hesc results should 110/ be memori:.:ed: ra thcr, it should be clearly 
understood how each is ohtained by using the right.hand rule and the 
definition of thc cross product, A simple schemc shown in Fig. 4-9 is 
helpful rorobtaining the same results when the need arises. If the circle is 
l'Onstrocted as shown. lh.::n "crossing" two unit vectors in a 
C:OII/J1f'fT'fockll'jsf' fashion around Ih.:: ci rcle yields th.:: po:;itil'/! third unit 
vector, c.g" k X j = j , "Crossing" clockwise. a lIf'gatil'f' unit vector is 
obtained:e,g" j x k = - j , 



Lei us now consider the cross product of two general v.::ctors A lind 8 
which arc expressed in Caflesian \'cctor form. Wc h,l\"c 

A X " ( A~ i + A.,j + A, k) x (B, i + Byj + 8 ,k) 

A.T8,(i x i) + A.,B,.( i x j ) + A,B,(i x k) 

+ AyB,(j x i) + A) By(j x j ) + A ,S ,(j x k) 

+ "" ,8 ,(k x i) + A ,8 y(k x j ) + 11 , 8,(1< x k) 

Carrying oUlthe cross-product operations and combining terms yields 

A X H = {Ar 8 , - "',B, )i - ( AAB, - "" ,B.)j + (11 ,8 , - J\)8,)k (4-4) 

TIlis equation may also be wrinen in a more compact detennimmt 
form as 

j k 
A x 8 = A, A, A, (4-5) 

8 , B, B, 

11m:;. to find the cross product of any IW\) Cartesian vectors A and H. il is 
nec,::ss3ry to .::xpand a dctcnnin:lnt whose first row of clcm.::nts consists 
of the unit vectors i. j . and k and whose second and Ihird rows represent 
Ihe x. y, z components of Lhe LWO vectors A and n . respectil·cJy.· 

"A do!lcrmlnanl M"ing lhrfc r""'5 .lId Lhree rolumns fan be upandfd using 1hree 
minW<. e""h of \\'hith i. nl~hiphcd by one <)f (II<: lhree lernlS ,n die r.rsl row. The'e arc 
rour ek"",,,,. tn clI<'h ",,,,or. ro, cxan'pLc. 

By tI~Ji"II",n.lh;' dClerm,nanl n<>lallOn rep,csenu lbe Ie",," (AIlA!:: - A" A"j . " 'hich ~ 
<impLy Ihe producI of Ihe I"'oeicmem, ;nleNCcled by lhe afTO'" sJammgdo .. ·n ..... 'd 10 Ihe 
righl {A"A:;,J mi",1S Ihe produel of 'he I"" dements ;me,secled by Ihe .rro .. · sLamin,. 
downward 10 Ihe Lefl ( ,I ' lAl , j. For I 3 X 3 delerminant.such as Eq.4~5.lhc lh'cc m,"o~ 
Can be gene.ated in accordance .. i, h Ihe foLLo"''"~ scheme: 

Fo. clemenl i: I r ~;~- ',A,' , - A,' ,) 
, .Jh ~ / Remembcr Ihe 

I 
I. . .. negali"e .if-n 

~::--.......: • - J(,I , II, - A,8,) 

y, 
ForeLcment J: 

For dcno.n l lo:.: liYJ!I- ' , A ,R, - A,R ) 

Adding the re,ull. Ind noting Ih.llhe j eLement "'" .. "~/,,,'~ Ih~ "';1116 .;~n yitLd< Ihe 
expanded rorm of A X 8 8""'" by E'I' 4-1. 

4.2 C~OSS PI!OOVCI '" 

• 
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, 
(0) 

, 
(0) 

t1g . ...... 10 

4.3 Moment of a Force-Vector 
Formulation 

The moment of a force F about point O.or actually about the moment Dxis 
passing through 0 and perpcndkular to the pl<lne containing 0 and F. 
Fig ....... IOU. can be expressed using the \'cctor cross product. namely. 

Mo"" , )( F ( ... ) 
Herc r represents a position vector directed/rom 0 to lilly poilll on the 
line of action of F. We will now show that indeed the moment MQ. when 
determined by this cross product. has the proper magnitude <lnd UireClion . 

Magnitude. The magnituue of the cross product is uefineu from 
Eq.4-3 <IS Alo '" rFsin O. where the angle 0 is me<lsureu bet\\'cen Ihe 
rails of r and F. To establish this angle. r must be lTeated as a sliuing 
\'cctor so tha t 0 can be constructed properly. Fig. 4-JOb. Since the 
moment arm II = 'sin 0. then 

Mo= rFsin O = F(rsin O) = Fil 

whkh agrees with Eg. +-1, 

Direction. The direction anu sense of 1\10 in Eq. 4-6 arc detcmlined 
by the right-hanu rule as it applies to the cross product. Thus.. sliding r to 
the uashed position and curling the righ t-hand fingers from r toward F, " r 
cross F ," the thumb is direcled upward or pcrpcnuicular 10 the plane 
containing r and F and this is in the Sllm!' l/irK/io/l as Mo. the moment 
of the force about point O. Fig. 4-lOb_ Notc Ihal the "curl" of thc fingcrs.. 
lik.., the curl around the moment \'f.'ClOr. indicates the sense of rOlat ion 
caused by the force. Since the cross product docs not obey the 
commutative law. the order of r )( .' must be mainla ined to produce 

+ the correct sense of direttion fo r MQ . 

± M" "' I) x f - " X F_.,X .-
I Principle of Transmissibility, The cmss product operation is 

moment ami from point 0 to the line of action of the force is not 
o needed. In other words. we can usc any position \'eclor r measured from 

" " " f point 0 10 any point on Ihe linc of action of the force F, Fig.4-II. 1"hus. ~ 
often used in three dimensions since the perpendicular distance or 

Lon( of action 

~ig, 4-11 

Since F can be applied lit any point along its line of action and slill create 
this SlIlIIe 111(11111'11/ about poinl D. then F can be considered a stiliil/g 
'·/'"Cwr. 1llis properly is called Ihe I"inc/pl/' of mlllsm;S$ibility of a force. 



Cartesian Vector Formulation. I(we eSlllblishx.}'.:: coordinate 
axes. then the position "ector r and force F can Ix: cxpressed as Cartesi:," 
\'ettors. Fig. 4-121,. Applying Eq. 4-5 we ha\'e 

j • 
Mo" r x f" .,. '. " " (4-7) 

F. F, F, 

where (a) 
r~ . r~. r, rcprescntthe .~, y, :: components of Ihe posi tion 

veClor drJII'n from point 0 to any /wi", on the 
line of action of Ihe forte 

F~ , p.'" F: rcprcscnllhe .f . >~:: components of the force I'ector 

If the deh,:nninant is e.~panded. thcn like Eq. 4-4 we ha\'e 

The physical lIIeaning of these th ree moment components becomes 
evident by studying Fig. 4- 12b. For example, the i tomponent of 1\1 0 

can Ix: determined from the momcnls of ..... F ... and F: about the x axis. 
The component F~ docs /10/ create a moment or lendency to cause 
turning aboulthe .~ axis since this force ispllflllll.'! to the .l axis. The line 
of action of F, passes through point B. and so the nlllgnitude of the 
moment of F,. about point A 011 the x axis is r;F" By the righi-hand 
rule Ihis component :ICIS in the lIt'gllfil'j' i direclion. Likcwise. F, passes 
th rough point C and so it contributes a moment component of ' ,F ,i 
about the axis. ThUs. (MQ) ~ '"' (, ).F, - "p.) as shown in Eq.4-8. As an 
exercise. establish thc j lmd k components of Mo in this manner and 
show that indeed the expanded form of the determinant. Eq. 4-8. 
represents the moment of F ;Ioout point O. Once Mo is determined. 
realize thai it will always be I'l'rl'l'lIi1icllfllr to the shaded pl:lIle 
containing vectors r and F. Fig. 4-121,. 

Resultant Moment of a System of Forces. If a body is ac ted 
upon by a system of forces. Fig. 4-13. the resultant momcnt of the forces 
:Ibout poinl 0 c:ln be determined by veclor llddition of the moment of 
each force. This resultant can be .... rillen symboliclllly as 

Milo = ~ ( r X F) (4-9) 

c 

''l 
t'ig. 4-12 

,', 

fig. 4-IJ 

, 

--, 

, 



EXAM PLE 4 .3 

Dctcnninc the moment produced by th!;l force F in fig. 4-14<1 ,1b<IIH 
point O. Express the result as 11 Cancsian \"~"Ctor. 

SOLUTION 

.-(' As shown in Fig. 4-1411. either rA. or r8 can Ix! uscd to determinc the 
momCnt about poilU O.111Cse position vectors arc 

r" = {12k} m and r8 = {4i + 12j} m 

Force F expressed as a Cartesian vcctor is 

, ._, 
m , 

- [(.:I i + 12j - 12k} m 1 
F = FUA.II .. 2 kN J",,~~=ii~~;;;:~;;C"'" 

Y(4 m)! + (12 m )z + ( 12 Oil! 

(., 

'" 
Fi!;.4-14 

l 1lUS 

0 ' 

= {OA588i + 1.376j - 1.376k} kN 

o 
j 
U 

, 
12 

0.4588 1.376 -1.376 

= {0( - 1.376) - 12(1.376)Ji - (0(-1.376) - 12(0.4588)] j 

+ 10(1.376) - 0(0.4588)Jk 

"" {-16.5i + 5.5Ij ) kN'm Am. 

j , 

J\Io = r/lx F = 4 12 U 
0.4588 1.376 - 1.376 

= {l2( - 1.376) - 0(1.376)l i -(4( -1.376) - 0(0.4588)]j 

+ [4(1.376) - 12(0.4588)J" 

= {- 16.5i + 5.5Ij } kN'm 

NOTE; As shown in Fig. 4- l4b. /\10 acts perpendicular 10 the pl3ne 
that contnins F. r". nnd rll' lind this problem been worked using 
Mo = Fd. nOliee the difficuity Ihal would arise in obtaining the 
moment ann d. 
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EXAMPLE 4 .4 

Two forces acl on the rod shown in Fig. 4-\SII. Determine the 
resuhnnt moment they create nbout the nange al O. Express the result 
as a Cartesian vector. 

F( _ t- 6a ... 40j + 2(l1cltb 

o 

ft , - II!OI + -IOj - JOIr.llb 

,.) 

SOLUTION 

'" 

~', 

") 

, , 
-"--r 

Position vectors Me directed from point 0 to each force liS shown in 
Fig. 4-15b. These vectors aTC 

TA = {5j } ft 

Til = {4i + Sj - 2k ) ft 

The resultant mOlllcnt about 0 is thcrefoTC 

l\1 ~. = ~ (r x F) 

= TA X F l + Til X F j 

i j k i j k 
= 0 5 0 + 4 5 -2 

- 60 40 20 "" 40 -30 

= [5(20) - O(401li - IOU + [O{40) - (5)( - 60)lk 

MR _ 1301 - 40j .. 6Ok11b · It 
, '- r · .... 

"'I-';Z ··" ·· .f ........... . JJ~ 121" 7--r'c ... ",,,';,,;y;-· "0"---' 

/ 
,,) 

+ 15(-30) - (-2)( 40)Ji - [4( - 30) - (- 2)(80)Jj + 14(40) - 5(80)Jk 

= pOi - 40j + 6Ok} Ib-ft 

NOTE: This result is shown in Fig. 4-IS ... The eoordinnte direction 
angles were dclcTlllined from the unit vector fOT l\1 Ro' Realize thatlhe 
two forces tend to cau$(: thc rod h) rotate about thc 1II0lllenl axis in 
the manner shOWn by the curl indicllted on the momem vector. 

• 
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'~ 

/ 
o 

tIlt 4-16 

'-' , / " 
, :.-----,' -------~ 

'. 

~ momcm nf I"'" ~pplied foro: . ' aboul 
point 0 is cas)' 10 dClermine if ,,·c US<: Ihe 
prill(;plc of moments. It ;s simply 
Ma - F,II. 

4.4 Principle of Moments 

A concepl of len used in mechanics is Ihe principII' IIf /1/0/1/I'II /S. which is 
sometimes referred to as VuriglllJII 5 111/~Vrt'/II since il was originally 
developed b)' the French machematician VarignOIl (1 654- 1722). 11 SIllies 
that 1111' /IIVIIII'III of aforel' Irhow n ,willl iSf'(/IW / /0 III~ SIIIII oflht' m oml"l/s 
Of lilt' COmpOlIl'lIIS oflht' fmet' Irholl/ IIII' l'/Jim.This theorem can be proven 
easily using the vcctor cross product since the cross product obeys the 
dislrihwin"/lrlt'. For c~amplc, considcr the moments of the force fo' and 
two of its compone nts aboul point O. Fig. 4-16. Sincc F = Fl + .'2 
wc h[lve 

r-or two·dimensional problems. Fig. 4-11, we can usc the principlc of 
moments by rcsolving thc fo rce into its rcclangular components and 
then dclcmlinc the moment using a scalar analysis. ThUs. 

Ala = ~y -~.x 

This method is gellerally easier Ihan finding the same moment using 
'\/0 = Fd. 

Important Points 

• Thc momenl of a force creates the tendcncy of a body to tum 
about an axis passing through a specific point O. 

• Using the righi-hand rule. the sense of rotation is indicated by Ihe 
curl of the fin gers. lind Ihc thumb is d irccled along the moment 
axis. or line of action of the moment. 

• Thc magnitude of Ihe moment is dctcrmined from Ala" Fti. 
where II is called the moment ann. which represents the 
perpendicular o r shortest distance from point 0 to the line of 
action of the force. 

• In three dimensions the vector cross product is used to dctermine 
the mOlllenl. I.e., Ma - r X .... Remember that r is directed f rom 
point 0 lO ony {Willi on the line ofaclion of F. 

• 'llIc principle of mom ems Slates that the momenl of a force 
about ~ I poinl is equal 10 Ihe sum of Ihe momenlS of the force's 
components aboul the point. This is a very con'"enient method 10 
use in IWO dimensions. 
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EXAMPLE 4.5 

Determine the moment oflhe force in Fig. 4- 1&1 aboUl poinl O. 

, 
d, _ 3 <"Oll3O'"m _ 

(,j -L-1~--l-------------, 
o 

/b, 
SOLUTION I 

'Ibe moment arm d in Fig. 4-1811 can be foun d from trigonometry. 

II = (3 m) sin 7S~ : 2.898 m 

Ala = Fd = (SkN)(2.898 m) = 14,5 kN · m ) AIlS. 

Since the force lends to rOl<l!e or orbit clockwise about point 0, the 
moment is directed into the page. 

SOLUTION II 

The x and y components of !he force arc indic3ted in Fig. 4- 18h. 
Considering counterclockwise momt.'I1IS as posilivc. and applying the 
principle of moments. we haH' 

C+ AlQ = - F,lly - F .. ~l, 

= -(SCos4SGkN )(3sin 30° m) - (5 sin 45° kN)(3cos30° m) 

= - 14.5kN·m = 14.5kN·m) AilS. 

SOLUTION III 

The x and y axes can be SCI parallel and perpendicular 10 Ihe rod's axis 
as shown in Fig, 4-1&. liere F ~ produces no moment aboul point 0 
since its line of action passes through this point. Therefore. 

(, + M o = - Fyll. 

= - (5 sin 75° kN)(3 m) 

= - 14.SkN·m = 14,5kN'm) All.!: 

F, - (5 kN) sin n ', 

" 

,<, 
f ig. 4-18 

• 
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EXAMPLE 4.6 

o 
I 

0.2 /1' 

p _ ..... ""-~-L 
0,4 m--{if 

I.) 

~r'0'-___ -.-__ , 

OAm - -

I» 

, 

(c) t " 

F<.>rce Facts al Ihe end of Ihe anglc brackel shown in Fig. 4-1911. 
Delermine Ihe momenl of the force aboul point O. 

SOLUTION I (SCALAR ANALYSIS) 

The forl;e is resolved inlO its .1" and ), I;omponents as shown in 
Fig.4-19/i.lhen 

0' 

C + MQ = 400 sin 30" N(0.2m) - 400 cos 30~ N(OA 01 ) 

= - 98.6N·m = 98.6N·m ) 

Mo = {-98.6k } N·m 

SOLunON II (VECTOR ANALYSIS) 

Using a CartC!sian vector approal;h. the force and position veclors 
shown in Fig. 4- 19c arc 

r = {OAi - O.2j } m 

F = {400sin30"i - 400cos3O"j} N 

= {200.Oi - 346.4j ) N 

The moment is therefore 

j k 
Mo= r x F = 0.4 -0.20 

200.0 - 346.4 0 

= Oi - OJ + IOA{-346.4) - {-O.2)(200.0)]k 

= {-98lik} N'm AII.r. 

NOTE: II is seen that Ihe scalar analysis (Solution I) provides a 
more C(}III'I!IIicll/ oWI/wd for analysis than Solulion II sinl;C the 
direction of the moment and the momcnt arm for each component 
force arc casy to es tablish. Hence. this method is generally 
recommended for solving problems disp!(lyed in IWO dimcnsions.. 
whereas i, CMtesian vector analysis is gcnerally recommended only 
for solving thrcc-dimcnsion<,l problems.. 



• FUNDAMENTAL PROBLEMS 

f4- l . Determine the momem of the foree about pOlnl O. 

."" 

.'4-1 

•• ..... 2. Determine the moment of the foree about point O. 

1001'1 , 

2. 

~o====~ ~ 
s. ~ 

f4-3. Delermine the moment of the force about point O. 

f' .. .lOON 

o 

---0.4",--

4.4 PIIINClP\£ Of' MOM~NlS 1 3 1 

f4-l. Determine Ihe momenl of the foree aOOm point O. 

'" i 
o 

/ 
'I fl' 

""" 

f"'-S. Determine the moment of the force about point O. 
Neglcct the thickness of the member. 

r ,oo •• -j "' 

.'4-6. Determine the moment of the forte nOOul point 0 , 

SOON 

o 
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• ' .&-7. Delermine lite resuhanl momenl produud by lhe 
forces about point O. 

o 
'Im ' - 2m 

6001'1 

45" l.5 m , 

< 

SOON 

F4-3. Determine the resultant moment produced b)' the 
forces about point O. 

lOON 
f---",: 

t·'&-'I. Determine the resultant moment produced by the 
rorces about point O. 

,~, 

"'&-111. Determine Ibe moment or force Ie aboul point O . 
Exprcssthc result as a CaMesian '·CClor. 

, 
0 

F - SOON H 

'm , 
'm -7--/' , 

.. 4-11 . Determine tlte moment of force t' aboUI point O. 
Express the result as a Cartesian vector. 

".&-11 

".&-Il. Ir f , - pOOi - 12Oj + 75k } Ib nnd ."! - ( - 200i 
+ 250j + lOOk) lb. determine the resultanl momenl 
produced by th~ forces about poim O. Express Ihe result 
as a CaMesian ,"eClor. 

.../ , I ______ ,. 



• PROBLEMS 

4-1. If A. II . and 0 afe gil'cn ,'ectol'S, prol'C the 
distribu li,'c law for Ihe ,"eclor crQSi!; producL i.e .. 
,\ x (II + D) .. lA x II) + ( A x U). 

4-2. Pro,"e Ihe triplc scalar product ilknl il)' 
t\ ' 8 xC - A )( U ' c. 

4-J. GII'cn the three non1.CfO ,"ectors ,\ . II . and C. show 
lhal if A ' (D xC) .. O. the llirec "ttlOrs ",ust lie in the 
same plane. 

0"-4. Two mCIl e~crt forces of F .. 80 Ib and /' .. SO Ib on 
Ihe ropes. DCICrminc tile moment 0( each foree about A. 
Which "'3)' "ill IOC pole rOlate.clockwise Of counlcrclocbi$c? 

4-5. If lhe man al H exerts a force of /' .. 30 Ib on his 
rope. determine tile magnitude of the force F the man a\ C 
must exert 10 prc,"cnt Ihe pole from rotaling. i.c .. so the 
resultant mornCnI about II of bolh forces Is UfO. 

I , ", 

, 
11 f! ' i 

c 

A 

+-6. If 8 .. 45°, de termine llie moment produced b)' the 
H;N force about point A. 

4-7. If Ihe moment produced by Ihe 4-kN force aboul 
poin l /l is 10 kN · m clockwise. delcrminc lhe angle 6, wllcre 
0" :s 6 :S 9W. 

3m 

133 

- 4-&. Thc lIandle of the hammer is subjcrted 10 the for,c 
of F .. 20 lb. Determine tile momenl oflhis for,e aboultlle 
poimA. 

4 .. 9. In order 10 pull oUltlle nai l at 8. Ihe force F exe rted 
on tile lIandle of tile hammer must produce a dockwi$C 
mon1f,'n l of SOO lb· in. abou! poIRI A. DCICrminc Ihc 
required magnitude of force F. 

, 

Probs. .j...8J9 

4-10. The lIub of tile ,,·lIed ,an be 3113ched to lhe axle 
either with ncg;ui\"c offset (lefl) or wllh positive offset 
(rigllt). If the lire is subjected 10 botll a normal and radial 
load as sllown. delcrminc tile resultant momen! of thcse 
loads about poim 0 on the axle for bolh cases. 

o 

l 
O.4m 

'-1-41 
SOON 

4 kN 

c.., C.ud I'rOO . ..... 10 
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4-1 I. The member is subjected to a force of ,.. ,. 61:N. lf 
o = 45°. determine the moment produced by t' about 
point A. 

*4-ll. Detcnnine the angle (J (0" s 8 s 180") of the 
force t' so that il produces a maximum momenl and a 
minimum moment about point A. Also. what arc Ihe 
magniludes oflhese maximum and minimum momenls~ 

.4-1.1. Dctemline the moment produced by the forte F 
about point A in terms of Ihe angle 8. Plot the graph of /II" 
\·ersusO.whereO" s 8 s 180" . 

'm 

Probs. 4- 11/ 11113 

4-14. So:rious neck injuries can occur when a footb.,U 
player is struck in the face guard of his helmet in the 
manner shown. giving rise to a guillotine mechanism. 
Determine Ihe moment of the knee forte P • 50 Ib about 
point A . Whal would be the magnitude of the neck force F 
so that it givcs the counterbalancing moment about A1 

Prohs . 4-14 

4-15. 1111.' Achilles tcodon force of F, .. 650 N is 
mobilized when the man tries to stand on his toes.Asthis is 
done. each of his feet is subjected to a react;,"e force of 
Nf -- .\00 N. Determine the resultant moment of .~ and Nt 
about Ihe ankle joinl A. 

· 4-16. 1lle Achilles lention force F, is mobilil:('(l when the 
man tries to stand on his loes.As th is is done. each of his fcel 
is subjected loa read;ve force of N, -- 400 N. lfthc resultant 
momenl produced by forces F, and N, about the 30kl.! jDiot 
A is required to be zc: ro.dclennine lhe magni tude of t',. 

65l\\m - " /- 4001'1 
lOOmm 

l'roo!'.4-15J16 

04-17. The t"·o boys push 011 Ilk' gate with forces of 
F" - 30 Ib and 3S shown. Dctermine the momenl of each 
fOfce about C. Which war "ill the gate rota te. c1ock,,'isc or 
oounlerc1ock"ise? Neglect the thickne5$ of the gate. 

4-18. Two boys push on the gate <IS ~hown.lf the !>or al H 
e~er1S a force of F. _ 30 Ib, determine the magnitude of 
the force t'" the bor 31 A must e~ert in order 10 prc\<cnt the 
gate from turning. Neglect Ihe thic~nc5$ of the g~te. 

r-"'- '''j. 
" 

"robs. 4-171 111 



4- 19. l'he tongs are used to grip the ends of the drilling 
pipe 1'. Determine the torque (moment) /II ~ that the 
applied force F _ 150 Ib exerts on the pipe about point I' 
as a function of 8. Plot this moment ,II I' versus 8 for 
0 $ 8 $ 90". 

"4-20. The tongs arc used to grip the ends of the drilling 
pipe 1'. If I lorque (moment) of /II , .. 800 lb· fl is needed 
at I' to turn the pipe. determine Ihe cable forte f' that mllSl 
be applied to the ton I\$- Sel 0 .. 30". 

'" 

l'rom. 4-I9/Z0 

,4-2 1. Determine the dirtctlon (j for 0" $ 0 $ 180" of the 
force F SO Ihal il produces the ma~imum moment aoom 
point A. Caleulah.' this moment. 

4-2.2. Delermine the momenl of the force t' about poinl A 
as a function of O. Plot the results of ,II (o rdinate) wrsus /J 
(abscissa) for 0" $ /J $ IlW. 

4-2J. Det"mtlne the minimum moment produced by 
the force t' about poinl A. Specify the angle 0(00 :s: 
O :s: ll!O"). 

• 

,. 

l " 
,. 

Prohs. 4-2112Z12J 

135 

"4-24. In order to raise the lamp pott from Ihe position 
sho"·n. force F is applied to Ihe cable. If f' .. 200 lb. 
dctemline the momcnl produced b)' t' about point A. 

' 4-25, In orocr 10 rni5C the lamp posl from the position 
sho"-n. the force t· on the cable must crcale a roumcrdockwise 
moment of 1500lb'ft about point A. Determine the 
magnilUdc of F thai mu~ be applied tothe cable. 

Probs. 4-z.alZ5 

4-26. The foot segment is subjected to the pull of the two 
planlarflexor muscles. Determine the moment of each forte 
about the point of contact A on the ground. 

A 

J-S III. 

!>rob. 4-26 
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4-27. ' l11e 70-1'1 foroe acts on the end of Ihe pipe al B. 
DctermillC (3) Ihe IDOnk:nt of thi§ force aboUI point A . and 
(b) the magnilude and dirI'Ction of a horizoll1al foltt.applied 
al C. " 'hich produces the same momenl . Take II .. 60". 

· 4-ZS. l11e 7O-N force acts on Ihe end of Ihe pipe al 8. 
[):Iennine Ihe angles 0 (0" :5 0 :5 180°) of the force Ihal 
"ill produce maximum and minimum moments aboUI 
poinl A. What Dre the magnitudes of the$C moments? 

" 

1l.9m 

701'01 

P'llb~. 4-l7f2it 

4-29. Determine the moment of each force about Ihe 
bolt located al , I. 1:"1l.:e "'s .. -lO lb. "'c .. .so lb. 

4-30. If Fs .. 30 Ib and Fe .. 45 lb. determine cbe: resultant 
moment aboulthc bolt located 8t A. 

",obs.. 4-29130 

4-.\ 1. 111e rod on the power eonlrol medtani$m for a 
bu~incss jet is subjected 10 3 force of 80 N. Determine the 
momcnt of this force about thc bearing ot A. 

r .ob. 4-3 1 

· 4-32. The towline exerts a force of I' .. 41.:N 311he end 
of the 2O-rn-Iong crane boom. If II " 30". detemtine the 
placement ... of Ihe hook at A so Ihat Ihis forre creates a 
maximum momen t about point O. Whal is this momen!"! 

......33. The towline exerts a force of I' .. " kN at the end 
of the 200m-long crane boom. If .f .. 2!i m. determine the 
position 9 of the boom so that this force creates a maximum 
montent about point O. Whal is Ihis monten!"! 

" ,obs. 4-32133 



4-34. In order to 1I0id tile wlleelb.1rrow in the position 
shown. force F must produce 3 counterdoc!,"'ii;C moment 
of 200 N · m about Ihe axle at A. Delermine Ihe requi red 
magnitude orforre F. 

4-J5. The "hcelbarrow Dnd it§ contents ha\'e a mass of 
50 I.:g and a center of mass .11 G. If the rc§ullant moment 
produced by force F' and thc weight about poinl A is 10 be 
ze ro. dete rmine the required magnit ude of force F. 

-4-J6. l lle whcclb3rro'" and its eontents ha"e a center of 
m3S5 at G. lf F .. 100 N!lnd the resultant momem prodllCoo 
by fofte ... and the weight about the asle 3t A is ~Cll). 
determinc the mass mlhc wheelbarrow and i l ~ content$. 

f rob. 4-WJ5IJ6 

·4-J7. Dete rmine the moment produced by F, about 
poinl O. ~press thc rcsull il5 a Cartesian \'ector. 

4-J8. Dete rmine the moment produced by F~ about 
poin t O. ~pren the rcsull 3i a Cartesian \'CClor. 

4-J9. l)c temline the l'C$ulta1ll moment produced bylhe two 
forccsaOOut poim O. E.~pn:ss the result as a Canesian '1:Clor. 

i ./ 211 _.'...JJ!.... 
-(tj;:;"~;:::::==--, , ,y:-~_ " .- [- 201 + IOj + 3Ok)lb 

• 

Probs. 4-J7/JIIIJ9 

'" 
. 4-40. Determine the moment produced hy force t'" 
allOut point O. ExprC'SS Ihe result as a Cartesian '·cdor. 

·4-41. Determine the moment produced by force Fe 
~bout poinl O. EJ:press the result 3$ a Cartesian ,·eetor. 

4-4!. Detcrmine Ihe resultant moment produced b)' 
forces t'" and Fe about point O. EJ:press the result as a 
Cartcsian "ector. 

4-4.1. Determine lhe moment produced hy each fora: 
about poin t 0 located on the drill hit. Express the rcsulls as 
Carlesian ,·e,tors. 

","mm 

} .. .. [- SOI - l20j t 60lJ N 

Proh. 4-.l.l 

. 4-44. A force of F - {61 - 2j + II;. } kN produces 3 
moment of Mu - { ~ i + 5j - \41;. } kN· III about the origin 
of roordinates.point O.lf Ihe force aelS at a point ha"ing an 
.~e()()rdinate of .r .. 1 m. dete rmine the y and = coordina tes. 
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,-1-45. The pipe assembly is subjected to the go.N fQr~. 
Determine Ihe momenl of Ihis force about point A. 

4-46.. lhc pipe aS$Cmbly is subje<:tcd 10 Ihe 8O-N forcc. 
Dclem1ine the moment of this force about poinl 8. 

, 

, 

Probs. -I-45J~ 

-1-47. The force ~. '" {6t + 8j + Ull'! N creatcs a 
moment about point 0 of 1110 - ( - I./i + 8j + 2k ) 1'1 · m. 
Ifthc force passes through a point having an xcoordinate of 
1 m. Uctermine Ihe)" and = coordinates of the point . Also. 
realiling Ihat Mo - Ffi. determine the perpendicular 
di~tan'e ,/ from point 0 10 the line of action of F. 

, 

Prub. 4-47 

-4-./lI. Force F acts perpendicular 10 the inclined plane. 
Oi:termine the moment produeed by ~. about point A. 
E.~press the result as a Canesian >"eClor. 

·4-49. r"Orro F acts perpendicular 10 Ihe inclined plane. 
De1ermine Ihe moment produced by t' about poim 8. 
Express Ihe result as a Cartesian >"eetor. 

~50. A 2()..N honlonlal force is applied perpendicular 10 
Ihe handle of Ihe $OCkel wrench. DelCrmine Ihe magnilude 
and Ihe coordina1e din.'clion angies of Ihe moment crealed 
by Ihis forro about point O. 

ZWmm 

_ IJ' -~ 
. ~ . 

I' .oh. ~50 
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4.5 Moment of a Force about a 
Specified Axis 

Somet imes-the momenl produced by a force aboul aspt'Cijied {IXis must 
be determined. For example.supposc the lug nut al a on Ihe car lire in 
Fig. 4-2011 nceds 10 be loosened. The force applicd 10 Ihe wrench will 
create a tendency for the wrench and the nut 10 rOlale about Ihe flW/IIf'/lI 

1I.1i.f passing Ihrough 0; however. lhe nul can only rotale aboutlhe y axis. 
l "hcTl'fore. to de termine the turning effect. only Ihe y component of the 
moment is needed. and the lotal momenl produced is not important. To 
dete rminc this component. we can usc cit her a scalar or "ector anal)'sis. 

Scalar Analysis. To ~ a scalar analysis in the case of the lug nul in 
Fig.4-2(1(I. the momenl arm p<:rpcndkula r distance from the axis to the line 
of action of the (orce is II, = If cos O. Thus. the momenl o( F ;Ibout the y 
axis is .II 1 - F li, - F(tI cos 0). According 10 Ihe right-hand ru le. M , is 
directed along the (lOSi th'c)' a)(L~ as shown in the figure. In general, (or any 
axis a.the moment is 

(4-10) 

,., 
ti ~. 4-l0 

If largccnough.lhe able forc.: F on the boom 
of thi~ crane e~n uu~ the crane 10 topple 
o'·er. To invcstigate this. Ill<: moment of Ill<: 
forc.: mu~t bculeubtcd ahoot an axis ...... Mi ng 
Ihrougb the bOlSC of the leV alIt and 8 . 

• 
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(" 

" 

Vector Analysis. To find the moment of force F in Fig.4--20b about 
the J' axis lIsing a vector ;malysis. we must first determine the moment of 
the fon;:e about lIIl)' poilll 0 on the)' axis by applying Eq. 4--7. 
Mo '" t X r , The component My along the .v axis is the projfclion of 1\10 
onlO the y axis. II can be found using the (1m protlliCI discussed in 
Qaptcr 2. so thaI M 1 "" j · 1\10 "" j . (r X F). where j is the unit vector 
for Ihe y axis. 

We can ge nc:: ral ize th is approach by letting II" be the unit \'eClOr that 
specifics the direction of the (I a.~is shown in Fig. 4-2 1.11Ien the moment 
of .' about Ihe axis is M. "" uu' (I X F). This eombimllion is referred to 
as the scoltlr Irip/I! prOt/ItCI. If the veclors arc wrinen in Carlesian (onn. 
we have 

j k 

M . "" [11.,i + II. ) + lI. kl· " " " F, F, F, 

l"h is result can also be wrillen in Ihe form of a dcterminant. making il 
easier 10 mel11orize. · 

where 

r-----------, 
II. , II. , II. , 

M" = uu' (r x F) a: " " " (4- 11) 

F, F, F: 

It."II."II . rc::presenl the x. y. ~ components of the unit 
vcctor defining the direction of the (I axis 

' ." ' f ' " represenl the x. y. l components of the 
poSit ion vector extended (TOI11I1I1Y poim 0 on 
lhe /I axis to lilly 110;111 A on Ihe line of aClion 
of the force 

F •. F" F, rC]lrescntthc .I".y. l components of the force 
vector. 

When M . is e\'alua ted from Eq. 4-11. it will yield a positl\'e or negative 
scalar. The sign of this scalar indicates the sense of direction o f 1\1. along 
the II axis. lfi l is positive. lhen 1\1. will have Ihe same sense as u ... whereas 
if it is neg<lti\'e.then 1\1. will act opposi te to u ... 

Once M .. is dctennined. we t.1n then express 1\1" as a Cartesian vector. 
namely. 

(4- 12) 

The ~'xamples which follow illustrale numerical applica tions of the 
above concepts. 
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Important Points 

• The moment of::l force about a speci fied axis can be determined 
provided thl! perpl!ndicular distance tI. from the force line of 
action 10 th e: axis can he dCICnuined. {l.1 a '" FdQ • 

• If vector analysis is used, MQ = Ua ' (r X F). where u~ defines the 
direction of the axis and r is extended from allY paint on the axis 
to lilly poim on the line of aClion of the force. 

• If M a is calculated as a negative scalar.l hen the sense of direction 
of M . is opposite to UU' 

• The moment 1\1. c~presscd as a Cartesian \'cctor is deu:rmincd 
from 1\1. = Maua. 

EXAMPLE 4 .7 

Dl!lcrminc Ihc resuitantmolllent of the th ree forces in Fig. 4-22 about 
the.r axis. the y axis. and Ihe z a.~is. 

SOLUTION 

A force thaI is pl/mlld to a eoordin;! te axis or has a line of aClion thaI 
passes th rough the axis docs / 101 produce any moment or tendency for 
tuming aooutlhal axis. Therefore. denning Ihe positive dir(:ction of the 
moment of a force: according 10 the righ t.hand rule. as shown in the 
fig ure. we ha\'e 

M, = (60 lb)(2 ft ) + (SO Ib)(2 fl) + 0 = 220 lb· ft Am,: 

M r = 0 - (501b)(3ft) - (40 1b)(2 ft ) = - 2JQlb · ft till.!: 

M" = 0 + 0 - (40lb)(2rI) = -SOlb · ft All.!: 

The ne:galive signs indicllte thaI 1\1). and 1\1: act in the - y and -~ 
directions. respectively. 

, 

tlg. -4-2Z 

• 
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EXAMPLE 4.8 

P .. 300 N 

c 

, , 
/" • 

Dcttrmine the moment 1\1,18 produced by the force F in Fig.. 4--2311. 
~ which lends 10 rOlMe the rod about the AB axis. 

T SOLUTION 

(1.3 m A vector analysis using AI AB =0 IIb" (r X F) will be l'Onsidered for Ihe 
I solulion rather Ihan Irying to find the moment ann or pcrpcndicular 

J!'A"'---"-7-" distance from the line of action of F \l) the A B axis. Each of Ihe terms 

0.4 m 

,., 

~A,-___ •. 

", 

in the eqlHllion will now be identified. 
Uni t \'ector li lt defines the direction of the AB axis of the rod. 

Fig. 4--23b. where 

r8 [0.4i + 0.2j ) m 
1)8 '"' -= 

rll V(O.4 01) l + (0.2 Ill ) 
1 = 0.8944i + O.4472j 

Vector r is directed from I"'Y {willi on the AD axis tO l/lIY poim on the 
line of act ion of the force. For example. position vectors rc and ro arc 
suitable. Fig. 4--23b . (Ahhough not shown. ' IIC or f /jD c:m also be 
u:>cd.) For simplicity. we choose rD. where 

' 0 = {O.6i} m 

111c force is 

F =0 {-lOOk ) N 

Substituting these vectors into the determinant fonn and expanding. 
we have 

0.894-\ 

MAS e u /j ' ( r o x F) = 0.6 

o 

0.4472 

o 
o 

o 
o 

- 300 

= 0.8944[0(-]00) - 0(0) ] - 0.4472]0.6(-300) - O(O)J 

+ 0[0.6(0) - 0(0)] 

= SO.50N ·1ll 

This positive result indicates that the sense of 1\1,1/1 is in the same 
direction as 11 11' 

Expressing M AR as a Cartesian vector yields 

MA 8 = MAlJIIB = (SO.50N'm )(0.8944i + O.4472j ) 

'"' t72.Oi + ]6.0j} N· 01 Am,: 

Th e result is shown in Fig.4-2]h. 

NOTE: If axisAB is defined using 3 unit vCClor direc\l-d from B toward 
A, then in the ltlxm' formulalion - ullwould havo,: 10 be used. This would 
It:~ d to M Alt = - SO.50 N · Ill . Con:>cquently. M Alt = M AS( - u /j ) . and 
the same result would be obt;l ined. 
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EXAMPLE 4.9 

Determine the magnitude of the moment of force F about segment 
OA of the pipe assembly in Fig. 4-2411. 

SOLUTION 

111e moment of F about the OA axis is determined from 
MOI\ =: UO,I' (r X . '). where r is j position vector cxtcnding from any 
point on the OA a,~is to any point on the line of ac tion of F. As 
indica ted in Fig. 4-24b, ei ther rOf}. roc. rill}' or f Ae can be used; 
however. TOll will Ix: considered since il will simplify the calculation, 

The uni l vector UOI\. which spetifies the direction oflhe OA axis. is 

{O.)i + OAj } m . . 
V = 0.6. + 0.8J 

(0.3 m)! + (0.4 m)! 

and the position vector roo is 

f OO = {0.5i + 0.5k} m 

The forcc •• expressed as a Cartesian \'cctor is 

F = F( 'CO) 
'co 

= (300N) , [ 
{OA ; - O.4j + O.2k l m ] 

V (O.4 ml + ( 004 mt + (0.2 m)! 

= (200i - 200j + lOOkl N 

·'bercfore. 

M Oil = Uo'!' (roil X F) 

0.6 0.8 0 

0.5 0 0.5 

200 - 200 IOU 

= 0.6[0(100) - (0.5)(- 200)] - 0.8[0.5( 100) - (0.5)(200)] + 0 

= 100 N' m 

(., 

, 

(" 

Fl\!. 4-24 

• 
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• FUNDAMENTAL PROBLEMS 

F4-IJ. Detcnmne Ihe mngnitude of the moment of the 
force t- .. {3OOi - ZOOj + In) N about tlie .< axis.. 
Express tlie rcsul1 as a Cartesian "ector, 

F4-I." Determine tlie magnitude of the moment of tlie 
force ~' - {JOOi - 200j + lSOkf N about the OA axis.. 
Express the result a~ a Cartesian "ector. 

, 

O.3m' o 

"'-
~, 

""O-_J;), L 
~. II 

F4- IJl I.t 

F4-15. Determine the magnitude of the moment of tlie 
200-N force about tlie x axis. 

F4- 16. Detemline the magmtude of the moment of the 
force about tlie), axis. 

t ' _ !301 - 20j + 5(11.;.1 N 

"-. , 

;t-
.. 

F4-16 

f.t- I7. Determine the moment of the forte 
f .. ISO; - <!OJ + 201<) lb abou t the A/J axis. Express the 
result as a Cartesian >-ector. 

f4-1 7 

. '4-1/1. Dctenninc the moment of forte f about the x, the 
y. and the ! axes. Usc a :scalar analysis. 

A 

",j ,., 
o ,...I 

,/ ,.,~ , 

.' 
~'4- 1 11 



• PROBLEMS 

4-5 1. Delcnn,"e the moment produ("Cd hy £or("C . ' about 
the diagonal AFo£ the rectangular block. ElIpro!SS the re5ult 
as a Cartesian ' ·eClor. 

· 4-52. Determine the moment produced hy rom: F about 
the diaJ.l.onal OD of the rectangular block. Exprcsi the 
rNul! as a Cartesian vector. 

• ' . 1- 61 -;- -+ lOll N 

' "' 
./ , 
Probs. 4-511!'2 

4-53. The 1001 is used to shut off gas \"~h'cs that are 
difficult to access. If the foree F is applied to the handle. 
determine the component of the moment created about the 
~ a.~is of the , 'al\"l.'. 

I 

Proh. 4-53 

4.5 MOMtNT OF" FoRcE ABOUT" Srf:CIFIEO AxIs 145 

"-54. I)('tennine II\e magnitude of Ihe moments of Ihe 
force F aboutlhe ~.)".and = axes. SoI,'c Ihl.' problcm (a) using 
D Cartesian "ector approach and (b) u:s.ing a sca!ar appr03ch. 

4-55. Detl.'rminc the momenl of Ihe fOl"("e F about an axis 
eXlending be lween A and C. Express the result as a 
Cartesian ' ·eclor . 

A 

, 

'" L 
F _ I~i + t2j - Jkllb 

Probs.. "-5-1155 

· 4-56. Delcnninc Ihe moment produeed by £ol"("e J.' about 
segment All of the pipe assembly. Express the result 3S 3 

Cartcsian '·CClor. 

, 
·· _ 1_ 2OI -+ IOj + 15kIN 

A~ii&--{~+---;-__ ' 
'm 

8 .. 
p.oh. 4-56 
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04--57. Determine the magnitude of the moment thatlhe 
force F e.~erts llooUt the}' axis of the shaft. Solve the 
problem using a CartesiJn ,'cctor approach and using a 
$Calar approach. 

/' 
,. 

A 

7 
2.W mm 

~-.Lrr--' 

Proh. 4-~7 

4-St!. If F '" ~50 N. determine the magnitude of the 
moment produced by this force aooutllie x axis. 

4-59. lltc frktiOl1 at slene A can pro"ide a maximum 
resisting moment of 1Z5 N · m about the x axis. Determine 
the largest magnitudc of force t' that can be applied to the 
braeket:so that the brad:et will not turn. 

.. ~m'" 
Probs. 4-511159 

; 
~mm 

t 5l"l mm 

, 

-4-60. Determine the magnitude of the moment 
produced by the force of F '" 200 N aoout the hinged axis 
(thex a%"is) of the door. 

, 

"' '' 2001'' 

l'rub. 4-60 

04-61. If the tension in the cable ~ ,.. ., loW lb. detemlinc 
lhe magnitude of the mOl1lent produced by this force aoom 
lhe hinged uis. CD. of the panel. 

4-62. Determine the magnitude of force .. - in cable AB in 
orde r 10 produce a moment of 500 lb· (t aoout the hinged 
;uis CD. which is needed 10 hold the panel in the posit ion 
shown. 

, 

'" 
, 

Probs. 4-6 l f62 



4-6.1. Th<' A·frame is being hoist<,d into an upright 
position by th<' "ertkal force of F .. 80 lb. Determine the 
moment of thIs force about the .1" axis passing through 
points A and B when the frame is in the position shown. 

04--64. The A·fr~me is being hoisted in10 an upright 
position by the "ertkal force of F .. l!O lb. Determine Ihe 
moment of this force about the .r axis when the frame is in 
the position shown. 

~5. The A·frame i~ being hoisted into an upright 
position by the vertical force of F .. 80 lb. Determine the 
nlOnlent of this force about they axis when the frame is in 
the position shown. 

?"-
'" --, 

,. 
Probs. okIJl6-1165 

4-66. The nex·headed ralchet wrench is subjected 10 a 
force of l ' .. 161b. applied perpendicular 10 the handle as 
shown. DClCrmine the moment or torque this impaTlS ~long 
Ihe \'('rtical axis of the bolt at A. 

~7. If a torque or moment of W Ib' in. is required to 
loosen the bolt at A. determine the force f' tllat must be 
appli...'d PCl"JX'ndicular to the h.lndle ofth<' n('x'h<'adcd ratchet 
"Tench. 

Probs, 4-6(;f67 
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04-68, The pipe assembly is ~ured on the wall by the 
IWO brackels. If the nower pot has a weight of SO lb. 
de termine the magnitude of the moment produced by the 
weight about the OA axis. 

·4-69. The pipe assembly is secured on the wall by the tWO 
brackets. If the frictional force of both brack('ts can resist a 
maximum moment of ISO lb' ft. determine the largest 
weight of the nower pOl that can be supported hy the 
assembly "ithout causing illo rotalc about the OA axis. 

Prtlh~ ~69 

4-70. A vcrtical force of F .. 60 N is applied 10 the 
h~nd!e of the pipe wrench. Determine the momentlhal this 
force exerts along the axis riB (.I" &Xis) of the pipe asscmolr 
Both Ihe wrench and pipc assembly ABC lie in the .I" - y 
plane. Sux!;e.flitm; Usc a S!:ular analy~is. 

4-71. DClemlinc the magnitudc of Ihe "ertical force F 
acting on the handle of the wrench so that this force 
produces a rompon.'nl ormomenl along the AB axis (x axis) 
ofthepipca~mblyof(M ,,), .. { - 5i f N ·m. Both Ihepipc 
assembly ABC and the wrench lie in Ihe .1" - .1' plane. 
S"ggc5rioll; US!: a scalar analysis. 

Probs. 4-71l171 

• 
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, 

I -,. 
Fig. 4-25 

o 

Fig. 4-Z6 

4.6 Mome nt of a Couple 

A CO/If'!/, is defined as two parallel forces that have the s,1me magnitude. 
but opposite directions. and arc separa ted by a perpendicular distance tI. 
Fig. 4-25. Since thc Tf.'sultant force is 7.ero. the only effect o f a couple is to 
produce a rotation or tendency of rotation in a specified direction. For 
example. imagine that you arc driving a car with both hands on the steering 
wheel and )·ou arc making a turn. One hand will push up on the wheel 
while the other hand pulls down. which causes the steering whecito rotate. 

The moment produced by a couple is ca lled a col/pll' 11101111'111. We can 
determine its value by find ing the sum of the moments of both couple 
forc.:s about 1111)' arbi trary point. f"Or example. in Fig. 4-26. position 
,'ectol'S ' .1 and Tn arc directed from point 0 to points A and 8 lying on 
the line of action of - F and t'. 11lc couple mOlllent determined about 0 
is therefore 

111 = Til X F + TA X - F = (T/I - TA) X F 

Howc"er'lf = ' ,I + Tor r "" TB - r".so that 

M = T X F (4-13) 

This rcsult indicatcs that a cOllple mOlllcnt is af,1'<' \ ' /'CW'. i.e .. it can llct 
at WI)' 110illl since M depends o"/y upon Ihe posi tion \'CClor r directed 
bel"'u/lthe forces and /10/ thc position \'ectors TA :lnd TB. directed frolll 
the arbitrary point 0 to the forces. This concept is unlike the moment of 
a force, which n:quiTes a defini te point (or axis) about whkh mOlllentS 
arc detemlined. 

Scalar Formulat ion . The moment of a couple. 111. Fig. 4-27. is 
defined as having al/wg//ilml" of 

rl ,"", -. "",.,.,." I (4-14) 

where f' is the magni tude of one of the forc.:s (lIId (/ iSlhe perpendicular 
dislanee or moment arm between the forccs. The dinCfi(m and sense of 
the couple moment are determined by the Tight·hand rule, where the 
thumb indicates this direction when the finge Ts arc cUfled wi th the sen5O.' 
of rolation caused by the couple forces. In all cases. 1\1 will ac t 
perpendicular to the plane containing tbese forces. 

Vector Formulation. Th.:: moment of :1 couple can (ilso be 
exprcssed by the \'cctor cross product using Eq. 4-13. i.e .. 

I M - r X F I (4-15) 

Application of this eq uation is easily remcmbercd if one thinks of taking 
the moments of both forc.:s about 3 point lying on the line of action of 
one of the forces. FOT example. if momentS arc taken llbout point A in 
Fig. 4-26, the moment of - F is uro about this point. and Ihe moment of 
f is defined from Eq. 4-15, Therefore. in the fomlUlation T iscrosscd with 
the force F to which it is directed. 
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Equivalent Couples. If two coupl\.--s produce a moment with the $11111(' 

wlIgllilrilie //lui liiru:livlI. then these two couples arc I'lIlIil'll/ .. ",. For e:(ample. 
th!.! two couplf.!S shown in Fig, 4-28 arc 1.'(llIil'llle/ll because each couple 
moment has;l m:lgnitude of M '" 30 N(OA m) co 40 N(O.3 01) ~ 12 N · m 
.• md each is di rected into the plane of the page. Notice that larger forces 
arc rcquin.:d in the se,ond ,as.c to create the sallie turning eUe,t 
because the h,mds arc placed closer together. Also. if the wheel was 
connected to the shaft at a point other than at its center. then the wheel 
would still turn when each couplc is applied sincc the 12 N'm couple is 
a free vcctor. 

Resulta nt Co uple Mom e nt. Since couple moments arc vec tors., 
their resultant can be determined by vector addition. For e:(;lmple. 
consider the couplc momeniS MI and Mz acting on the pipe in Fig. 4-2911. 
Since each couple moment is a free vector. we can join their tails at any 
arbitrary point and find the rellult:mt couple moment. MR '" M ) + Mz 
as shown in Fig.4-29b. 

If more than tWO couple mOmentS act on the body. we may generaliu: 
this concept .md write the vector rcsultant as 

(4-16) 

These concepts arc illustrated nutnerically in the e)(atnplcs that follow. 
In general. problems projected in two dimensions should be solved using 
a scalar analysis since the moment arms and forc!.! components arc easy 
\0 determine. 

4.6 MOMENT OF A CouP\..E '" 

(.J 

(OJ 
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Slc..,ring ... ·Md~ 00 ",hid~~ ha.·~ bc.:n m:Mk 
~m.l!cr Ihan on older • .., hic,,"s bccaUl<' 
PO"'" 'I~~ring docs mM require Ihe 00'''' 
10 appl}'& l:u-gcc:oo[Jlc momcnllolhc rim of 
1M ",h~cl. 

EXAMPLE 4 .10 

F\ .. 300 tb 

Important Points 

• A couple mOllient is produced by two noncollinear forces that 
arc equal in magnilUdc but opposite in direction. Its cffect is to 
product pure rOlation. or tendency for rotation in a specified 
di rection. 

• A couple moment is a free vector. and as a resul t it causes the 
SlIme rotational effect on a bod)' regardless of where the couple 
moment is applied to the body. 

• The moment o f the IWO couph! forces can be delCmlined about 
lilly poilll. For convenicnce. this point is of len choscn on Ihe line 
of action of one of the forces in order to eliminate the moment of 
this force aboulthe poinl. 

• In three dimensions the couple momelll is oftell dClermined 
using the "ector formula tion. 1\1 ""' t x t'. where r is directed 
from lilly poilll on the line of aClion of one of Ihe forces 10 allY 
po;m onlhe line of action of th£" olher force F. 

• A resu l13nt couple moment is simply the "eclor sum of all the 
couple momenlS of the system. 

Determine the resultant couph! moment of the three couples acting 
on Ihe plale in Fig. -'-30. 

SOLUTION 

Asshown Ihe perpendicular distances bctwt'Cn each pair of couple forc..'S 
:tre ti l = 4 ft. tlJ = 3 ft. and dJ = 5 fl. Conside ring counterclockwise 

"T,=::~;j-:::o:=:.;.~1 couple moments as positive. we have • 
F, " 4 S() Ib H 

( + M R = ! M : AI R = - Fili i + F2d~ - FJlIJ 

F, .. 200111 

Fig. "-30 

"" (- 200 Ib)(4 rt) + (450 Ib)(3 ft) - (300 Ib)(S fI) 

= - 950lb · ft = 950lb·ft ) 

The negalin:: sign indicates Ihat 1'11 11 has a clockwise rotational sense. 



EXAMPLE 4.11 

Determine the m:lgnitude :lnd direction of the couple moment :lcting 
on the gear in Fig. 4-3 \(1. 

(., 
(" 

SOLUTION 

The easiest solution requires resolving each force in to its components 
:IS shown in Fig. 4-3Ib. The couple moment can be determined by 
summing the moments of these force components about any point. for 
example. the center 0 of the g.::ar or point A. If w.:: conside r 
oount.::rdoc:kwisc mOll\..:nts as positive, w..: have 

(+ M = ':f.Alo; AI = (600cosJO" N)(O.2 m) - (600 sin 3O" N)(O.2 m) 

= 43.9 N'm) 

0' 
C + M = '!.M II; M = (600eoo 30° N)(O.2 m) - (600 sin 30" N)(O.2 m) 

: 43.9N·m ) ti ll.';' 

This positi,'c result indicatcs that /II has a coulltcrcloc:k\\~sc rotational 
sense. so it is direct.::d outward. perpendicular to the p:lgc. 

NOTE: The s..1m..: r.::sult can also bcobtaincd usingAI = FIf. where (f 
is the pcrpcndicuhlr distance between the lincs of action of the couple 
forces. Fig. 4-3lc. Howcver. the computation for II is mor.:: involved. 
Rcaliz.:: that the couple moment is a fr.::e "ector and can act 3t any 
point on the g.::a r and produCl.! the same turning effect about point O. 
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f·· 6OON 

(0' 

Ag.4-31 



EXAMPLE 4.12 

',j 

A -----,. 

Determine the couph: moment acting on th", pipe shown in Fig. 4--32a. 
Segment AB is directed 30" bela\\' the .f-y planc. 

, 

6 In . 

' --/ (.) 

SOlUTION I (VECTOR ANALYSIS) 

The momenl of the twocoupk forces can be found about 'Illy poim. If 
poinl 0 is considered, Fig. 4--32b. we ha\'c 

1\1 = T" X (-25k) + Til X (25k) 
= (8j) X (-25k) + (6cos300j + Sj - 6sin300k) X (15k) 

= - 200i - 129.9j + 2UOi 
= {- l30j )lb · in. Am. 

I I is t'usia to take moments of thc couple forces aboul a point lying on 
the line of action of one of the forces. e.g. , poilll A, Fig. 4-32c. III this 
casc the momcnt of thc forcc a\ A is z",ro. so tha' 

1\1 = r.Mi X (25k) 

= (6 cos 300 i - 6 sin 3()· k) X (25k) 

'" {- 130H lb · in. Ails. 

o 
~~"" Alchough this problem is shown in three dimensions. the geometry is 

A simple enough to usc the scalar equation AI = Ft!. The perpendicular 
___ ,. distance between the lines of action of the couple forces is 

SOlUTION II (SCALAR ANALYSIS) 

~
. ' d = 6cos30Q = 5.196 in .. Fig. 4-32d, Hence. taking moments of the 
'" 
~ ~ccs about :~h~r :i:t;5~: 7s.i~~8i:~;I~S 129.91h' in. 

./' -~plYing the righ t-hand rule. 1\1 acts in the - j direction. ThUs. 

!S Ib 

, 
(d) 

1\1 .", {- !JOj) lb · in. A".'( 



EXAM PLE 4 .13 

RcplllCC the twO couples lIcting on thc pip<; column in Fig. 4-3311 by " 
rcsuhnnt couplc moment. 

,.j 

SOLUTION (VECTOR ANALYSIS) 

'" Fig. 4-JJ 

The. couple moment 1\1,. dc\·cloped by lhe forces at II and 8 , call 
easily be determined from a scalar formula tion. 

M I = Fd = lSON (0.4 m ) = 6ON· m 

By the right-hand rule. 111 , acts in the + i direction. Fig. 4- 33". Hence. 

111, = 160i} N·m 

Vector analysis will be used to detennine !\It. caused by forces at C 
and D. U nlOmcnLS arc tomputed about point D. Fig. 4- 3311. 
M2 = fOC X Fe. then 

iUz = roc X Fe = (0.3i) )( [ 125(Oj - 125Wkj 
= (0.3i) )( (tOOj - 75kl = 3O(i X j ) - 22.5(i x k) 

= {2l.5j + JOk} N·m 

Since 1\11 and M? lire free vectors. they may be moved \(l somc 
arbitrary point and added vectorially. Fig. 4-33c. The resultant couple 
momenl becomes 
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• FUNDAMENTAL PROBLEMS 

F.&- Ill. Determine tile resultant couple moment acting on 
the beam. 

" 

- ,m-f-,m 
JOON 

"4- 1':1 

'"'' !o.! In 

"'"'-20. Detemline the resultant couple moment 8~ting on 
the triangular plate. 

"". 

'''---- 1 
JOOO 

. '-1-20 

F-I-l i. Determine the magnitude of " so that the resultant 
rouplc moment acting on the beam is 1.5kN· m clock ... ise. 

F.$-Z I 

F4-ll. [)etenninc the roup/c moment acting on the b\'run. 
10~N , , 

,., 

A~~~" 'm I 

10kN 
. ·.$-H 

,..4-23. Determme the r~sultam roup1e moment acting on 
the pipe assembly. 

(.I/, ~! . 2SOtb ·fl 

U .. !J 
"4-24. Dctennine the rouplc moment acting on tile pipe 
assembl)' and express the result 3S 3 Canesian \"ector. 

f'"A _ 450N 

, , 

, 



• PROBLEMS 

"4-72. The frktional effects orlbc air on Ih<.' blades of the 
slanding bn creates D couple moment of Mo - 6 N · m on 
the blad!.'s DClcml;ne the magnitude of the couple forces 
al the ba5e of the fan so Ihal the reSUllan! couple momcnl 
on the fan is zero. 

0.15m O.IS m 

4.6 MOMENT OF A CouP\..E 155 

4-74. Thl.' caSler wheel is subjected [0 the 1\\'0 couples.. 
Determine the forces f"I1I31111c bearings cxcn on llie shafl 
so thallhc resultant roup]" moment on Ihe c:!Ster is l!ero. 

--r 

'T 
T 

.. rob ..... 12 »rub . .... 74 

-4-7.\. J:klcrmine Ihe required n\3g.niludc of Ihe couple 
moments M~ and 1\IJ so Ihal the resullam couple moment 
is zero. 

Prob.4-73 

"-75. If F - 200 lb. determine the resultant couple 
momcnl. 

"4-76. Determine the required magnitude offore.! t' iflhe 
fC$uhanl couple moment on the frame is 200 lb· fl. 
tlock .... isc. 

HI - H I -' 

Probs. 4-7m6 
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,"-77. The Ooor ~aU5C$ a ~ouple moment of 
At" .. J() N· m lind M il " 30 N'm on Ihe brushes of Ihe 
polishing machine. Determine the magnitude of the couple 
forces that OIust be de"eloped b)' the opernlor on Ihe 
hnndksso that the resultan t couple momenl on the polisher 
is zero. What is the OIagnitude of these forces if the brush 
atH suddenl}' Slaps so Ihat M 1/ .. 01 

, 

OJ m 
j'" 
)" -, 

l'rob. ~77 

4-78. If 0 .. 30", dClCrrll1ne the magnitude of force t 'so Ihat 
the resu llant couple momenl is 100 N' m,clod:wise, 

4-79. If ,.. .. 200 N. determine Ihe requi red angle 0 so Ihat 
the resullanl couple momenl is ~ero, 

-4-S0. Two rouples aet on the beam. Determine the 
magnitude of F so Ihat the resullan t coupk moment is 
4SO lb· ft. counte rclock..-ise. Where on the beam docs the 
resultant couplc moment act? 

2Ol1lb 

~-' 

r 
, • 

+ ~~~:: ' ,) • ,.,,, 
> '" 

Prllb. -'"'80 

-4-111. The cord passing owr the 1""0 small pegs A and H of 
the square bo.:I rd is subjected to 3 lension of 100 N. 
Determine Ihe required tension I' acting on llic cord Ihal 
passes o.-er pegs C and D so thm Ihe resultant couple 
produced by tlie two couples is 15 N· 01 acting cloci:wise. 
Take tI .. IS·, 

4-&!. The cord passing o'-er the IWO small pep A and 8 of 
Ihe bo.:Ird is subjecled to It tension of 100 N. Delermine the 
millimum lension P and the orientation tI of the cord 
p3$ing o.-er pegs C and D. so that thl' resultant couple 
moment produred b~' the two cords is 20 N· m.cloci:"isc. 

I'robs. 4-lI11II.! 



UJ. A de\;ce called a rolamite is; used in I'arious 1I'3)'S \0 

replace slipping mot;on lI'ith rolling mOl ion. If the belt. 
II'hich "'raps bet"'een the rollers. ;ssubjected \0 a lellsion of 
15 N. determine the reactive forces {I' orthe top 3nd bol1o111 
platC5 on the rollers so that the resultant couple :Kting on 
Ihe rollers is equal 10 uro. 

N 

lSmm-

T ~ ISN 

!>rob.4-8.1 

. 4-84, TII'o couples act on the beam as 5ho"·II. Determine 
Ihe magnilude of F .so Ihat lite resultant couple momenl is 
300 lb· II countercloc~"·ise. W'here on the beam docs Ihe 
resultant rouplc ad'! 

~
-' , , 

• 
~200 It. 

I 

r "'" """ 
, , , . 

--- ''' ---
I' rob. 4-/1.1 
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·"-SS. Determine the resullant couple momenl acting on 
thc beam. Soh'c the problem tWO WlI)'S: (3) sum moments 
about point 0: and (b) sum moments about point A. 

' --u. --,--1.11 m 

~S· 

" " 

"')11'1 lkN 

OJ:m,; .... IC::~~:=::::::::::!j[ . " 

HN 
.. N 

l'roh.4-S5 

4-86. Two couples act on the c3nti lel1:r beam. If 
F _ 6 kN. dc tcrntine the resultant rouple momcnt . 

4-87. D<:termine the required magnitude of force F. if the 
rcsultant rouplc moment on the beam is In be le ro. 

"'-,-,.-
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. 4-118. T .. 'o toupks a« on the frame:.. If the resultant 
ro\Iple 1000000nt is to be ~ero. determme the distal1C't' ./ 
betv.ccn the 4O-Ib coupk forces. 

~. Tv.'O touples a« on thc frame.lfd - -' fI.dctcnnine 
the result:lllt rouple moment. Compute the result by reSDI"ing 
eoch force IOta x ~nd )' components and (a) findlOg the 
moment of each couple (Eq. 4-U) and (b) sUll'lming the 
mornenlS ofall thc force components nboul point A. 

4-90. Twocoupk:$ oct on the frame. If ,/ .. " ft . dctcrnlillC: 
the resultant couple moment. Compute the result by 
resoll,ngexh fol'tt intox andy components and (a) finding 
the moment of each couple (Eq. 4-13) and (0) summmg lhe 
momenlS of all the force componenls about pamt 8 . , 

8r~:,~'"l 

':;A"->-~,,"'-L __ -,C'ffl-''':'· .......... 

~, . If ,l,, - SOON·m. M! - 600 N·m.and /II} .. 4SON·m. 
determine the magnitude and coord,nate direction angles 
of the resultant couple moment. 

· 4-IIl. I)etermlne the required magnitude of (ouple 
moments M,. "' l. and MJ so that the ruu ltant couple 
moment i$ M it .. 1- 3001 + -ISOj - 600k) N· m. 

" f tlllS. 4-1'1192 

+93. If F - lION. de lermme the magnnudc and 
coordmate directIOn angles of the couple momcnl.l'he PIpe 
assembly hu in the o6-y plane. 

4-9... If the magnitude of the couple moment acting on 
the pipe assembly LS SO N· m. dete rmme the magnItude of 
the couplc forces apphed to each wnmch. l he pLpc 
assembly lies in the .{_y plane. 

, 
""mm , 

4-95. From load calculations it LS determined thlll the 
v.ing is suhJcclcd to couple moments .II, - 17 kiP' fl lind 
!If , .. 25 kip· fl . Determine the resulw nl couple moments 
(feated aboUI the .( ' and y' ucs. 'Ille axC$ all lie in the u me 
horizontal Jlla~. 

, 

l' rllb. 4-95 



0;l.-96. Express Ihe 1lI0menl of Ihe couple 3ding on Ihe 
fr:llnc: in Carte~ian "cetor form. The forces arc applicd 
perpendicular to the fmllle. Whut is Ihe llIagnitude of Ihe 
couple momcnt? Tai.:e F .. SON. 

<4-'17. (n ordcr to turn o,'cr Ihc frallle. a couple momcn! IS 

applied as shown. I f the component of this couple moment 
along the x axis is M , .. 1- 2Oif N "Ill. determine the 
magnilude ,.. of Ihe couplc forces. 

'" '" 

-, 
Probs. ;l.-'J6197 

;l.-9!l. Determine the resultant couple mamen! of the two 
couples thaI oct OIlthc pipe as:sembly.1"hc distance frOOI A 10 
B is tI '" -100 mm. Express the result as a Cartesian \"ector. 

;l.-\I9. Determine the disl:lIlcc tI oc t"'ccn II and 8sothatthe 
fI.'Sultant coupic moment has a m .. 1gnitudc of M If .. 20 N· m. 

135"1 N 

4 .6 M OMENT OF A CouP\..E '" 
-;l.- IOO. lfM - I80lb·fI.M~ ... 90lb·rundMJ - 120Ib·ft. 
determine the magnitude and coordinate direction angll!$ 
of the resullant couple momeJ1l . 

·;l.- IOI. !Xtermine the magnitudes of couple 1lI000000JlIS 
MI. !II:. and !II) so that the resultant couple llIomeJll is zero. 

ISO lh ·rl 

, 

Probs. 4-100110 1 

4-10! . If F I ", IOOlband Fl - 200lb. deterllline the 
magnitude and coordinate direction angles of the resulcant 
rouple momeJll . 

;l.-103. !Xtermine the magnitude of couple forces FI and 
t'l so [lint the rcsullaJll couple mOlllenl acting on Ihe block 
is 7.ero. 

" 
"'rOOS . ..... 1021103 
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,.J 

- . ' 
" 

,.J 

4.7 Simplification of a Force and Couple 
System 

Sometimes it is con\'enient to rL'ducc a system of forces and couple moments 
acting on a body to a simpler fOfm by replacing it wilh an I'qllil'lllt'1II S)'SIt'III. 

consisting of asingle resultant fOfee act ing at a specific point and a resultant 
couple momenl.A system is equi\'alent ifthc t'.wallIll t'ffi~1S it produces on 
a body arc the same as those caused by the origin,11 force ~nd couple 
moment syStem. In this context. the external effects of a s)'Stem refer to the 
mlllsitl/;,rg IIIltl rowlillg /l/Olimr of the body if the body is free to mo\'e.or it 
refer'S to the rl'uclil't' foret's al the SlIpportS if the body is held fixed. 

For example, collsider holding the stick in Fig. 4-34/1. which is 
subjected 10 Ihe force F ,It point A. I( we ,llIaeh a pair of equal but 
opposile fort:es t' and - F at point 8. which is olllhl' lillt' of tIC/;OII of F. 
Fig. 4-34b. we observe thai - F al 8 and F at II will cancel each other. 
lea\'ing only t' at 8. Fig. 4-34<'. Force F has now been mO\'ed from A to 8 
withoul modifying its 1':.1I1'mal I':/fecfs on the Slick: i.e .. the reaction at the 
grip remains Ihe same. l 'his demons trates Ihe prillciplt' oflTllIIsmissillilil),. 
which states that a force acting on ,I bod)' (Slick) is a slidillg v«lorsinee 
it can be applied at an)' point along its line of action. 

We can also 11$1.: thc abo\'c proc;cdure 10 movc a force to a point that is 11(1/ 

on the line of action orthe fOfC(:.1f F is applied perpcndicubr to the stick. as 
in Fig.4-35a, then we can allach a pair of equal bUI opposile forces F and - F 
to 8. Fig.4-35b. Force F is now applied al B.and the other Iwo forces. F alA 
and _t' at /J, fonn a couple th.11 produces 1he couple momcnl /If = FII, 
Fig. 4-3x. Thcrefore::. the force F can be mO\'cd from A to 8 pro\~dcd •• 
couplc moment M is added to maintain an equi\'alent systcm. This couple 
moment is determined by taking the moment of F about 8 . Since M is 
actually a fru .'t'l'/or. il can act at any point on the stick. In both C3$1.:S the 
syslems arc cqui\'alenl which caUS<.'S a dO\\Tlward force F ami clockwise: 
couple moment M = Fd to be felt at the grip. 

,'I 
f ig . .... 35 

" 
. ," \\ 

II", - 1,/ 

,<, 

'<J 
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System of Forces and Couple Moments. Using the aoovc 
me thod. a sys tem of several fOT~CS and couple moments ueting on a 
body can be reduced 10 an equivalent single n::sul13nt fo rce HCling <It II 
poillt 0 and II rcsultalltcouple moment. For example. in Fig. 4-)6(1. 0 is 
not on the Jinc of ac tion of f " <l nd so this force c~n be moved to point 
o provided a couple moment M, = r, X F is added to the body. 
Simila rl y. the couple Inomem 1\12 = l 2 X 1;1 shou ld be added to the 
body whcn we move f z to point O. Finally. since the couple moment 1\1 
is a free vector. it can just be moved to fXJint O. By doing this. we obtain 
thl) equivalent sys tem shown in Fig. 4-36h. whith produces the same 
external effects (support reac tions) on the body ,\5 that of the force and 
couple syste m shown in Fig. 4-360', . If we sum the forces and couple 
moments. we obtain the resultant [orce ."/1" = F I + F ~ and the resuitant 
couple moment (M/I)o = M + 1\1 , + 1\12. Fig.4-36c. 

Notice th~t F /I" is independent of the 1()!.~Jtion of poilll 0: howe\'er. (M ,,)o 
depends ufXJn this localion since the moments 1\1 , and 1\11 arc 
de termined using the position \"cctors r, and r2. Also note that (1\1/1)0 is 
a free vector and c<l n act at (III)' IlOilll on the body. although point a is 
gener.llly chosen as its point of application. 

We can generalize the above method of reducing a force ~nd couple 
sys tem [0 an equivalent resullan[ force f /l acting a[ point a and a 
resultant couple mome nt (1\I R)0 by using the following two equations. 

F1( - l: f 

(1\1 /1)0 = ~l\1 o + ):1\1 
(4-17) 

The first equation states that the resultant force of the system is 
equi\'<llelll \0 the sum of all the forcl,);: and the: second equ;l\ion SillIes 
that the resultant couple moment of the system is equivalent to the sum 
of all the couple mo mcms 1: 1\1 plus the moments of all the forces :i:1\1 0 
about poilU O. If the force: sys tem lies in the .l - Y plane and any couple 
moments lIrc perpendicular to this pl3ne. [hen the 3bo\"e equations 
reduce to the following three scalar equations. 

(FR)' - ~I:;. 

(FII),. = ~ F, 

(,\11()0 = 'i.Mo + 'i.M 

(4-18) 

Here the resultant force is de termined from [he \'ec tor sum of its two 
components (F 1(). and (F 1()1" 

" 
(. ) 

II 

,', 
1>' 

' I X F, 

II 
'. 

(,' 

• 



• 
The weigh lS of 1h"se lraffic light! eIl n be rc pL1ccd by Ihe ir clju, vslcm "'.lIlmm for...., 
IV .. .. IV , + IV , and a rouple nl" "'t lll ( AI ,.)., " 11',", + W!J~ alth< .uppon . O. ln 
bOl h cases Ihe suppan "'1I~1 pro"ide the !<arne ."sistlm"" In lr.ln1la.lion and rotation in 
order 10 kee p th" member in Ihe horizonta l positi on. 

Procedure for Analysis 

The following poinlS should he kepi in mind when simplifying a force 
and couple moment system 10 an equivalent resultant force ami 
couple system. 

• Establish the coordinah: axes wilh Ihe urigin located al point 0 ami 
the axeS having a selected orientation. 

Force Summation. 

• If the force system is "opl/mar. resolve each force inlo ils x and" 
components. If a component is directed along Ihe positive x o r )' 
al(is. it represen tS a posit ive S(aiar. whereas if it is directed along 
Ihe ncgllliv" x or y IIxis. it is a n"gativ" scalar, 

• In thn::e dimetl~ions. represent each force as a Cartesian vector 
before: summing che forces. 

Moment Summation. 

• When delennining the moments of a c:ul'ftm(lr force system about 
point O. it is generally advantageoLis 10 usc the principle of 
mOmellts. i.e.. dete rmine the: momentS of the components of each 
force. rather than the moment of Ihe force itself. 

• [n three dimensions use the vector cross product to determine the 
moment of each force about point 0 , Here the position vectors 
extend from a to any point on the line of action of each force. 
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EXAMPLE 4.14 

Replace the force ,md couplc:: system shown in Fig. 4-37t1 by ~n 
equivalent resultant force and couple moment acting at point O. 

" 
HN (J ~N)sln 30' 

...... .f / 1(HN)ros3O' ~ r=="""~ 
0.1 m -, ° 
0.1 m 

-'-1 f-'--=+-~~~ 

0'1 m f0'---_-,-_'_"'--''''' __ -,---- , 
0.1 m ~ -}(HN) 

O.2m 1).3m 

1 'll 
0.2 In 

SkN 
4 kN 4kN 

,., 
til:' 4-37 

SOLUTION 

Force Summation. The 3 kN alld 5 kN forcc s arc resoh'cd illto thei r 
x and ,. components as shown in Fig.4-37b. We have 

..±.(FII), = '£F~: (FR), = (HN)cos30° + W (SkN) '" 5.598kN-

OJ. • \. 

t l5 kN ) ~ 
(0, 

+t (FR)y = r.F)~ (FR») = (HN)sinJO' - (1)(5 kN) - 4kN = - 6.SU kN = 6.50 kNl 

Using the Pythagorean theorem. Fig. 4-37c. the magnitude of f II is 

f'x"'" Y(FR)/ + (FII )/ = V(5.598kN )2 + (6.50 kN)2 = 8.58 kN AII~ 

liS di rection 0 is 

u = tan- I( FR)y) = tan-1( 6.50 kN ) = 493' 
( fit)r 5.598 kN . 

.-IllS. 

Moment Summation. The moments of 3 kN and 5 kN about 
point 0 will be determined using their x and y componcnls. Referring 
10 Fig. 4-37b. we have 

C+( MJllo= '£ Mo: 
(Millo = (.HNlsin30"(O.2 m) - (HN)cos 30"(0.1 111) + m (SkN)(O.1 m) 

- (1) (5 kN) (0.5 m) - (4 kN)(O.2 10) 

AilS. 

This clockwise moment is shown in Fig. 4-37c. 

NOTE: Realize Ihill Ihe resultanl force and ~'Quplc mOment in 
Fig. 4-37c will produce the s,1mc external effects or reactions al the 
supports as those produccd by the force system. Fig 4-3711. 

o 

(.II~>O - 2.46 kN ·m 

• 
·(F~J •• 0'5.598 k, 

'AT .. 
'. (PRJ, . 6.50 kN 

«, 

• 



EXAMPLE 4.15 

o 
• 

Replacc (hI; force lind couple 5}'$!em octing on the member in Fig.4-3&1 
by an equivalent rcsul1mll (OTt"\; and couple moment "cling (II point O. 

7.'iO N s , 

" 
1m 

l.2$ m-1.25 m 1 

"J 

SOLUTION 

200 1'1 

, 

(1'.11), ~ 300 N 

'., 
(F.), " 3.'iON 

Fig • .1-38 

"I 

Forc~ Summation. Since the couplc forces of 200 N 3fC equal but 
OPp<:>l>itc. they produce a zero resultant force. and so it is not necessary 
[0 consider them in the force summation. The 500-N force is resolved 
into its x and y components. thus. 

.!. (FII ). = :i.F$: (Fill. = m (500 N) = 300 N-

+ f (FII) , = 'IF,.; (FIt)y = (500N)(O - 750N = - J50N = 350Nt 

From Fig. 4-15h. the magniludc of F f< is 

foR "" V(FII )/ + (FII. l/ 

= V (300N)z + (350 N)! = 461 N 1111.\: 

And the angl<: 0 is 

o = tnn-1G~:~J = lan- l(:~) = 49.40 JlI!~ 
Moment Summation. Since the couplc moment is a free vector. il 
can 3C\ al any point on the member. Rcf<:rring 10 Fig. 4---3&,. we havc 

<. + (AI /1)0 = 'iAlo + ':f.Alc: 

(M/I)o = (500 N)W (2.5 m) - (500 N)U)(I m) 

- (750 N)(1.25 m) + 200 N'm 

= - 37.5N·m -::0 37.5N ·m ) 

This clockwise momcnt is shown in Fig.4---38b. 
IIlI.t 
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EXAMPLE 4.16 

The structuralmemocr is subjected !() a couple mQment M and 
forces FI ~nd "-1 in Fig. -I-3911. Replace this system by an equi\'alent 
result~nt force and couple moment acting at its base. point O. 

SOLUTION (VECTOR ANALYSIS) 
The three-dimensional aspects of the problem can be simplified by 
using a Carl csian \'c<:to r analys is. Expressing the forces and couple 
moment as Cartesian vectors. we hiwe 

F) = {-BOOk} N 

Fz = (300 N )uclf 

( 'e,) = (300N) -
'c. 

= 3OON[ 1- 0. ]5; + O.]j \m 1 = {-249.6i + 166.4j } N 
V( 0.15m)1 + (0.1 mf 

1\1 = -5oo(1)j + 500U)k = {-400j + 300k} N 'm 

Force Summation. 

F/{ = FI + F2 = - BOOk - 249.61 + 166.4j 

= 1- 25Oi + 166j - SOOk} N 

Moment Summation. 

M R,; = ! 1\1 + :£ 1\10 

M it" = M + rc X FI + r /j X F1 

j k 

1\I R,,=(- 400j +300k)+( ]k)X(- SOOk)+ - 0.15 0.1 1 
- 249.6 166.4 0 

= (-400j + 3OOk) + (0) + (- I66Ai - 249.6j ) 

= {- I66i - 650j + 3OOk} N'm 

The resul ts arc shown in Fig. 4-39h. 

AIlS. 

Am: 

,. 

, 
(.) 

, 
(> , 

• 
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• FUNDAMENTAL PROBLEMS 

F.&-2S. Replace the loadmg system br an equivalent 
resultant force and couple momcnt acting at point A. 

tSOtb 

... .&-26. Replace the loading system by ~n equi"alent 
resultant ror~ and coupic moment acting at point .. t . 

F ..... 27. Replacc Ihe loading s}'Stcm b}' an equi~alcnt 

resultant force and coupl~ moment acting at point A. 

JOON'm 

........ !II. Repla~ tile loading system by an equivalent 
resultan t force and couple moment acting at point A . 

» IOOlb 

J 
'" 

"'" 

lSOlb 

... .&-28 
........ Z\1. Replace the loading s~slem by an equil'alent 
resultant force and couple moment acting at point O. 

P, _ 1_ 3001 + ISO:! + 200t.1 N 

, 
F, _ [- 4SOk[ N 

~. 
A .. 

... .&-2'1 

... ..l-30. Replace the loading s)'Stem hy an equivalent 
resultant force and couple moment acting at point O. 

M, .. 75N'm 



4.1 SIMPlIFICATION OF A FORCE ANO COoP'lE SVSTtM '" 

• PROBLEMS 

· 4-1..... Replace tile force S)'S ICm acting on the [ruM by:l 
rcsull~nl force and couple moment a\ point C. 

200 Ib ISO lit 

~ 
100111 

- 2ft - · 211- 2/1 J - 2fI . -
,I 1" B 

c 

·+-IOS. Replace the force S)'Slcm acting on Ihe beam by 
3n equivalent forre and couple moment at point A. 

4- 106. Replace Ihe force S)'51Cm acting on the beam by an 
equivalent force and couple momCll1 at point 8 . 

HN 

2.5 kN lJi kNJO' 

8 

2m - 'm - In. 

" rulls. -I- IOY106 

4-107. Rcpbcc the 'wo forces b~ an equi"alent fQuilanl 

force and couple moment al point O.SCI I" - 20 lb. 

· 4-1(18. Replace Ihe ' .... 0 forces b)' an equivalent r(SUllanl 
force and couple moment at point O. Sel F .. IS lb. 

, 

!'robs. 4-101111.18 

,4-109. Replace the force system acting on the post by a 
rcsuham force and rouplc moment at point A . 

OS m 

1m 

1m 

Proh. 4-I09 
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4-110. Replac;;: tite force and couple ~oment $)'Stcm 
acting on titc O"critang beam by 3 resultant force and 
couple moment at point .. t. 

".oIl. 4-I IU 

4- 111. Replace tite force s)'Stem by a rcsultant force and 
couple moment 3t point O. 

frob. 4-11 1 

-4-112. Replace the two forces acting on the gondcr hy a 
resultant force and couple moment at point O. Express the 
results in Cartesian , '\,<:Ior form , 

11 01 - 15; - -I()Io;1 N 

1- 15; - Wj - 3010;1 N 

Prnh. -I-111 

·4-IIJ. Replace the 1"'0 forces acting on the post by a 
resultant force and couple momenl at point O. Express Ihe 
results in Cartesian ,'cctor form . 

, 

" 

6. 

• 

Proh. 4-11J 

,. 

" "'--, 



4.1 SIMPlIFICATION OF A FORCE ANO COoP'lE SVSTtM '" 
4- 114. lbe three forces a~t on !he pip.: ass.cmbly. If 
FI .. 50 N and F~ .. 80 N. replace Ihis (orce syslem b)' an 
cqui"aicnl resultant (oree and coupic momcn! aCling aiD, 
Express Ihe results in Cartesian \'eClor form. 

• .... 116. Replace tile (ol1:e s)"Stcm a~!ing OIl Ihe pipe 
asso:mbly by a resul lanl (oree and coupic moment 3t point O. 
Express the resulls in Cartesian >"ector (amI. 

.' , .. 1- 101 .. 15j t 2OIi1 Jb 

. '1 .. 1- 2Oi - IOj .. 25kllb 

.. 0 

Proh ..... 114 Prob . .... 116 

.... 11 5. Handle forces F I and F~ arc applied 10 Ihe electric 
drill. Replace Ihis force syslem by an equivalent resuhnnl 
force and rouple moment acting 8t point O. Express the 
results in Cartesian ,'crtor form. 

··, " I~ - 4 kIN 

Proh. 4- 115 

,4-117. 'lhe slab is 10 be hoisted using Ihe Ihree slings 
shown. Replace the system of forces acting on slings by an 
cqui''alcnt force and «lUple moment a1 point O. The (orcc 
FI is ,·crlical. 

F, _ 5kN 

,~ 
6m 

Prob. 4- 117 
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4.8 Further Simplification of a Force and 
Couple System 

[n the prec<.'<Iing section. wc developed a way to rcduce a force and couple 
moment system ac ting on a rigid body into an cquivalent resullant force 
.',<r acting at a specific point 0 and a rcsullant couple moment (M,<r)cr The 
force system can be further reduced to an equivalent single resultant force 
prO\'ided the lines of action of F fI. and (M,<r)o arc pupl'm/ielllllr to each 
o ther. Because of this condition, only concurrent. coplanar, and parallel 
force systems can be further simplified. 

Concurrent Force System. Since a ((JIIClIm:m [fJrcf SySltllJ is 
one in which the lines of action of all the forces intersect at a common 
point O. Fig. 4-400-,. then the force system produces no moment about 
this point. As a result. the equivalent system can be reprc,s,;:nled by a 
single resultant force FfI. C ~ .' ac ting at 0, Fig.4-40h. 

" 

" 

t.) t') 

tlg.~ 

Coplanar Force System. In the case of a coplmlllT [orc(' SyS/NII. 

the lines of action of aillhe forces lie in the same plane. Fig. 4-4lrl. and 
so the resul tan t fo rce . '/1 = }; .' of Ihis s)'slem also lies in this plane. 
Furthermore. the moment of each of the forces aboul an)' point 0 is 
directed perpendicular to this plane. ThUs. the resultant moment 
(MRlo and resultant force FR will be mull'(l/{.\' perpmtiicll/iIT. 
Fig. 4-4lb. The resultant moment can be replaced by moving the 
resultant fo rce FfI. a perpendicular or moment arm distance (f away 
from point 0 such that F,<r produces Ihe S(lnIe "WI/Will (M,<r)o about 
point O. fig. 4-41c. This dis tance tI can be determined from the scalar 
equation (MR)o = FRf/ = :!.Moor tl = {MR)oIFR. 



4.8 FI)RtH€~ SIMPLIFICATION OF A FOR<:1: ANO COON: S~lEM 171 

'. 
~ O/.' ~ 

(Mal" 

'" '"J 

Parallel Force System. Thelil/mllf'l fOTcl' systl!lII shown in Fig.4-42a 
consists of forces that Hr\! 311 parlillel [0 the ~ axis. ThUs. the resultant 
force . '/1 '=' r F at point 0 must also be p:lr311c1to this axis. Fig. 4-42b. 
The moment produced by each force lies in the pl'lne o f the plate, and so 
the resultant couple momell l, (M/1)O. will also lie in this plane. along the 
moment axis II since F /I and (M /I)o arc mutually perpendicular. As a 
result. the forc\! sy~tem c:m be furlh.::r reduced to an \!quivaknt singli: 
resultant force F /1. acting through point P loc31ed on the perpendicular b 
axis. Fig. 4-42c. The diSHmcc II along thL~ axis from point 0 require~ 

(M/I)o '=' F/ld '" rMoorrf "" "i. MoI F /I. 

,., 

'. 
O· ' / 

'<I 

'<J 

• 
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The fourc~blc forces are all concurr~ nl M f'<)im 0 On th is bri<lgc 
tower, C,>nscqucntiy th~y produce no re sult am moment tbc rc, 
o nly a resultant force FR, Note that the <lcsignc"" Ita",,, positionc<l 
the ca bles so th:>! F R is dirttlc<l (1 /" "1( th~ bfidg,' tower dirc~lly 10 
the $llpp<>r1 . !10 that it does not cause any bending of th e tower. 

Procedure for Analysis 

The techniquc used to reduce a coplanar or parallcl force system to 
a single resultant force foll ows a similar procedure out lined in the 
previous section. 

• Establish the x. y. z. axes and locate the resultant force FR an 
arbitrary distance away from the origin of Ihe coordin ates. 

Force Summation 

• 111e resultant force is equal to the sum of all the forces in the 
system. 

• For a coplanar force system, resolve each force into its.r and y 
l'Ompollenl s. Posi tive components are directed along the posit ive 
x and ), axes. and negath'e compOnents 3re directed along the 
negative x and )' axes. 

Moment Summation . 

• The moment of the resultant force 3bout point 0 is cqualto tbe 
sum of all the couple moments in the system plus the moments of 
all the forces in Ihe system about O. 

• This moment condition is used to find the locat ion of Ihe 
resultant force from point O. 
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Hcre Ihe ... "igl!tsoflhe I",me lighu3'c .eplaced by Ihei. 'C!lulianl for"" 11'11 .. 11'1 + 11': 
,,·hich ~IS 31 ~ di'i"~ d .. (W id , + II't lll)/ 11'11 rrom O. ROlh , )·.icn» nrc cqui'·alenl. 

Reduction to a Wrench In geneT:l1. a thrcc·diOlClisioll:li fOTIX 
alld couplc moment system will ha\'e all equivalellt resultant force F II 
actillg :11 point 0 and a resultant couple 1II0ment (M «)o that arc 11/11 
IUrptluli"dar to onc another. as shown in Fig. 4-43(1. Although a force 
system such as th is cannot b.:: (urther reduIXd 10 an equi\'alent single 
rcsul tant force. the resultant couple momcn! (M R)Q can be resoh'cd into 
components parallel and perpcndicular to the line o( action o( FR. 
Fig. 4-4311. The PCJlX'ndicular component l\I ~ can be replac..:d if we 
1II0\·C FR to point P. a distance If from point 0 along the b a~is. 
Fig. 4-43b. As seen. this axis is pcrpendicul:lr 10 oOlh the /1 axis and Ihe 
line of action of .'11. The location of P can be detennilled from 
II = M d F R. Fin;lI ly. because 1\1 is a free \'ector. it can bc moved to 
point P. Fig. 4-43c. This combination of a resul tant forcc F« and coll inear 
couple momcnt Mi will tend to translatc and rotate thc Dody about its 
axis and is referred to as a ... ,rlH:1r or ",c,t'\\'. A wrench is the simplest 
system Ihat can represent any gencral forcc and couplc momenl system 
acting on a body. 

(., (" (" 

173 
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EXAMPLE 4.17 

,.) 

Rt.: placc the forct.: and couple moment sySICm acting un the Ix:alll in 
Fig. 4--44f1 by an equivalent resul tant force. ~Lnd find where its line of 
action in tt.:rsccts the beam. me,lsured from point O. 

,» 

SOLUTION 

Foree Summation. Summing the forc.; compon.;nts, 

"±;'(F/f). = IFx: (F/f).= 8kN(i)= 4.80kN-

+ t(F R)! 0: IF,.; (F/f) . = - 4 kN + 8 kNO) = 2.40 kNt 

From Fig. 4-44". the m(Lgni lUdc of F R is 

F If = V(4.80 kN )! + (2.40 kN )2 = 5.37 kN Am. 

The angle 0 is 

/j = t ',n- I --- = 26.6G 

(
2.4U kN) 

, 4.RO kN An-So 

Moment Summation. We must e-qU(l! t.: the moment of F R about 
point 0 in Fig. 4-44b to the- sum of the moments of the force and 
couple moment system about point 0 in Fig. 4-44tl. Since the line of 
action of (t"R) . aCIS through point O.ollly (FR)V prmillel's (J 1110111(:/11 
about this point. ThUs. . 

( +(AI /f)Q = t Ala: 2.40 kN(tl) = - (4 kN)(LS m) - 15 kN'm 

- [8 kNU)1 (0.5 m) + [8 kN (t) I(4.5 m) 

(/ = 2.25 m Air. ... 
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EXAMPLE 4.18 

The jib cmne shown in fig. 4-4511 is subjected tu three cuplanar furces. 
Replace this loading by an e{luivalcnl resul tant force and specify 
where the rcsuh,IIlI 's line of llction intcrsc~1S the column A8 lind 
boomBC. 

SOLUTION 
t7) tb 

'" 
Force Summation. Resolving the 250-lb force intO .l and y(;omponents 5 fI 
and summing the force l"Omponents yields 

'±'Fx• = 'i.F.r: F II • = - 2S01b(;) - 17SIb "" - 32Slb "" 325lb­

+tFII,"" 'i.F).: Fx, "" -250Ibm- 60lb "" -260lb = 260lbJ 

As shuwn by the ,"ector addiliun in Fig.4-4Sb. 

Ali.I'. 

Am: 

Moment Summation. Momenls will be summed lIboul poinl A. 
Assuming Ihe line of ac lion of F /I ;1JI('fJ"eCIS AB at a dislanCe y from A. 

Fig. 4-45h. wc hlll'c 

32SIb (}') + 260 Ib (0) 

17SIb (S (I) - 60 Ib (3 ft ) + 2S0 IbUh 11 ft ) - 250 I b (~)(S fl) 

y = 2.29 fl 1'111.1'. 

By the principle of Iransmissibili ly. FR clln be placed a1 a distance x 
where il inli:rsects Be. Fig. 4-4Sh. In Ihis casc we have 

325lb ( II fl ) - 260 Ib (x ) 

= 17Slb (Sfl ) - 6O Ib (3fl) + 250lb(~)< 1! fl) - 250 IbU)(S fl ) 

x = 10.9 ft AIlS. 

, 

, 

,.) 

/ 
/ 

(0) 

2601b 

• 
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EXAMPLE 4.19 

, 

1110:: slab in Fig. 4-4&, is subjectcd to four parallel forces. Determine 
the magnitude and direction of 11 resultant force equivalent to the 
given force system and locate its point of application on the slab. 

'. I @N 

~,J 
>OO N 

too N 

""" cr' m -~' ", -
" , -" 2m , 

• 

(., 

c • , " , 
'm 

;!; 
" • 

'"' tlg.4-46 

SOLUTION (SCAlAR ANALYSIS) 
Force Summation. From Fig. 4-46.:,. the resultant force is 

+ IFII ", r.F; - FII = - 6OON + lOON - 400N - SOON 

=- !400N = !400NJ AilS-

Moment Summation. We require the moment about the x .. xis of 
the resultant force. Fig. 4-46/1, to be equal to the sum of the moments 
about the .r a~is of all the forces in the s),Melll. Fig. 4-400. The moment 
amls arc dctermined (rom the), coordinates since these coordinates 
represent the l,erl't'IIdiCllfllr distlll/Cl's from the .faxis to the lines of 
action of the forces. Using the right-hand rule. we have 

(MII)~ = :iM, ; 

- (1400 N)y = 600 N(O) + 100 N(5 m) - 400 N( IO m) + 500 N{O) 
- 1400)' = - 3500 )' = 2.50m AilS-

In a similar manner. a moment equation can be wriuen about the )' 
axis using moment arms defined by the x coordinates of each force. 

(MII)y"" "1:. Ill, .: 

( 1400 N)x = 600 N(8 m) - 100 N(6 m) + 400 N(O) + 500 N(O) 

1400x = 4200 

x = 3m 1111.1'. 

NOTE: A f()Tce of Ffl = 1400 N placed:lt point 1>(3.00 Ill. 2.50 Ill) on 
the slab. Fig. 4-46b. is therefure equivalent to the parallel force system 
acting on the slab in Fig. 4-4&1. 
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EXAMPLE 4.20 

Replace the fOTce system in Fig. 4-47(1 by an equivalent resultant 
force and specify its point of applicmion 011 the pedestal. 

SOLUTIO N 

Force Summatfon. Here " 'e will demonstrate a vector analysis. 
Summing forces. 

fo'R = ~ F: F/I = f ;l+ F8+ FC 

= {-JOOkllb + \ - SOOk } Ib + {lOOk } Ib 

"" {- 700k} Ib Ant 

Location. Moments will be summed aoout point O. TIle resuhant 
force FR is assumed to act through point P (x.y.O). Fig. 4-47b. Thus 

(M/I)o = ~Mo: 

rf' X FR = (r;l X F;I) + (rll X FII) + (rc X Fe) 

(.ri + yj ) X (- 700k) = [(4i) X (-JOOk )] 

+ [(-4i + 2j ) X (-5OUk)] + 1( - 4j ) X (lOOk)] 

-700x(i X k) - 700yU X k) = -1200(i X k) + 2ooo(i X k) 

- 10lXI( j X k) - 400(j X k) 

700xj - 700yi = 1200j - 2000j - 10001 - 400i 

Equating the i and j components. 

- 700)' = - 1400 

)' = 2in. 

700x = - 800 

x : - 1.J4in. 

(I) 
1111£ 

(2) 

The neg<ltil'c sign indicates tha t the x coordinate of point P is 
nega tive. 

NOTE: It is ulsa possible to cstablish Eq. I and 2 directly by summing 
momentS about the .r and)' axes. Using the right-hand rule. we have 

-700y = -1(1) Ib(4 in.) - 5UO Ib(2 in.) 

700x = 300 Ib( 4 in. ) - 500 Ib(4 in.) 

(., 

(b) 

~ig. 4-47 

• 
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• FUNDAMENTAL PROBLEMS 

f4-J I. RcplaC<' the loading system by an equi\'al~lIt 

resultant force and specify " 'here the rcsultani's line of 
actioll interSCdS Ihe beam measured from O. 

" ,.,,, 

" .--, 

~3 f1--' ''--3f1-+-3 f1 ~ 
.·4-J I 

f4-J2. Replace the Io.lding s~'Sl cm by an cqui-'alent 
resultant force and specify where Ihe re! Ul\ani's lille of 
action intersects Ihe member measured from "I. 

200111 

'" ' " 

, 
•· ..... J2 J 100 tb 

f4-JJ , Replace Ihe loading system b)' an equi\'alenl 
resuhanl force and specify where the rcsuhanCs line of 
a(1ion inlersects Ihe member me:lsured from A. 

f4-J.&, Replace Ihe loading s)'Slem by an equivalent 
rCSUllanl force and specify "-here the resultanfs line of 
aellon intersects AH measured from A. 

• 

'm 

f4-J..I 
F4-J5, RepbC<' the loading sh{)\\'n by an cqui\'alent single 
resultant force and specify the x and,' coord inalcsofils line 
of action. 

&--r-' 

~ . -4-JS 
f4-J6. RcplaC<' Ihc loading shown by all equivalent single 
resultant force and specify the .f and ),eoordinates of its line 
of action. : 
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• PROBLEMS 

;l- il tl lbe weights of the various components of lhe lru(k 
3re shown. Replace: Ihis S)lSlcm of forces b)' an c:quiVlllcni 
resultant forec and specify its localion measured from B. 

4- 119. l be weights of the variOIl$ components of the 
truck are shown. Replace this system of force:5 by an 
equ;\'alenl resultant force and specif)' its location 
measured (".1m point.ll. 

Prob$. 4-I IWI 19 

-4-120. The system of parallel forces acts 00 the tor of the 
lI'arrtlllm.<.~ Determine the equivulem resoilnnl fore.: oflhe 
5)'Stem and speeify its locat ion me3§urcd from point.ll . 

HN 

HI' 

Prob. ;l-120 

·;l-121. The system of four forces acts on the roof truss. 
Determine the equh·alen l resultant force and specify its 
iocalion alongAB. measured from point A 

Prob.4- 121 

4- lll. Rcpl~ce: the force and couple system acting on the 
frame hy an cquil'llleni rcsultant force and specify where 
the rcsullant"s line of action in tcrsc:c:1S mcmIM: r AB. 
measured from.ll. 

4-12.1. Replace the force and couple s)'Stcm acting on the 
frame hy an equivalent resultam force and specify where 
thc resultant 's line of action intersects mcmIM:r He. 
measured from 8 . 

Prob$. 4-1221123 
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' 4-124. Replace the force and toupl" moment system 
acting on the o"erhang beam b)' a TCsultant force. and 
spctify its loc~,ion nlong A8 measured from point A . 

30kN 26kN 

~"m I: L' 
O.Jm 

I I 
O.Jm 

L 
• 

'm J-,m 
" rGb. 4-124 

4 - 125. R~pl3ce the fGrce system acting Gn the frame by 
an equi"alcnt rcsulwnt force Dnd specify ",here the 
rcsuhan,'s line of actiGn mtersccts member AH. measured 
from point A. 

4- 126. Replace the force sys1Cm acting on the frame by 
an equi"alcnt resultant force and specify ",here the 
resuhanfs line Gf action [mcnuts member HC. measured 
from point 8 . 

. 
• 

C 

' " 
1 !5~ 
I 

111 

..L 

4-121. Replace the force S)'Stenl acting on the post by a 
resultant force. and spedf)' " 'here ils line of action 
intersects 'he post AH measured from point A. 

· """UII. Replace the force ~)'Stcm acting on the post by a 
resulwnt force. and speCIfy "here its line of action 
intersects the post /l H me3$urcd from point H. 

'"' ! 
'm 

I'robs. 4-1271128 

....... 129. The building slab is subjected tG four paT3l1cl 
column loadings. Determine the equ;''lIlent rc-sultant force 
and specify its location (x, y) on the slab. Take F I _ 30 kN, 
F: - 40kN. 

4-IJO. 111e building Slab is subjected 10 four parotic! 
colunm loadings. Determine the equivalent resultant force 
and specify its location (.r.y) on the slab. Take F , _ 20 kN. 
F2 .. 5OkN. 

!OkN SO kN '. 

Probs. -I-1!9IIJO 
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4-1l1. Thc lUbe supporlS Ihe four parallel fo!"(cs. 
Delcrminc Ihe magniludes of forces Joe and FI) acting 31 C 
and /) so thai Ihe cqui\'aJc nl resullanl fOfce of the force 
systcm aclS through Ihe midpOlnl 0 of the lube. 

..,N 
D 

l' rob. 4-13 1 

-4-1l2. Three parallel boiling fo!"(cs al'l on Ihe drculnr 
plale. Delermine the r~u lt3m force. and specify its 
localion (,t. z) on thc plale. FA .. 200 lb. FR .. 100 lb. and 
Fr .. 400 lb. 

·4-IlJ. The Ihrec parallel boiling forces Ita on lhi' circular 
plate. If Ihe force at A has II magnilude of FA " 200 lb. 
delermine lhe nl.lgniludcs of FR and Jo'c so tliallhc resultnnl 
force F/I orlhe system has II line or action thai coincides with 
Ihe y axis.lfilll: "I'liis requires ~M , .. 0 and ::::M, .. o. 

, 

Prohs. 4-IlUlll 

4-1,\4. If F" ... .w kN and F8 '" 35 kN. delcml[ne the 
magnitude of the resullant force and specif>· the local ion or 
its poinl of applicalion (x.y) on llie slab. 

4-11S. If Ihe resultanl force is required 10 act at lhe cen ter 
ofthc slab. dete rmine the magnitude of the colullln loadings 
FA and F Hand lhe magnitude of the resultanl forc.:. 

0.75 "' 

, 
1 rn ... ,..._ 

0.75 m 

30 kN 

Probs. 4-Il-UIlS 

*4-136. Replace Ihe parallel force system acting on 
the plale by II reSUIl:tnl force and specify its loclltion on the 
.T~Z plane. 

/ SkN 

,. 
r ,. , 

, 
I' rob. 4- I36 

• 
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4 -137_ If"-,4 " 7 kN and"-IJ - 5 tN_ reprc~nt the foree 
S)"$lcm acting on Ihe roThels h)' a resullanl force. and 
specify ils loc~lion on the x- y pl~nc. 

4-US. Detcnninc Ihe magnitudes of t-,4 and F RS(} Ihallhe 
resuhan t force passes through point 0 of Ihe rolumn. 

I'robs. 4-1.J7f13S 

4-U9. Replace the force and rouplc momcnt system 
acting on Ihe rectangular hlock by a wrench. Specify tile 
magnitude of the fOTce and rouple moment of the "'Tench 
and where its !inc of action imersects the X-y plane. 

'" 6OO1b·tt ---1 

7 """ 
H I 

,7 
,.,,, 

Proh.4-139 

-4-140. Rcplace Ibe three forces acting on Ihe plate by a 
"'rench. Specify the magnitude of the force and couple 
momcnt for the wrench and the point/"(y. <) where its linc 
of action inu.'rseets the plate. 

H .'.- I- 6OJllb 

t2ft 

F .. - 1- 8OI<]tb 

c---L 
Fe - 1- 4OIIlb r 

l' rob.4- I40 

-4-14 1. Replace the three forces acting on the plate h)' a 
..... rench. Sp.:eify the magnitude o( the force and couple 
moment for the wrench and the point I"(of.)') "'here its line 
o( action intersects the plate. 

, 

/ , 

F .. _ 13OOj1 N 

!'rob. 4-14 1 
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4.9 Reduction of a Simple Distributed 
Loading 

Somctimes. ~ body m;l)' be sUbjected to a loading that is distributcd ol'er 
its surface. Rlrenmple.the pressure of the \\;nd on the face of .. sign. thc h 

pressure of water within a tank. or the weight of sand on the noor of a -S 
storage container. arc ~II (Iixf,iblllerf IOilllill8x.The pressure exerted at each /. 
point on thc surface indicates the i nt en~i ty of the loading. It is measured 
using pascals I'a (or N/m~ ) in SI units or Iblf1! in thc U.S. Customll ry 
s)·stem. 

• 

,-, 

dF - ,M 

Uniform l oading Along a Single Axis. The most common 
Iypc o f distributed loading encountered in engineering practice is 
gcncrally uniform along a single axi~· For example. consider the beam 
(or plate) in Fig. 4-4&, that has a constanl width and is subjected to a 
pressure loading that varies only along the.l" axis. This loading can be 
described by the fun ction p = p(.l) N/m2. 1t <:ont3ins only one \'3riablc 
x.llnd for this reason ...... e can also represent it as a ((Jplllllflf(/iSlriblilcll 
101111. To do so. we multiply the loading fUn<:tion by the width b m o f 
thc beam. so that w(x) = p(x)b N/m. Fig. 4-4811. Using the methods o f 
Sec. 4.8. we can replace this coplllilar parallel force system with a 
single equivalent resultant fo rce F R acting at a spe<:ific location on the 
beam. Fig. 4-48c. 

I 

llTl r~ni ~ "':' 

Magnitude of Resultant Force. From Eq. 4- 17 ( FI'I = ~F) . 
the magni tude of FI'I is equivalent Wthe sum of all the forces in the 
system. In this case integrat ion must be used since there is an infinite 
number of parallel forces (IF acting on the beam. Fig. 4-48b. Since (fF is 
acting on an element of length (Ix. and ... (.f) is a force per unit length, 
then (IF ~ w(.r ) d.r =- IIA. In other words. the magnitude of III-' is 
determined frum the <:Glored differen tial Ilfl!tl tlA under the loading 
curvc. For the entire length L. 

+ lFfI" = ! F; FI'I = [W(X)d.r = lilA <= A (4-19) 

TIIt:rrforr. IIIe /I/IIgnillille of Ihe rl'$III/(1ll1 forcr is I!tll/al /I) lilt' 101U111f('u A 
Imdl" l1It,lmllli"g (lil/gmlll. Fig. 4-48c. 

"lh<o more , tnc",l case of a IlOnunifurm 5u,fKC tuadinl Kling OIl a boll)" is ronsodc!'W 
in Scr. 9.$. 

0 

0 

,b-~ 
, 

, , 
'" 

F. 

e A 

- , 
~ , - ,. 

{,' 
~jlt'. 4--a8 



• 

184 CH.6.~HR 4 FORCE SVSTE'-! RESULTANTS 

, 
.r_, 

to) 

0 ' 

I <IF _ .M 

11m m iJ1~~) 
" .Ix-- ..-

, 
, • 

I, 

t') 

• 
", 

c 

" , - ' 
I, 

t,) 

The beam supporting this stack of lumber" 
subjected to a uniform looding of ...... The 
resultant forc<: is thcr~fOfeequaltothc area 
under th" looding dial\rnm F. - "'DI:>.II aelS 
Irough the centroid o. I\comelli ... c<:nlcr of 
this area,bt 2 from the ~uPflOfI. 

Location of Resultant Force. Applying EqA- 17 (M Ro "" ~Mo), 
Ihe location :l of the line of action of F /I can be delemlincd by equating Ihe 
momentS of Ihe force resultanl and the parallel force dis tribution about 
point 0 (the y axis). Sinee II F produces a moment of xlIF '" l 'W(X) dx 
about O. Fig. 4-48b. then for the enlire lenglh. Fig. 4-4&. 

- :IF/I e -1 Xlt'(x ) dx 

Solving for:l. using Eq. 4-19, we h:l\'e 

lXW(:C) i f .l· 

1 w{x) d,l 

L.' If A . - -- (4-20) 

This coordinate X. locates the gcomc1ric eenler or cl'lI/roid of Ihe ,"I'll 
under Ihe dist ribuh.:d loading. h I Ollrl'r words, lire rl'$ufwIJI force 1111$ II lilll' 
of IICI;OIl which IHlS$t'$ /Immglr /1,1' cell/will C (geoll/etric CCI/IU) of tire 
lIrl'll Imdl'r IIII' 1001IIillg lliagram. Fig. 4-4&. Delailed treatmenl of Ihe 
integra tion techniques for finding the locat ion of the centroid fo r areas is 
given in ChaPler 9. In many cases. ho\\·cI'cr. Ihe distributed-loading 
diagr;ml is in the shape of a rectangle. triangle. or some other simple 
geometric form. The centroid location for such cOlllmon shapes docs not 
ha\'c to bc determined from Ihe abol'c equation but can be obtained 
directly from the labulation gi l'en on the inside back cOI·er. 

O ncc x is determined. F 1/ by symmetry passes through point (x.O) on 
the surface of the beam, Fig. 4-480. Thatfort·. ill lhis ClISt' Ihe rfsulwlI/ 
forer has /I mllgl/ilmll' I'qmd IQ Ihe I'olume Imcla IIIF Imlflillg "''''t' 
P = 11(.1') amf /I lillt' of actioll ",hich /111$51'$ I"Wlig" lilt' cell/witl 
(gl'oml'lric ('(/IIer) I1f Ihis "O/l/IIIt'. 

Important Points 

• Coplanar distributed loadings are de fi ned by using a loading 
function", = ",(x) that indicates the intensity of the loading 
along the length of a membcr. l l1is intensity is measured in N/ m 
or lb/ fl, 

• The external effects caused by a coplanar distributed load aCling 
on a body can be representcd by a single resultant foro:. 

• This resultant force is equivalent to the I/r l'lI under the loading 
diagram. and has a line of action that passes through the ce/llroitt 
or geomelric center of th is area. 
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EXAMPLE 4.21 

Dclermine Ihe magnitude amllocalion of Ihe cquiv'llenl resullanl 
force acting on the shaft in Fig. 4-4911. 

• 
w _ (60.r' )N jm 240 Nfm 

" 

(. j (>, 
Fig. "-4<) 

SOLUTION 
Since ... '" w(x ) is given. ahis problem will be solved by integration. 

The diffcrenaial clcmcnI hlls an area tlA = li'dx '" 60.\1 dx. Applying 
Eq.4-19. 

+ IF{( ''' 'iF: 

F, = idA = r60"d' = 60(~) I:m =60(; -~) 
lOON Ans. 

The locaaion Yof F R measured from O. Fig. 4-4911. is dclc rmined from 
Eq.4-20. 

oo(~ - ~) 
160N 

_ LxIIA ,=---= . idA 
" 

(60N 

'" 1.5 m Ant 

NOTE: TIu:se resuhs can be checked by using the table on the inside 
back coveT. where il is shown that fOT an exparaboJie areu oflcngth /1. 

he igh! b. and Sh3p<: shown in Fig. 4-4911. we have 

lib 2 m(240 N/ m) 3 J A=-, = , "' 160Nandx = - II "":"(2m)o: l .5m 
4 4 

• 
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EXAMPLE 4.22 

... '"' l6O.t N/n, t440Njm 

f----, ",---I 
, .. 

I,) 

A distributed loading of p = (800x) Pa acts over the top surface of 
the beam shown in Fig. 4-S{)t,. Determine the magnitude and location 
of the equivalent resultant force. 

p" 80fu Pa 

, 
,. --.~~./ .­...-

(., 
SOLUTION 
Since the loading intensity is uniform along the width of the beam 
(the y aKis) . the loading can be viewed in t lVO dimensions as shown in 
Fig. 4-S0b. Here 

II' = (SOUx Nj ml )(0.2 ml 

=- ( l60x) Nj m 

Al X = 9 m. nOle that IV = 1440 N/ m. Although we may ag:lin apply 
Eqs. 4-19 and 4-20 as in the previous example. it is simpler w u~ the 
table on the inside back tOOI'er. 

The magnitude of the resul\ant forre is equivalent to the <lrea of the 
triangle. 

PH = H9 mH I440 Nj m) = 6480N = 6.48kN Ans, 

The line of action of f."H passes lhrough lhe ceil/roM C oflhis Iri:'nglc. 
Hence. 

:i = 9m -i(9ml= 6m 

The results are shown in Fig.4-S(k-. 

NOTE: We may also view the n.:SU!t:lIIl F H as IIC/iIlS through the 
centroid of Ihe ,"olulIlt! of the loading diagram" = ,,(xl in Fig. 4-5011. 
Hence F H intersects the x- y plane al the poim (6 m. 0). Furthermore. 
the magnitude of FR is equal to the volume under the loading 
di3gram: i.e .. 

Fit = V = }(7200 Nj m2)(9 m)(O.2 ml = 6.48 kN AII.s, 
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EXAMPLE 4.23 

11lt: granular malerial exerts Ihe dislributed Imlding on Ihe beam ~s 
shown in Fig. 4-5 Ill. Detemlinc Ihe magnitude and location of the 
equivalent result:mt of !his 10'ld. 

SOLUTION 
The arta of Ihe h)ading dillgram is a /rllpa"id. and therefore Ihe 
SOIUlion can be obtained directly from the area and cenlroid fomlUlas 
for a uapc:wid listed on the inside back cover. Since these formulas 
arc not easily remembered. instead we will solv" this problem by 
using ·'eumposile·· areas. Here we will divide the Il"lIpczoidal 10;"lding 
into a rectangular and triangular luading ;"IS shown in Fig. 4- 5111. The 
m;"lgni tude of the force represcnred by each of tlu.:sc londings is equal 
10 ils associated ("fll. 

Fl = 1(9 ft )(SO Ib/ ft ) = 225lb 

F~ = (9 fI )(5O lb/ ft ) = 450 Ib 

The lines of action of these parallel forcC$ aCI through Ihe Cl.'lIIroid of 
Iheir <lssocia!ed areas and therefore interSect the beam at 

XI =~(9ft ) = 3ft 

X2 = ~(9 fl ) = 4.5 fI 

The tll'O parallcl forccs FI and ."1 can be reduced to a single resultant 
F/I. The magnitude of . '/1 is 

+JFII = :iF; F/I = 225 + 450 = 6751b Ails. 

We can find the location of FII with reference \0 point A. t-ig. 4- 51b 
and 4-5Ic. We require 

C+ MilA = IM,,: x (675 ) = 3(225) + 4.5(450) 

x= 4ft AilS. 

NOTE: l"hc trapezoidal ~Ire[, in Fig. 4-5111 call lliso be: divided into 
two triangular arcas as shown ill Fig. 4-51 If. In this case 

and 

F J = !(9 ft )( 100 lb/ ft ) = 450lb 

F4 = H9 fl )( 50 lb/ ft ) "" 2251b 

Xl = }(9ft):= 3fl 

X4 = 9ft - 1(9ft ) = 6ft 

NOTE, Using Ihese results. show that again F /I '" 675 Ib and x'" 4 ft. 

(0, 

---" 
I') 

fill. 4-51 

• 
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• FUNDAMENTAL PROBLEMS 

F"-37. Determine the resultant force and specify where it 
acts on the beam measured from A . 

F4-37 

........ lS. Determine the resultant force and specify whe re il 
acts on the beam measured from A . 

ISO lb/ f! 

• I I j 0 llTll l n III ± ·s 

~." --.1.--.,,--1 

F4-39. DeteTnnne the resultant force and spccif)· ,,·here it 
acts on the beam measured from A . 

li tNlm 

• 
A 

- 3m-'-- .m---I 
F ..... 39 

F+4fl. Determine the resultant force and specify whe re it 
:lets on the beam measured from A. 

, . ....., 

F4-Il. Determine the resuhant force and specify "here it 
acts on the beam mcasur~d from A . 

6 kN/m rn rn I n-i'li'h 

f-- 4.5m---' l.5m-; 

F.i-42. Delermine the resultant force and 5pccif)· where it 
acts on the beam measured from , I. 

t60Nfm 

f4-l2 



• PROBLEMS 

4-142. Replace Ihe distributed loading 1I';lh an equil'alent 
resultant fOTC'C. and specify ils location on Ihe beam 
n>easurcd from point A . 

" rob. "- loll 

4-143, Replace the dimibulcd loading with an cqui--alent 
rcsult:lnl force. and specify its location on lhe beam 
measured from point A 

'm--- --'m - -
l' r(lb. 4-143 

°4-- 1:14. Replace the distributed loading by an cquil'a lcnl 
rcsultant force and specif)' ils location. measured from 
point A. 

- 2m-- 'm--

I'roh. 4-I44 

4.9 REOOC1'ION Of' '" SIMPlE OtsTRIBIJTW l OAOlNG '" 

4 - 145. Rcplare the dimibulcd loading wilh an 
C'quh'lllcni resultant force. and specify its location on Ihe 
beam measured from pomt A . 

t --- t --
"'rob.4-145 

4-146. The distrihution of soil loading on Ihe bonom of 
a building slab is sllown. Replace this loading by an 
cquiwllcnt resul tant force and specify ils localion. measured 
from POInt O. 

0 1-__ 

.--- tUl 

l'rob.4-I46 

4-147. I)ctermine the intensitie5 "'I and ".~ of the 
distributed loading acting on the bottom of tbe slab $0 that 
tbis loading has an equivalent resultant force tb3t is equal 
but opposite to the rcsult3nl of the distributed loading 
;\(Cting on the top of the plate . 

. Q J 
!'rob.4-147 
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' 4-1411. The bricks on lOP of Ihe beam and the supports 
at Ihe bottom create the distributed loading sho""n in the 
seeond figu re. Determine the required intensity ... and 
dimension 1/ of the right support so that the resultant force 
and couplc moment about point A of the system arc 
bolh 1.ero. 

•. 

Prob. 4-I411 

4 ... 149. '!be wind pressure acting on a triangular sign is 
uniform. Replace this loading by an equivalent .clulwnt 
force and couple moment 31 point O. 

l.2m J O.l m 

--, ,-

I.2m 

'm 
"---~, 0-

"rob. 4- 149 

4-150. The beam is subjected 10 the dislributed loading. 
Determine the length b of the uniform load and its position 
" on the beam such that the resultant force and couple 
moment acting on the beam arc ~cro. 

b --I JOlb/Jl 

tOft 

601b{11 

I 

f'roll.4-ISll 

4-151. Currently eighty-fivc percent of all neck injuries 
arc cau~ by rcar-end car collisions. To alle"iatc this 
problem. an automobile seal restr"1lint has been del'eloped 
Ihat provides additional p.c5Sure contacI with the cran ium. 
During dynamic leSr$ the dIstribution of load on rhe 
cranium has IM:cn plotted and shown to 1M: p.;IT3bolic. 
Determine the equi\'alent resultant force and ils location. 
measured from point A. 

Prob. 4- 151 



 

-4-152.. Wind lias blown sand o,'Cr a plat form sueh thaI 
the intensit)· of the load can be approximated by the 
fundion " . - (o.sxl) NJm. Simplify thi~ distributed lo.1ding 
10 an equi"aknt resultant forC<.' and specify its magnitude 
and location measured from A . 

. ' 
SOON/m 

I'rob.4-15l 

04-153. Wet ronerete exerts a pressure distribution along 
the wall of Ihe form. Determine Ihe resullanl force of this 
distribution and specif)' the height', where Ihe bracing suut 
should be placed 50 that II lies through the line of aetion of 
Ihe resultant force. The wall has a widlh of 5 m. 

, ---

,. 

, 
~ ~"''''-----'l--''----'''!'<''. 

1 
I'roh. 4-I53 

4.9 REOOCfION Of' '" SIMPlE OtsTRIBIJTW lOAOlNG '9' 
4-154. Replace the dlstribuled looding with an cqui\'a1c1'll 
resultanl foree. and specif)' its location on the beam 
measured from poil'll A. 

,. 
l' rOb . .1-154 

4- 155. Repbce the loading by an equhoalent resuitant 
force and couple moment at pointA . 

· 4-156. Replace Ihe loading by an equi"alent rcsuhant 
force and couple momel'll acti ng al point 8 . 

lOll fbjfl 

I'rolls. 4-13~156 



·.4-157. The hfllnS force alonsthe wins of a jet aircraft 
consists of a uniform d,Slnbulion alons AB. and a 
sem'p,arabolk dlilnbunon alons BC wilh onsm al 8 . 
Replace thIs loiIdlll& by a slIlgk' resultant forrc and spccif)' 
'Uloc:alion measured from polnl A . 

• 
Zl!I!O Ib II 

~ 
... .. (!lIIlO _ s.rl) Ib Ie 

~J1JLll l I ) , 

1: , "" r 

.4- 1.511. 1~ diSlnbuted lood acts on Ihe beam as s.hcw."TI. 
Delcrmme the ma&nllude of II\(' equi\l1llent resultant fon:c 
and sp«lfy ",here II acts. measured from point A. 

.4- 159. 11Ic distributed load KlS on Ihe hearn as s.hcw."TI. 
Determme lhe ma~lmum intcM!!y " '_ •. What is the 
magnitude of the equl\"llenl resultant force? SpeCify ",here 
It acts..masured from point 8 . 

• 
... . t - 2:,: + 4.\ - t') rb/fl 

r '" 
I'mhs.. 4- ISIII ISI' 

· .4-160. The distributed load acts on the beam as shown. 
I)ctermine Ihe magnitude of Ihe equi\'a lent resultant forre 
and spttl fy ,tslocation.measured from POllll A. 

I'rob . .4- 160 

04-1&1. If Ihe dislributlon of Ihe ground reacllon on the 
pipe per fOOl of length tan be approximated as shown, 
delermine the magnitude of the rnultant force dire 10 thIS 
Ioadmg. 

... · ZS(l.f;"OSf)lh/fl 
~Ib/ll 

Proh. 4- 161 



CHAPTER REVIEW 

Moment or FOr('(" - SoIlar Uclinil ion 

A fOTce produces a turning effcct or 
moment about 8 point 0 llial docs nOl lie 
on ils linc of action. [n scalar form. the 
moment lIIugllilmle is tile product of the 
force and Ihe moment arm or 
perpendicular distance from point 0 \0 

the line of action of Ihe force. 

The IUr, {"limr of Ihe momen t is defined 
using Ihe right·hand rule. Mo always acts 
along an axis perpendicular 10 the plane 
containing F and d, and passes through 
the point O. 

Rather Ihan finding d, it is nonnally 
easier \0 rcsoh'c the force i11l0 its x and )' 
components. dctcrnlinc the moment of 
each component about the point. and 
then sum Ihe results. This is called the 
principle of moments. 

Moment of a Forrt - Vector Od in; l;on 

Since Ihrcc-dimcn~ional geometry is 
generally more difficult \0 visualire. 1hc 
I'cetor cross product should be used 
10 determinc the moment . lIere 
Mo .. r x ~'. where r is a posi tion vector 
that extends from point 0 to any poinl 
A . B. or C on the line of action of F. 

If the position vector r and force F are 
expressed as Cartesian ,·cctors. 1hen the 
cross produc1 rcsul1s from 1he expansion 
of a dClerminanl. 

MO - T" X F · TN X F .. t. X F 

Mo. rxF-I:, 
F, 

j 

" F, 'I " F, 

'" 

• 
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Moment allou! an Alis 

If tile momenl of a force F is 10 be 
determined about an arbitrary uis II. 

tlien tlie projection of tlie moment onto 
the a~is must be obtained. Pro\'ided tlie 
distance ./. that is perpendicular to both 
tlie line of action of the force and tlie 
a~is can be found , then the moment of 
the force about Ihe axis can be 
determined from a Kalar equ~tion, 

Note tlia! when the line of action of r 
inlc~cts the axis then the momcm of '" 
aboulthe axis is zero. Also. ,,'hen the line 
of ~ction of t- is parallel 10 the axis.. the 
moment of f about tlie axis is lCro. 

In Ihree dimensions.. the scalar triple 
producl should be u~ed. Here u~ is the 
unit vector Ihat specifics the di rection of 
the axis. and r is a position vector that is 
directed from any point on thc axis \0 
any point on tlie line of action of tlie 
force. If M . is calculated as a negat).·c 
scalar. then the scnseof direction of M. 
is opposite to u". 

Couple Momeut 

A couple ronsL~ts of two equal but 
opposite forrcs Ihal act a perpendicular 
distance./ apan. Couples tend to produce 
a rotation "ithoultt:loslation. 

The magnitude of the couple moment is 
M .. Fd. and its direction L< established 
using the right-hand rule. 

If Ihe vector cross product is used to 
determine tlie moment of a couple, then 
r extends from any point on the line of 
action of one of the forces 10 any point 
on the line of action of the other force t­
that is used in the cross product. 

M~ - Fri. 

I
", 

/II." u. · {r x f ) - " 
F, 

M " Fd 

M ... r X f 

"'I " F, 

~~ ,t' 
a~/ ."N 

-"-­~ " 
~ 



Simpl ifica tion of a f'"rc:c and Cnu p .... 
S~'S1cm 

Any sy:;tcm of forces and couples can be 
rcdu~ed 10 ~ single resultant force and 
resultant ,oupl ... moment acting at a 
point. The resultant force is the sum of 
all the forces in Ihe system. "11 '" ~ F. 
and Ihe resultaRI couple momeD! is 
equal 10 the sum of all Ihe moments of 
tile forces about the point and oouplc 
moments. 1\1" ,, '" r Mo + :£M. 

Further simplification 10 II single 
resultant force is possible provided lhe 
force sys tem is concurren!. coplanar. or 
parallel . To find t ile 1000ation of Ihe 
resullant fon:c from a poinl. it is 
necessary 10 equale the momelll of Ihe 
resultant force about Ihe point to the 
moment of the forces and couples in 
the system about tbe same poin!. 

Ifille resullalll fom: and couple moment 
al II poin! are not perpend1cular to one 
another. then this syslem can be reduccd 
10 a wrench. which ,onsisls of Ihe 
resultant force and collinear couple 
moment. 

Coplanar IlistrilllllNi Loading 

A simplc distributed loading can Ix: 
represented by ils resullant for'c. which 
is equivaknt 10 the Ilrell under the 
10Jding curvc. This resul tan t has a line of 
action that pas.'\es through the celllroit/ 
or geomclric centcr of the area or 
volume under the loading diagram. 

.' 

" 
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" 
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• REVIEW PROBLEMS 

4-161. The beam is subjected to lite parabolic loading. 
Determine an equivalent force and couple S)'slem at 
point I I . 

Prob. 4- 161 

4-163. 1",0 oouples act on tile frame. If tlte resultant 
couple moment is to be :tero. determine lhe distance d 
between tile 1000Ib couple forces. 

lOO lb 

~ 
- 3 ft - - - ,/ - -L3fl -i n 

" 

lOOlb 

~, 
150lb • 
Prutt. 4-I63 

'" 

lSO lb , 
~, 

• 

· 4- I~. l)etenninc lite coordinate direction angles iI. fJ. Y 
of F. which is applied to the cnd of lhe pipe assembly. so 
thal lhe moment of ~' about 0 is lCro. 

4-165. De!ermine the I110nleol of the force .' aoou! poin! 
O. The force has coordioat~ direction angles of iI '"' 60". 
fJ - IW". Y • 45' . Express the result as a Car!csiao \'eclor . 

1 , 10 'n. 

1 
I 6.11 ,-.( 

Probs. 4- l lHIl fiS 

4-166. The snorkel hoom lift is extended ioto Ihe position 
~hown . If the worker weighs 160 lb. determine the moment 
of this force aOOUI the connection at II . 

Prol1. 4-I66 



4- 167. (Xlermine Ihe mnmenl of Ihe forre Fe abou l Ih.­
door hinge al A . Express the result as a Cartesian ,·crtor. 

· 4-168. Determine the magnitude of the momclII of the 
fo rce t'c about the hinged axis all of the door. 

. < 
'm 

,/ 
Probs. "'- 1671168 

,4-169. E.~press the moment of Ihe CQuple aCling on the 
pipe aliSCmbly In Cartesian "ector form. Soh'e the problem 
(3) using Eq. 4-13 and (b) summing the momcnt of eactl 
force about point O.Tate t' .. {!.'i ii } N. 

4-170. If the CQu ple moment acting on the pipe has a 
magnitude of 400 N· m. detnmine the magnitude'" of the 
vertical force applied to each WTClKh. 

I'roos. 4-1691170 

'" 
4-171. Replace the 10r(c at '" by an equivalent resultant 
force and CQupk moment al point P. Express the resu lts in 
Cartesian \'eCiOr form. 

, 
~ 

~ 

'" '" --
f'· 120lb 

, 
", 

-\ ~ '" -' -
L 6rt ." / A 

• 
Prob. 4-171 

· 4-172. The hori~ontal lO·N force ~cts on the handle of 
the '\'Tench. Delermine the moment of this force ~bou t 

point O. Specify the coordinate direction angles .... p. 'I' of 
the moment axi$. 

· 4-173. lbe horizontal JO-N force acts on Ihe handle of 
Ihe wrench. What is the magnitude of the momcnt of th is 
force aboUlthe ;; axis7 

,i---"., mm -----,(l1"'~ N 
W 

tOmn. 

I'robs. 4-1721173 



The emne is subjected to lIS weight .. I'd the load 1\ supports. In orderto calculate 
the support reaebons on the c,.,ne, ,t IS necessary to apply the principles of 
equilibrium. 



Equilibrium of a 
Rigid Body 

CHAPTER OBJECTIVES 

• To develop the equations of equilibrium for a rigid body. 

• To in troduce the concept of the free-body diagram for a rigid body. 

• To show how to solve rigid-body equilibrium problems using the 
equations of equilibrium. 

5.1 Conditions for Rigid.Body Equilibrium 

In this S!.'Ction. we will de,'clop both thc necessary and sufficie nt rond ilions 
for In.:: equilibrium of Ihc rigid body in Fig. 5- [(1, As shown. Ihis body is 
subjected to an external force and couple moment s)'slcm thaI is thc result 
of Ihc e ffects of gr.111Ial ional.ciccl rical. magnetic, or oonl3C\ forccscaused 
by adj acent bodies. The internal fo rces caused by intcr;'lClions between 
particles within thc body arc not shown in this figure because thest forces 
occur in equal but opposi te collinear pairs :md hcnce will cancel out. a 
oonscqucncc of N.:wton·s third hlw. 

I"~ 
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I"~ 

{" 

}'. _ 0 

(b) 

}'. _ (I 

(<, 

tig, 5-1 

wi 
OO'(J 

Using the methods of the previous ehapler. the force and couple 
moment system ac ting on a body can be reduced to 1111 equivalent 
resullant force and resultant couple moment at any arbitrary poinl 0 on 
or off the body, Fig, 5-1b. lf this resultant force and couple moment arc 
both equal to lero. then the body is said to be in C(llI ilibrilillJ. 
Mathematically. the equilibrium of a body is expressed as 

(5-{) 

The first of these equations states that the slim of the forces ;Icting on 
the body is equal to Zl'rfI. The second equation staleS that the sum of the 
moments of all the forces in Ihe system about point O. added 10 all the 
couple moments. is equal to :1''''. These IWO equations arc nOI only 
necessary for equilibrium. the), arc also suffi cient. To show this. consider 
summing moments aboUi some Olhcr point. such as point A in Fig. 5- 1c. 
We require 

Since r ;II. O. this equation is satisfied only if Eqs. 5-1 arc satisfied. 
namely F /I = 0 and (M /1)o = O. 

When applying the equations of eq uilibriUm. we will assume that the 
body remains rigid. In reality. howe\'er, all bodies deform when 
subjected to loads. Although this is the case. most engineering materials 
such as steel and concrete ar.:: ,'cry rigid and so their deformation is 
usually very small. Therefore, when applying the equat ions of 
equilibrium. we call generally assume thaI the body will rcmaill righ/ 
and 1101 (fl!/o'm under the appl ied load without introducing an)' 
significant error. This way the direct ion of the applied forces and their 
moment arms with respect 10 a fi;.;:cd reference remain ullchangcd 
before and afler Ihe body is loaded. 

EQUILIBRIUM IN TWO DIMENSIONS 

In Ihe fi rst pari of the ch;lpter. we will consider the case where the forC(; 
system acting on a rigid body lies in or may be projected onlO a s;ns'" 
plane and. furthermo re, any couple 1Il0melllS acting on the body arc 
directed perpendicular to this plane. This type of force ;lIId couple system 
is often referred to as a two-dimension,.1 or 1:0p/(//I(/' force system. For 
example. the ai rplane in Fig. 5- 2 has a planc of symmetry through its 
l'Cnler axis. and so the loads acting on the airpl;lIIe are symmetrical with 
respect to this plane. ThUs. each of the tWO wing lires will support the 
same load T, which is represented on the side (twa-dimensional) view of 
the plane as2T. 



 

5.2 Free-Body Diagrams 

SuCC(:ssful application orlhe equalioru of equilibrium requi res a complete 
spccific:ltion of III/ the known and unknown external forces thailiel 011 
Ihe body. The best \Va)' \0 aCl"OUlil for Ihese forces is \0 draw a frcc-body 
diagram. This diagmm is a skc::tch of the oUllined shape of the body. which 
represents il as being i .{o/mc(i or "frec" from ils surroundings., i.e., a Hfrcc 
body:' On Ihis sketch il is necessary to show IIlIlhc forces and couple 
moments Ihal the surroundings exert OIllhe botl)' so tha t Ihese effects can 
be accmuHcd fo r when the equations of equilibrium arc :Ipplicd. A 
IlwrQ/.gh 1II1f/I'fsUII/(/i"g ofllllll' /0 tlra", IIfrf'I',"m/y(lillgmlll is o/prim(lry 
;mf/0r/llllt:t' JOT sofrillS profJ/l,'lIIs ill /I/I'c/llmics. 

Support Reactions. Before presenting Ii formal procedure ~ IS to 
how to dr.tw a free-body di'lgram. we will first consider the \'arious types 
of reactions that occur at supports and points of contact bet",een bodies 
subjected to coplanar force sySlcms- AS:1 general rule . 

• If a support pre\'ents the translation of a body in a gh'en direction. 
then a force is developed on the body in th"t direction. 

• If rOlation is prc\·clltcd. a couple momcnt is exertcd on thc body. 

For e.~ample. let us consider three ",ays in which a hori7.0ntal member. 
such as a beam. is supported at its end. O ne method consists of a mller or 
c)'linder. Fig. 5-Ja. Since this support onl)' prevents the beam from 
IfilllS/lllillg in the vertic:11 direction. the roller ",ill ani)' e)tert :1 fora on 
the beam in this di rect ion. Fig. 5-3b. 

The be:lm can be suppor ted in a more r(:'Stric tive lIIanncr by using a pill, 
Fig. 5-3(. The pin passes through a hole in the beam and two leaves which 
an! fixed to the ground. Here the pin can prcyentlrtlllslillioll of the be"l11 
in all)' diuClioll <P. Fig. 5- 31/. and ,;0 the pin must exen a fiJrU F all the 
beam in this direction. For purposes of analysis. it is generally easier to 
represent this resultant force F by its \"'0 rectangular components F~ and 
.', . Fig. 5-Jto. If F, and F, are known. then F :l1ld t/> com bc calculated. 

The most restric tive way to support the beam ",auld b<.' w usc a [ixt(i 
SI'PPOfi as shown in Fig. 5-Jf This support will prevent both trom·lm/oll 
/llId rtJIlI/iml o f the beam. To do this a foru (11Il1 (011,,1,' 1I/oIIItllt must be 
developed on the beam at ils point of connection. Fig. 5-3g. As in the 
case of the pin. the force is usualJ)' representcd by its rectangulolT 
components F~ and l'r 

'rhblc 5-1 lists olher commollt )'pcS of supports for bodies subjected 10 
coplanar force systems. (In all cases the angle 0 is assumed to be known.) 
Carefu lly study each of the symbols used to represent these supports and 
the types of reactions Ihey exert on Iheir contacting members. 

'" 

rolk'r 

"J 

foxed Mippotl 

(0 

." (' J 

.'g. S-J 

" • 

('J 

,'. 
('J 

(JJ 
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-..s-. ... -Types of Connection Reaction 

0' 
• 

~'" 
(2) 

, , 
weightless link 

,3, 

J 
rolkr 

, 

'" 
~ '" 

roUer OJ pin In 
confined $ntOOlh $101 

('~ . ~ 

. ocker 

(~e" 

"-=-
sntOOlb oon,ac,ing 

,unacc , 
01 

~ -~ , 
"lembcr pin oonntClcd 
l{)rolla. {)n SItI<>olh ,od 

Number of UnkflOWI1$ 

Onc unknown. The reaClLon is a tension force which aClS 
a" 'ay from the member in the direction of thc cable. 

One unknown. The reaction is D force which acts along 
the axis of the Jink. 

One unknown. The rcaction is a force which acts 
perpendicular 10 the surfacc at the point of contacl. 

anI' unknown. The reaction i~ a force which acts 
perpendicular 10 the 5101. 

anI' unknown. The reaction l~ a force which acts 
perpendicular to Ihe surfatt althe point of conlact . 

One unknown. The reaction is a force which acts 
pcrpendlcubr to the surface at the point of conlaCl. 

anI' unkn0\1:n. T hc reaction IS a force which acts 
perpendicular 10 the rod. 

~.",,' 
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Types ofConl'\ection Reaction NumberofUl'lkllOwns 

"'.I- 'll lWo unknowns. The reactions arc t,,·o components of 

2- • foltt. or the magni tude lind direction ~of the resullam 
<:.- force. Note that d> and 9 are not necessarilyequaljusually ,', not. unless the rod shown is II link as in (2)J. 

smOOlb pin or bm"" 

(')~ 
''''0 unknowns. The reacliollS afe Ihe couple moment 
and the force which acts perpendicular to the rod. 

" nlembe, r",od ronneClod 
l{J roUl< On SO\OOlh rod 

(10) '. " 
~ d~~ Three unknowns. The reactions arc the couple moment 

• and the two (orce components. or the couple moment and 

M 
Ihc magnitude and direction'" of Ihe resultant rorCl.'. 

fixed 5uppon 

Typical examples of actual supportS arc shown in Ihe following S<;(llIenCe of photos. The number> rckr \0 the 
connection types in T:lblc 5-1. 

The cable C1te,l$a for<:c on the bmckcl 
in Ih. di,enion of Ihe C'~blc. (I ) 

The ,ocker oupport rur Ihis bridge 
girder alk> ... ~ hmiwnlal m'l\'cmonl 
Sll Iho hrKlge is free 10 expand and 
conlTae! due to a change in 
Icmpcr3Iurc. (S) 

Thi~ COlltrete girder 
,<:sHon Ihe Icdge Ihal 
is as.umed 10 act a5 
a smoot!> contacting 
'! .. focc. (6) 

This utility building is 
pin sUl'llOrtcd 3t Ihe tOf! 
t>f Ihe mlumn. (8) 

"f"h~ noo. bcam.orthis huihJing 
3r~ ,.,.~ldcd rogerhn nnd rhus 
forlll fixed connccrion .. (10) 
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Internal Forces, As sUl1ed in Sec, 5,1. the internal forn'S thai act 
betwecn adjacent particles in a body always occur in coll inear pairs such Ihat 
Ihey have Ihe same magnitude and att in opposite dirL"dions (Newlon's 
Ihird law), Sint'C tht'S<: forces cancel each other, they "'i ll not creale an 
ex/emal "flffl on Ihe bod~', 1 1 is for this reason thai the internal forees should 
not be included on Ihe free-body diagmm if Ihe cntir(' body is to be 
considerL'd, For e,~ample. Ihe engine shown in Fig. 5--4.0, has a free'body 
diagram shown in Fig. 5-4h. The inlemal fortt.'S between all ils connec!t'd 
p<l rls such :tS Ihe scre,,"'S and bollS. will carn:cI out because they form equal 
and opposite collinear pairs. Only Ihe eXlem:d foret'S T[ and T2. exerted by 
the chains and the engine weight W, arc shown on the free-body diagram, 

(.) 

(0) 

~llt, 5-4 

Weight and the Center of G ravity. When a body is within a 
gravilll lional field. then each of its panicles has a specified weight. It was 
shown in Sec. 4,8 tha t such a system of forces can be reduced to a single 
resultant force acting through a spcdfied point. We refe r to this force 
result:mt as Ihe weig/II W of the body and 10 the location of its point of 
application as the ('ellie, of gradl)'. The methods used for its 
determination will be developed in Chapter 9. 

In the e.~amples and problems that follow. if Ihe weight of the body is 
important for the analysis. this force will be reported in the problem 
Statement Also. when the body is IIniform or made fro m the same 
malCrial. Ihe celller of gravi ty will be located at Ihe body's geollle/ric 
cenlf" or all/wid: how"ver. if the body consists of a nonunifonn 
distribu tion of material. or has nn unusual shape. then the locaiion of its 
center of gravity G will be given. 

Idealized Models, When an engineer performs a force analysis of 
any object. he or she considers a corresponding analytical or idealized 
model that gives results Ihal :.pproximalc as closely as possible the 
actual situat ion. To do this. careful choices ha\'c to be made so that 
selection of Ihe Iype of SUppOrlS. the material behavior. and the obj«rs 
dimensions can be justified, 'This way one can feci confident that any 
design or analysis will ~'idd results which can be trusted, In complex 



casts this process may require developing selleral different models of the 
objecl that must be allalFcd. In .111)' case. this selcction proc<:ss requires 
both skill and experience. 

The (ollowing two cas<::s illus trate what is required to de"elop a proper 
model. In Fig. 5-511. the steel beam is 10 be lIsed w support the three roof 
joists o( .. building. For a force analysis il is reasonable 10 assumc the 
material (steel) is rigid since only "cry small deneclions wi ll occur when 
the beam is loaded. A bolted connection al A will allow for any slighl 
rOlalion that occurs here when the load is applied. and so a pill can bc 
considered for this support. AI B a roller can be considered since this 
support offers no resistance 10 hori%onlal mo"cmcnl. Building code is 
used to specif)' the roof lo;.ding A so that the joist loads F e1111 be 
calculated. These forces will be larger thlln any actual 100lding on the 
beam since thcy accounl for I;xtrcme loading caseS and (or dynamic or 
vibrational effects. Fimlll),. the weight of the beam is generally neglected 
when it is small comparcd to the load the beam supports. The idealized 
model of the beam is therefore shown with a,'cTage dimensions II. I). c. 
lind II in rlg.5-5b. 

As a second case. consider the lift boom in Fig. 5"'&,. By inspection. it is 
supportcd by a pin al A and by Ihe hydraulic cylinder Be. which can be 
approximated as a weighlless link. The IImlerhtl can be 'Issumcd rigid. 
and with its density known. the weight of the boom and the location of its 
c.::nter o f grallity G arc de tcrmined. When a design loading P is specified. 
the ideali7.cd model shown in Fig. 5-6b CM be used for a force analysis. 
Average dimcnsions (not shown) arc used to specif)' the location of the 
loads and the supports. 

IdealiZed models of specific objecls will be given in :'rOme of the 
cxamples throughout the lex\. [t should be realized. howe\'<!r. that each 
casc r<!presents the reduction of a practical si tuation using Simplifying 
assumptions like the ones illuSlratcd herc. 

,.J 
"J 

Fig. 5-6 
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Procedure for Analysis 

To construc!:I free-body diagram for a rigid body or any group of 
bodies considered as a single syst.;m. the following steps should be 
performed: 

Draw Outlined Shape. 
Imagine the body to b.:: isollllt'd or cut "free" from its constraints 
and connections and draw (sketch) its outlined shape. 

Show All Forces and Couple Moments. 

Idcntify all the known and unknown eXli'mlll lorces and couple 
momenL~ thatllc/ oil/lie hotly. Those generally encountered arc due to 
(I) appli<-'<l loading'!. (2) reactions occurring atlhe supports or al points 
of conta<:t with other bodic.~ (see Table 5-1). and (3) the weight of the 
body. To account for allth<:se crfec!S, it may help to trace O\'tr Ihe 
boundary. carefully noting each force or couple moment acting on il. 

Identify Each Loading and Give Dimensions. 

The forces and couple moments Ihal arc knowil should be labeled 
wilh their proper magni tudes and directions. Letters arc used 10 
represent the mtlgni!Udcs and di rection angles of forccs and couple 
moments that aTC unknown. Establish an .r. y coordinate sySlcm so 
tha t these unknowns. A~. A,.. elC .. can be identified. Finally. indicate 
thc dimensions of the body necessary for calculaling the moments 
of fo rces. 

Important Points 

• No equil ibrium problem should be soilled without first lfm ... ill8 
the free-body tlil/8fQlII. so as to account for all the fo rces and 
couple moments that act on the body. 

• If a support prrl'e,l/$ tfllllJ'latioll of ,\ body in a particular direction. 
then the support exerts a/oree on the body in that direction. 

• If TOw/iQII i.~ pff:l·mted. lhcn the, support excrts a COl/pie /IIOlllelll 
on the body. 

• Study Table 5- 1. 
• Internal forces are nellc r shown on the free-body diagmmsince thcy 

OCI,;ur in equal but oppos.ite collinear pairs and therefore cancel out. 
• The weight of a body is an external fo rce. and its effect is 

reprcscnll'd by a single rcsuhant force acting through Ihc body's 
center of gravity G. 

• COl/pie momellis can be placed anywherc un thc free-body 
diagram since they arc I'I!<: " t'c/o,s. Force.I' can act at any point 
along thcir lines of action since they arc slilli,l/; I'l!(;lOrs. 



EXAMPLE 5.1 

Draw the frec-body diagram of the ulliform beam shown in Fig. 5- 7u. 
111e beam has a mass of 100 kg. 

I200N 

1----'-----1 
(.) 

SOLUTION 

The free-body diagram of the beam is shown in Fig. 5-7". Since the 
support at II is fi.~ed, the wall .:xcrts three rC:L<.:tions on Ih" /1<'(1111. 
denoted ,IS A,. A" ;tnd 1\1,1' 111e magnitudes of these ri:aetions nrc 
IInknowlI. and their sellsc has been u:mlllli'tI. The weight of the beam. 
IV = 100(9.81) N = 981 N. acts through the bcam'scentcr of gravi ty 
G. which is 3 m from II since the beam is unifonn. 

, j'''''N L x '\t 2 m --- Eff~'" orapphcd 
~. 10= acun,. on beam 

EffC"Clnffi~;'; " ' - \::~'A;:=:':":'==:I~~~!!!~~=::!1 
.uppon atu", M 
on beam A 

(') 

"'~. ~7 

'III1N 

Effect of g"'~ity ("'dghl) 
~""n3 on beam 
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EXAMPLE 5 .2 

'" 

Draw the free·body diagram of the foOl lever shuwn in Fig. 5-&1.1111: 
operator applies a vertical force to the pedal so that the spring is 
stretched 1.5 in. and the force in the shurt link at B is 20 lb. 

, 

j 

SOLUTION 

~---=l~ 
\ a~"""""'V;"",q~n. 

lin. 

Ii " Wlbfin. 

I" 

U' 0 \ .''''' I 

tI~t~t 
\ I in. 

I L- =i,e) A.~ 
1---3 ,n. 

A, 

I" 

By illSpcctioll of the photo the lever is loos<:ly bolted tu the frumc 
;H A. The rod at B is pinned a1 its ends and acts as a ·'short link.~ 
After making [he proper measurements. the idealized model of [he 
lel'cr is shown in Fig. 5-8b. From this. the free-body diagram is 
shown in Fig. 5-8c. The pin support at " exerts force comfXJnents 
Ax and A. on the lever. The link al B exerts a force of 20 lb. acting 
in the din:Clion of Ihe link. In addition the spring also exerts a 
horizontal force on the lever. If the stiffness is measured and found 
\0 be k = 20 Ib/ in., then since Ihe stretch s = 1.5 in., using Eq. 3-2. 
F, = k$ = 20 Ib/ in. ( 1.5 in. ) = 30 lb. Finally. the operator's shoe 
applies a vertical force of F on Ih(: pedal. The dimensions of the 
lever arc also shown on the free· body diagram. since this 
informntion will be useful when computing the moments of the 
forces. As usu,~ l. the scnses of the unknown forces at A have been 
assumed. The COTrect senses will become apparent a(l(:r solving the 
equilibrium equations. 



EXAMPLE 5 .3 

Two smooth pipes.. each having a mass of 300 kg. arc supported by the 
forked tines of the tractor in Fig. 5- 911. Draw the frec·body diagrams 
for each pipe :md both pipes together. 

", 

, 
", 

SOLunON 
The idealized model from which we must dr.,w the free.body 
diagr:lms is shown ill Fig. 5-9h. Here Ihe pipes arc identified. the 
dimensions have been added. and the physical situalion rcdu(:ed 10 its 
simplest foml. 

The free·body diagram for pipe A is shown in Fig. 5-9c. lIS weight is 
II' = 300(9.81) N .. 2943 N. Assuming all COll la(:l ing surfatts arc 
smrnlfl!. the reacth'c (orces T. f . R act in a direction IIO",wl to the 
tangent at thei r surfaces of contact. 

The free·body diagram of pipe B is shown in Fig. 5- 9ll. Can you 
identify cach of the threc forces acting (111 litis pipe? [n panicu[ar.note 
that R. representing the force of A on B. Fig. 5-911. is e(lual and 
opposite to K represenling thc force of 8 on A. Fig. 5- 9c. This is a 
roruicquentt of Newton's third law of motion. 

The free-body diagram of both pipes combined ("system") is shown 
ill Fig. 5-9t'. li ere the contact force K. which acts between A and 8. is 
considered :IS an if/Uri/ill force and hence is not shown Oil the free­
body diagram. That is.. it represents a pair of equal but opposite 
colli",!ar forces which cancel each other. 

5.2 F~u·SOoy DIAGRAMS 2 0 9 

29-iJ N 
EffC<.1 of , ra_ity 
( ..... ight ) K1inS on II 

", 
-:", ErrC<.1 or.lopcd 
f fork lK1 in, on II 

, 
T 2943 N ,. 

", 
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EXAMPLE 5 .4 

""a"t 'm 
--' 

f,,,, .. W 
(HI m 

" ) 

T 

t%2N 
,,) 

Draw the free-body diagram of lhe unlo~ded plalfonn thM is 
sus~nded off the edge of the oil rig shown in Fig. 5- IOtI. The pia. form 
has a mass of 200 kg. 

,0> 

Fig. 5-10 

SOLUTION 

11le idealized model of the platform will be considered in twO 
dimensions because by observat iOn the loading and the dimensions 
:ire all synl1l1etril:al about II vertical plane passing through its center. 
Fig. 5- 1OI1.The connection ~ t A is considered to be II pin. and the cable 
supports the platform at 8. The direction of the cable and 3\'erage 
dimensions of the pla tfonn an:: listed. and the center of gravity G 
has been determined. It is from this model that we have drawn the 
free-body diagram shown in Fig. 5-IOc. The phuform's weight is 
200(9.81 ) '" 1962 N. " lc force components A, :md Ay along with the 
cable fo rce T represent the reactions that I10tll pins and botll cables 
C)(CTt on thc platform. Fig. 5- IOtI. ConSt::quently. afler Ihe solution for 
these reactions. Iwlf their magnitude is developed at II and half is 
developed at 8. 



• PROBLEMS 

. 5-1. Draw Ihe free-body diagram (If the 5()..l;g PJper roU 
which has a cenler of mass 3\ G and rests on the sIDI)Olh 
bladc of the paper haule r. E:cplain Ihe ~ignifica ncc of cacti 
force acting on the diagram. (Sec Fig.5-7b.) 

I'rob.5-1 

5-2. Ora'" the free-bod)' diagram of member AB. which is 
supported b)' a roller 31 II and a pin al 8 . Elcplain the 
significance of each force on Ihe diagram. (Sec Fig. !i-7b.) 

J'JOlb 

Prllh . S-l 

5-3. Draw the free-body diagram of Ihe d umpster D of the 
1ruck. which has a wdghl of 5000 lb and a center of gra~i!y 
aI G. [\ is supported b)' a pin 31 A and D pin-connected 
hydraulic cylinder 8C (short link). Explain thc significanec 
of each force on the di3gram. (Sec Fig. 5-7b.) 

I'rob. S-J 

5.2 F~u·SOoy DIAGRAMS 211 

*5-4. Draw the free -body diagram of the beam .. hith 
supports ihe &J.kg load and is supported by Ihe pin a\ A and 
a cable ,,'Iuell wraps around tile pullc)' at D. Explain the 
significance of each force on the diayam. (See Fig.5-7b.) 

~A~!!!!!!!"I!!!!!!!!!:£!!:I"C 
~2m---2 m-+-l.sm -

I' rob. S--f 

· 5-5. Draw the frce-body di.:tVal11 of the truss that is 
~upponcd b)'tllecablc AB and pin C. Explain the significance 
of each force ;l(Clingon ,he diagram. (See FIg. 5-7b.) 

" 

'" . " ,-

2m 

1 
14kN 

2m 

"rob. 5-5 
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5-6. Draw the free-body diagram of the crane boom lib' 
which has a weight of650 Ib and centc r of gravity at C.l lle 
boom is sup[>Orled by a pin at II and cable IJC. The load of 
1250 lb is suspended from a cable 311ached 3t 8 . Explain 
Ihe significance of each force acting on the diagram. (See 
Fig. 5-7b.) 

/' 
12 fI 

18 (. 
/ 

['rob. S-6 

5-7. Draw the free·body diagram of the "spanner 
" 'rench" subjected to the 2O-lb force. The support 3t A can 
be considered a pin. and the surface of contact al 8 is 
smooth. E~pl3 in the significance of each force 011 the 
diagram. (See Fig. ~71J.) 

20tb 

6 in. 
j 

" rob_ 5-7 

05-8. Draw Ihe free·body diagram of member ABC which 
is supported by a smooth colla r al II . roller al 8. and shon 
link CD. Explain the significance of each force acting on the 
diagram. (Sec Fig. ~7b.) 

2.S kN Cn==::i"'lIc 
,. 

~ kN· In 

II ~5' , 8 

l-'.----6.--. 
!'rob . .5-11 

oS-II. Draw the frec·body diagram of the bar. which has a 
negl igible thickness and smooth points of contaci 31 / 1. B. 
and C. Explain the significance of each force on the 
diagram. (Sec Fig. 5-7b.) 

~in~ ", <" 

----f~,,,\ '~;~".c_----c: B f" " 

1II lb--__ +:;.'(2 

I'rob. S-II 

S- IO. Draw the free-body diagram of the winch. which 
consists of a drum of radius " in. 11 is pin-conneelcd al ils 
cenler C. and al ilsoulcr rim is a rnlchel gear h"";ng 3 mean 
radius of 6 in. The pawl AB serves as a I""o-force member 
(short link) and prevenls the drum from rOl3ling. Explain 
the significance of each force on Ihe diagram. (Sec 
Fig.5-7b.) 

6 in. 

'''''" 

I'rob. S- tO 



• CONCEPTUAL PROBLEMS 

1' 5-1. Draw the free-body di3J:fllfll of lite uniform trash. 
bucket which has a significant weight. [\ is pinned at II and 
res\s 3g~inst Ihe smooth hori1.onl~1 member al H. Show 
)'our fC$ull in side "jew. Lab.:! any necessary dimensions. 

' 5- ' 

1'5-2.. Oraw Ihe frec-body diagram of Ihe o utrigger ABC 
used 10 support a backhoe. The lop pin 8 is connected \0 
Ihe hydraulic cylinder. " "hieh can be considered 10 be: a 
short link (two-force member). Ihe beanng shoe at JI IS 
smool li. and Ihe oUlriggcr is pinned \0 Ihe fmme al C. 

, 5-, 

5.2 F~u·SOoy DIAGRAMS 213 

I'5-J. Draw lhe free-body diagr:am of lhe wing on Ihe 
passeng .. r plane. The wcigtlls of tlic engine and wing arc 
significanl.lbc lire$ :u IJ arc free 10 roll. 

P5-J 

-"f-&. Draw Ihe free-bod)' diagram of Ihe wheel and 
member ABC used 3$ p-,rt of tile landi ng gear on a jet 
plane. 'l'he hydr.lulic cylinder AD 3CU 3S 3 two-force 
member. :md the re is a pin tonneclion at 8 . 
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5.3 Equations of Equilibrium 

In Scc. 5. 1 wc developed Ihe IWO c'lu<ll ions which arc both necessary and 
sufficient for the equilibrium of a rigid body. namely. :£ ... = 0 and 
:£MQ = O. When the body is subjectcd 10:1 system of forces.. which :lillie 
in Ihe x - )" plane. Ihen the forces can be resolved inlo their .r .. nd }' 
tomponent s.. Consequently. the tondi tions for equilibrium in two 
dimensions arc 

:£F~ = 0 

'f.Fy "" 0 
:£11'0 = 0 

(5-2) 

liere ~ F, ,lIId ~F, represent. rcspecli\'cly. the algcbraic: sums of Ihe .r 
and )' compontnts of all the forces atting on the body, and :£Mo 
represents the algebraic sum of the couple moments and the moments of 
aU Ihc force components aboUl lhe ~ ;Ixis. which is pcrpelillicular to the 
.r- ) ' plane and passcs Ihrough Ihe arbi tmry poinl O. 

Alte rna tive Set s of Eq uilibrium Equa tio ns . Although 
Eqs. 5- 2 arc mOSI OftI'll used for solving coplanar equilibriUm problems.. 
twO 1I/1l'rllalil'C sets of th ree independent equil ibrium equaliorn; lIIay also 
be used. One such SCt is 

'iF, '"' 0 
:£M .1= O 
':::. M,, = 0 

(5-3) 

When using Ihese cquat ions it is required Ihat a line passing through 
points A and 8 is /10/ pi/mild 10 the), axis.. To pro\'c Ihat Eqs. 5-3 provide 
the CQI/t/iliulls for equilibrium. consider the free.body diagr;lm of Ihe 
plate shown in Fig. 5- 11 11. Using the methods of Sec. 4.8. ailihe forces on 
the frce-body diagram may be replaced by an equivalent rcsultant force 
"'It ... :i.: F. acting at point A. and a resultant couple moment 
M It~ = :i.:M". Fig. 5- 1 lb. If :£ M,I = 0 is satisfied. it is neccs.s:lry th<lt 
M II~ .. o. Furthermore,in order Ih31 "'/1 sal isfy ::iF. = 0, it must h;l\'c 110 

cOIlJptJII('1Il along the .r axis.. and therefore Fit mUSI be parallcilO the )' 
axis.. Fig. 5-1 Ie. Finally. ir il is required that 'f.MH = O. where 8 docs not 
lie on Ihe line of 3clion of F II, thcn "'/1 = O. Since E'Is.. 5-3 show Ihat both 
of these rcsultanlS arc 7.ero. indeed the body in Fig. 5-111/ must be in 
equil ibrium. 
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A second alternative sct of equilibrium eq ua tion~ is 

~AfA = O 

;:;'M II= O 
"LMc = 0 

(5-4) 

Here it is ne,essary [hat poims A. 8 . and C do not lie on the same line. To 
prove that these equations. when satisfied. ('nsurc equilibrium. consider 
again the free.body diagram in Fig. 5- 1 lb. If L~1.1 = 0 is to be satisfi ed. 
then M RA = O. :i:Mc = 0 is satisfied if the line of action o f F/I passes 
through point C as shown in Fig. 5-11c. Finally, if we require 'i.M Ii = O. 
it is necess;,ry that F /I = O. and so the plate in Fig. 5- 11 11 mustlhen Ix: in 
equi librium. 

Procedure for Analysis 

Coplanar force equilibrium probl<:ms for a rigid body can b<! soh'cd 
using the following procedure. 

Free-Body Diagram. 

• Establish the x. y c()ordinate axes in any suitable orientation. 

• Draw an outlined shape of the body. 

• Show all the forces and couple momenls acting on the body. 

• Label all the IOlldings and specify their di rections rclath'e to the 
.r or y a.~ is. The sense of a forcc or couple moment having :\11 
/I"k"o"'" magnitude but known line of action can be assumed. 

• Indicate the dimensions of the body necessary fo r computing the 
moments of forces. 

Equations of Equilibrium. 

• Apply the moment equation of equilibrium, LMO = O. about a 
point (0) that lies at Ihe intersection or the lines of 3ction o[two 
unknown forces. In this way. the moments of these unknowns arc 
"'oCro about O. and a (lir«1 SO/utiOll for the third unknown can be 
determined. 

• When applying the force equilibrium equations. -:iF", = 0 :'Ind 
"LF>. = O. orient the x and y axes along lines that will provide Ihe 
simplest resolution of the forces into their x and y components. 

• If the solution of the equilibrium equations yields a negative 
scalar for a for'e or couple moment magnitude. this indic3tcs that 
the sense is oppositc to th3t which was ;lssumed on Ihe free-body 
diagram. 
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EXAMPLE 5 .5 

2m 

D 

Determine the horizontal and verticil] components of re~~1ion on the 
beam eaused by the pin Ilt B lind the rocker lit A as shown in Fig.5- ]2i,. 
Neglect Ihe weight of the beam. 

"" N 
j 

6OOsiD~S" N 

• 

' "' - - - 2m -

lOO N 
(. ) 

tOON 

tig. 5-12 
( ' ) 

SOLUTION 

Free-Body Diagram. Identify c("h of the forc..:s shown on the frec­
body diagrmn of the bcilm. Fig. 5- ]2b. (Sec Example 5.1.) For 
Simplicity. the 6OO-N force is represented by its x and), components as 
shown in Fig. 5- 12b. 

Equations of Equmbrium. Summing forces in the x direction yields 

.±.r.F."' O: 6OOcos4so N - B, = O 

B."' 424N Ails. 

A dircct solution for A" can be obtained by applying the moment 
equiltion "f.M/J '" 0 about point B. 

lOON(2 m) + (600 sin 4SQN)(S m) 

- (600cos4SQN )(O.2m) - A, (7m) '" 0 

A , '" 319 N Ails. 

SlUnming forces in the y direction. using this result. gives 

+ fr.F,= O: 3l9N - 600 sin 45" N - lOON - 200N + By= 0 

AnI". 

NOTE: We can check this result by summing momenlSHbout poinl A. 

<:+ rM" '" 0: -(600sin~5Q N ){2m) - (600cos4S0 N){O.2m) 

-( 100 N)(5 m) - (200 N ){7 m) + 8,(7 m) = 0 

Hy "' 40SN Am:. 
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EXAMPLE 5.6 

The cord shown in Fig. 5~1311 supports a force of 100 Ib and wr:1ps 
over the frict ionless pulley. Determine the tension in the eord at C 
and the horizontal and vcrtical componcnts of reaction 31 pin A. 

tOOlb 
(.j 

SOLUTION 

Free-Body Oiagrams. The free·body diagnl1ns of the cord and pulley 
arC shown in Fig. 5~13h. NOle thai the principle of 3clion. equal btu 
opposite re3clion must be carefully observed whcn drawing each of 
these diagrams: Ihe cord exerts (In unknown lOad dishibUlion p on the 
pulley at the contact surface. whereas the pulley exerts an equal btu 
opposite effect on the cord. For the solution. however. it is simpler to 
combine the [ree-body diagrams of the pulley and this portion of Ihe 
cord. so thai the distributed loud becomes i"ll'nlal to this ··system·· 
imd is therefore el iminated from the analysis. Fig. 5~13c. 

Equations of Equilibrium. Summing moments about point A to 
eliminate A, and A .... Fig.5~13c. we havc 

C + :!:MA = 0: 100 Ib (0.5 ft ) - 1"(0.5 ft ) = 0 

1" .. 100 Ib Am:. 

Using Ihc result . 

..±. 'f. Fx = 0: - A. + 100sin3()° lb = 0 

A, = 50.01b 

A .. - lOOlb - 100 cos 300 lb = 0 

A1 = IS71b 

;\1I.'t 

;\11.'1. 

NOTE: [t is seen Ih:11 the tcnsion remains CO/lSI/lilt as the cord pas.~es 
over the pulley. (This of C{lursc is true for OilY IIl1gle 0 al which the 
cord is directed and for OilY rIllUw;, o[ the pulley.) 

lOOlb 

.,,, 

IUOlb 

T 
(>, 

(0' 

". 

, 
L. 

T 
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EXAMPLE 5 .7 

The member shown in Fig. 5-1411 is pin-connected at A and rests 
against a smooth support at 8. Determine the horizontal and "ertica] 
oomponcnts of reaction al thc pin II. 

60 1'1 (., 

'm -- , 
L, 

", "' N 
'" tig . .5-14 

SOLUTION 

Free-Body Diagram. As shown in fig. 5-14h, thtl reaction NB is 
perpendicular 10 \he member a\ 8. Also. horizontal and vertical 
oomponents of reaction Me represented at A. 

Equations of Equilibrium. Summing moments about A. we obtain a 
direc t solution for N /I. 

(+~M.1 = 0; - 9ON·m - 6ON( l III) + Ns{0.75m) = 0 

N/j= 2ooN 

Using Ihis result. 

.±. };F. = 0; 

+ f::£F,,= O; 

IIx - 2oosin30' N = 0 

A ..- = lOON 

A y - 200cosJOo N - 601'01 = 0 

Ay = 233N 

IIII.L 

Am. 
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EXAMPLE 5.8 

The Ixlx wrench in Fig. 5-15a is used to tighten the boh at A . If the 
wrench docs not turn when the load is applied to the handle. 
determine the torqu~' or moment applied to the bolt and the for,c of 
the wrench on the bolt. 

SOLUTION 

Free.Body Diagram. The free·body diagram fu r the wrench is 
shown in Fig. 5- ISIJ. Since the boll acts as a ··fixed supp-ort: · it exerts 
force components A , and Ayand a moment MA on Ihe wrench at A. 

Equations of equilibrium . 

.±. :iF, '" 0: 

A, '" 5.00N 

A,- 52(H) N - )Osin600 N '" 0 

A , = 74.0 N 

c + 2:M" '" 0: M" - [S2(H) NJ (0.3 m) - (30 sin 60° N)(O.7 m) = 0 

MA '" 32.6N·m AilS. 

Note that 1\1" must be illriutif'd in th is moment summation. This M ... 

oouple moment is a free vector and represents the twisting resistance 
of lhe boll on lhe wrench . By Newton·s third law. the wrench exertS an 
equal but opposite moment or torque on the bolt. Furthermore. the 
resultant force on the wrench is 

NOTE: Although only Ihree independent equilibrium equ,tlions can 
be wri llen for a rigid body. it is 3 good practice to ch.'ck Ihe 
calculations using a fourth equil ibriulll equation. For e.~amplc. Ihe 
above computat ions may be verified in p,lrl by summing moments 
about point C: 

C +:-:Mc = 0: [S2(U) Nj (0.4 m) + 32,6 N· m - 74.0 N(O.7 m) = () 

19.2 N· m + 32.6 N· m - SUi N· m = 0 

(' ) 
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EXAMPLE 5 .9 

750lb 

''' --

(., 

Ddcrmine Ihe horizont~l and "erlical components of reaction on Ihe 
mcmber at the pin A . and the nomlal rcaction al the ruller B in 
Fig.5- 1fi<l. 

SOLUTION 

Free-Body Diagram. The free-body di~gr .. m is shown in Fig.5- 16h. 
The pin al A exerlS two components of reaction on the member. A , 
and A)"" 

,,,. 
311 , 1 "'- ".---

'" J 
H 

'0) 

Hg. 5-16 

Equations of EqUilibrium. The r.::action N H can be obtained dirt-cdy 
by summing moments about poilll A since A , and A. produce nO 
moment about A. 

<;'+YM,\ = 0: 

[Nil cos 30' ](6 fl ) - [Ail sin 30°](2 fl) - 750 Ib(3 ft) = 0 

Nfl = 536.2Ib = 536lb 

Using this resu!!. 

"±' ~r,=o: 

+ 1 'i.F1 = 0: 

A .. - (536.2 Ib) sin 30° '" 0 

A,=268 lb 

A., + (536.2 Ib) cos JO' - 750 Ib = 0 

A.= 2861b 

Am:. 

AII.I: 

AII.I". 
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5.10 

The uniforn) smooth rod shown in Fig. 5- 1711 is sUbjected 10 a force 
and couple moment. If the rod is supported 3t A by 3 smooth wall and 
at 8 and C either 3t thc top or bottom by rolieTS. determine th" 
reactions at these supports. Neglect the weight of the rod. 

12m
, 

SOLUTION (.) 

Free-Body Diagram. As shown in Fig. S-17b. all the support 
reactions act norm<llto the surf;lces of contact since these surf(lces ;Ire 
smooth. The reactions at Band C arc shown acting in thc positive.)" 
direction. 'Iltis assumes that only the rollers located on the boltom of 
the rod arc used for support. 

Equations of Equilibrium, Using the .r. )' l·oordinate system in 
Fig. 5- 17". we have 

"±'~Ft : 0; C,.. sin.30~ + Bf s in30~ - A.r: () (I) 

+ f :!. Fy = 0; - 300 N + Cy' cos 30" + Sf cos 30" = 0 (2) 

C + ~MA = 0; - 8 ,'(2 m) + 4000 N · m - C .... (6!11) 

+ (300 cos 30" N)(S m) = 0 (3) 

When wri ting the moment equation. it ~hould be noted that the line of 
action of the force component 300 sin 30~ N passes through point A . 
and therefore this force is not included in the moment equ'ltion. 

Solving Eqs. 2 and 3 simuhaneously, we obtllin 

8J, = - ](100.0 N = - I kN 

Co' = 1346.4 N = US kN 

Am:. 

An.\!. 

Since 8J' is a negative scalar. the sense of 8 J' is opposite to that shown 
on the free·body diagram in Fig. 5-17b. 1"herefore, the top roller at B 
serves as the support rather than the bollorn on('. Rftllining the neg111il'e 
sign for B,. (Why?) and substituting the results into Eq. I. we obtain 

!346.4sin30" N + (- 1000.0 sin 300 N) - I I ., = 0 

A ,= I73N Am:. 

c; ~ : 30" 

' : 
(') 
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EXAMPLE 5 .11 

(., 

(" 

A, 

(0' 

Fig. 5-111 

Thc unifonn Iruck ramp shown in Fig. 5---ISa has a weighl of 400 Ib and 
is pinned 10 the body of Ihe lruck at each side and held in the position 
shown by the two side cables. Dclcrmine the ":lIsion in the cabJ..:s. 

SOLUTION 
'nu; ide(llized modd of the f(lm p, which indicll!CS all neccssmy 
dimensions and supports, is shown in Fig. 5--18b. Here the center of 
gravi ty is located at the midpoint since the I"<lmp is considered to be 
uniform. 

Fr ••• Body Diagram. Working from the idealized model. the ramp's 
free-body diagram is shown in Fig.5- 1&. 

Equations of Equilibrium. Summing moments about point A will 
yield a direct solution for thf;: cable tension. Using the principJ..: of 
mOments. there <Ire severnl ways of determining the moment of T 
about A. lf we usex amly components. with T applicd at B. we have 

- Tcos200( 7sin300 [1 ) + Tsin2()°(7 cos30° ft ) 

+ 400 lb (5 cos 30° ft ) = (} 

T = 14251b 

'Thc simplest way to determine the mOlllent of T about A is to resolve 
it into components along and perpendicular to the ramp at B.1llen the 
mOment of the component along the ramp will be zero about A.so thai 

- T sin \0°( 7 ft ) + 400 Ib (5 cos J00 fl ) = 0 

T = 14251b 

Since there arc two cables support ing the ramp. 

T 
T' ="2 = 712 lb 

NOTE: As an e;(crcise. show that A, = 1339 lb and 1\,. = 887.4 lb. 
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EXAMPLE 5.12 

Determine the support reactions on the m.;:mbcr in Fig. 5- 1911. The 
collar at A is fixed to the member and can slide vertically .. long the 
vertical shaft. 

--1.5m 

""'N t- '-' m -/'; m 

~) 5OON·m 

L . , 
SOON ' m 

(.) 

SOLUTION 

Free.Body Diagram . The fr.;:e-body diagram of the member is shown 
in Fig. 5- 19b.11Ie ~Xlllar exerts <I horizontal f,)ree A , and moment M, .. 
on the member. The reactinn N8 of the roller on the member is 
vertic31. 

Equations of Equilibrium. The forces A s lind N IJ can be determined 
directly from the force equations of equilibrium. 

'±' ~F. = O: 

+tL F, "" 0: 

AII.t. 

Am. 

The moment I't( .. can bc determined by summing moments either 
about point A or point 8 . 

(+ rM.., = 0: 

1\1, .. - 9OON(l.5m) - 500N · m + 9OON/3m + (I m)cos 45"J = 0 

AIlS. 

0' 

Ails. 

The negative sign indicates that M.., has the opposite sense of rotat ion 
to that shown on the free-body diagram. 
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n.... buckellink 118 0n Ille b3ck.hoc 
is D Iypical example of a Iwo-fom: 
member since illS pin connecled al 
ils ends ~nd. pro"ided ils welglll IS 

neJkclcd. 00 (Miler foree aclS OIlt llis 
member. 

The tink "sed fot Ihi. ,,"troad CD. brake 
is a three-fom: mcmber. Si......., lI\e force 
. '8 in lhe lie rod:1I H and )', from lhe 
link a l Care p3rallcl . IlIcn for 
equilillriunl III" resultanl force f A "'I lhe 
pin A mUSI also be p-,ra lld wilh these 
twofor.:cs. 

'n ,e bourn on III;' lifl il a Illree-fora: 
mend",r. pro,idcd its ,,·cighl i. neglected. 
tlcrc lhe lines of xl;"" of the ,,-.,ighl of the 
worker. W.and lhe force oflhe h.-o-force 
mcmbcr (hydrnutic cytill<k r) al H. l·II. 
irncn.:c.1 al O. For momenl equilibrium. the 
• .::sultant fnrce al ,he pin A. F .... mllSl alolo 
be dinxlcd 10,,"llI"ds O. 

5.4 Two- and Three-Force Members 
The solutions 10 some equilibrium problems can be simplified by 
recognizing members th<lt are subjected 10 only IWO or three forces. 

Two-Force Members As the name implies. <I """·forre IIIt11r/wr has 
forces applicd at only IWO poinls on the member. An example of a IWO· 
force member is shown in Fig. 5-20.: •. To satisfy force cquilibrium. F" ami 
.'B must be equal in magnitude. F" = F8 = F, bUI opposi tc in dircc tion 
(~ F = 0). Fig. 5-2011. FurlhemlOre. moment equilibrium requires that F" 
and F B shan! thc s.1me line of aelion. which can only happen if they arc 
directed along Ihe Jine joining points A and 8 (rMA ;< 0 or r M8 .., 0). 
Fig. S-2Oc. Thcrdore. for lIn)' Iwo-force member 10 be in equi librium. the 
two forces acting on Ihc memocr II1I1SI 1r1l1'1' Ilrl' SIIIIII' II1l1gllilllll t'. IICI ilr 
opposi/I' dir«/iOlJ$., IImlluwl' Ilrl' SlIml' lille of IIC/iOIl. (Iirt'Cll'lllI/ollg lire lilll' 

joillillg 1111' IWO poims W"I'" 1111'S!' !Qrtes (11'1. 

A 

'-
A 

8 

'. c.) F~ - F(b) 
,,) 

,....·o·fo.cc IIICmbc:r 

t ig. S-2tl 

Three-Force Members If a member is subjected 10 only ,IIrl'<' 

!or ers, il L~ called a (IIr!!t·!orCf' m l'mber . ~"omCllt equilibrium call be 
satisfied 0 111)' if Ihe three forces form a COIICl/rft'lII or PII'III/t'l force 
system. To illustrate. consider the member subjected to Ihe three forccs 
Fl' F~. and Fl . shown in fig. 5-2Ia. H the lillcs of action of Ft and .'1 
intersect al point D. lhen the linc of aClion of Fj mUSIl/Iso p;tSS through 
poinl D so thallhe force s sa tisfy r Mo = O. As a special case. iflhe threc 
forces ;tre all parallel. Fig. 5-2 IIJ. Ihe locmion of thc point of inlcrscction, 
D. will approach infini t)'. 

". 

I , ,.) 
Th.«.fore<: member 

Hg. S-'!1 

r 
(0) t" 
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EXAMPLE 5.13 

The Ic:\'er ABeis pin supported at A and connected to a short link 8D 
as shown in Fig. 5-22/1. If the wcight of thc members is negligible. 
d.:: tefmim.: the fon:.:c of the pin on the lever ;,t A. 

SOLUTION 

Free -Body Diagra ms. As shown in Fig. 5-22b. the short link BD iJ; II 
(wo·force IIIl'lIIb",. so the rl'III/1II1II forces a t pins D and B must be 
equal. opposi te. and coUinCllr. Although the magni tude of the force is 
unknown. the line of action is known since it passes through 8 and D. 

Le"cr ABC is a I/Jrt'l"fortl' member, and thcreforc. in order to 
satisfy moment equi librium, the three nonparallel forces aeting on it 
must be concurrenl <II O. Fig.5-22c. [n particular. nOle Ihalthe force '" 
on the Ie"er at B is equ:1I but opposite 10 Ihe force F act ing at B un Ihe 
link. Why·/ Thc distance CO must be 0.5 m since Ihe lines of ndion of 
.. - lllld the 4(X)-N force arc known. 

Equations of Equilibrium. By requiring thc force sys tem to be 
concurn:nl at O.since "i.Mo = O. the angle fI which defines !he line of 
action of FA can be determined from trigonometry. 

0 = lan- I(0.7) "" 60 3" 0.4 . 

Using the .1".), axes and applying the force equilibrium equations. 

.±,. ~F, = 0: FA cos (i().3~ - F cos 45° + 400 N = 0 

+l~f). = o: F"sin60.3"- Fsin45"= 0 

Solving. we get 

FA. = 1.07 kN 

F = U2kN 

AII.~. 

NOTE: We cnn <lIsa solve Ihis problem by represen ting the forci: al A 
by its IIVO components A , llnd A,. and applying ~MA = O. 'iF, = O. 
'i FJ = 0 to the lever. Once II , mid AJ arc determined. \\/e can get F,.,. 
and 8. 

A 

D 

,- ' 
0.1 m 
(, ) 

,. 

~.; 
• ..1.- , 

0 ,. 
(") ,. 
r osm--1 

c ""N .0 
4S'\ 1 

/ 
O.S m 

\ / 

, 
~ 

OAm , 
O. lm 

" «) 

Fig. 5-22 



226 CH"'PfE~ 5 EOVllIB~IVM OF ... RIGID BODY 

• FUNDAMENTAL PROBLEMS 

All prob/(III so/wiolls mllSI ille/",I" all I-'BO. 

f S-l. Delermine the honzom:1I and "enkal components 
or react ron at the suppons. Ncgleci the thickness of 
the beam. 

FS-I 

,.'5-2. Determine the hori1.omal and "enica] components 
or reaction allhe pin A :md the reaction on lhe beam fit C. 

.aNI ! l.5", - - ' t.5mt 
,-~ ..... ' 

A 

F5-H 

F5-J. The tlU.o;s is supponed by a pin al A and a roller at B. 
Determine the support reactions. 

IOkN I 

2m .. ~"' 

""5- J 

F~. Dctem,ine Ihe components of reaction al Ihe lixcd 
suppori/i . Neglcellhc IhidnC5S orthc beam. 

.-r"" 
H m-l.-I m....!- I", ....1 <WON 

A 

1'5-4 

.'5-5. 111c 25·1:.8 b~r has " center or mass at G. Ir il is 
supported by a smooth jX'8 at C. a roller at A. and cord AB. 
determine Ihe reaclions at these supports. 

n -5 
F~ Determine the reactions al the smooth roniaci 
points II . 8. and C on the bar. 



• PROBLEMS 

Alillrobl~1II wlll/ialls ""1$/ illrlmir IIIl f"HO. 

5- 11. Determine the normal reactions a1 A and H in 
l'rob.5-I. 

-5-11. Determine the Icnsioll in Ihe cord and the 
horizontal and '-erlic31 components of reaction at support;\ 
of the beam in I'rob. 5-4 . 

• 5- 1). Determine the llori1.omal and "cnical components 
of reaction a1 C and the tension in Ihe cable A8 for the 
truss in Prob. 5-S. 

5-14. Determine the hO';7.0111al and l'crtic,lI components 
of reaction al II and the tension in cable He on the boom in 
!'rob. >-<>. 
5-15. Determine Ihe hori1.omal Dnd I'cnical romp')r\cnlS 
of reaccion a1 A and the normal reaction al H on the 
spanner 'Hench in I'rob. 5-7. 

*5-16. Determine tile normal reactions at II and Hand Ihe 
force in link CD acting on the nH'mb('r in I'rob. 5-8. 

· 5-17. Determine the normal rcaaions a, ,he poims of 
comac, a, A. 8. Dnd C oflhc bar in Prob.5-9. 

5-18. o..-,ermine 'he horizon ,al and I'cnical components 
o(reac,ion al pin C and 'he force in lhe pawl ofl~ winch in 
Prob. 5-10. 

5- 19. Compare Ihe force e_~ened on Ihe IDC and heel of a 
120-lb " ·oman "hen she I§ wearing n:gubr shoes and 
51ilc110 heel§. Assume 311 her weight is placed on one foOl 
and the re<ldions occur al poims A and II as shown. 

120lb 

l 

k-
0.75 'D. 3.75 in . 

l' mb. 5-I11 
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·5-20. The Imin car has a weight of 24 000 III and a cenler 
ofgr::lViJy at a.1! is suspended from "S front ~nd rearon the 
tract by six lires located 31 A. H. Dnd C. Determine the 
normal reaclions on thcse !lrCS if Ihc \rack Is assumed 10 be 
a smooth surface and an equal portion of the load is 
supported al bolh Ihe (ronl and rear li res. 

-,-

." 

l' rob.5-20 

05-21. Determine the horizon tal and wnkal components 
of reaction 3t the pin A and the Icnsion dc."clopcd in cable 
HC used 10 suppon Ihc Sleel frame. 

60kN 

r 'm --'m-..... ) - 1 m ....l 

.lOkN · m 

c 

Prah. 5-21 
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5-11. 1'hc aruculalcd (I1me boom lias a .... eight of 125lb and 
ccnlCTofgra\"ly at G. lfll supports. load 0(600 Ib,dclcrmirw: 
lhe force actong al the plD A and the for«' In the hydl1lulK" 
cyhnder 8C .. lIcn 11M: boom IS in the JnIIuonshovoll. 

'" 
'If. G 

'" 

C 

I' rob. S-ll 

5-lJ. l 11c airs1rokc ~ClUatoral 0 is Ilscd to appl)' a force of 
F . 200 1'1 on the IllCnlner ~l 8. Delcrm;nc the horizontal 
and "cnical romponents of reaction :11 lhe pin A :I.Ild the 
force ofltlc smooth shaft I I Con lhc member. 

- S-U '.lle :IlBtrokc actualor al D is used to apply a force 
of F on lhe member II H. The normal reaction of the 
smooth shaft al Con illc member is .300 N. Dclcrminc lhe 
rna&nnudc of F and 11M: homonlal and \'cnK;al romponcnlS 
of n';I(\1QII al pin A . 

I' rob!'. S-l Jll.,j 

. 5-25. "The JOO-lbcloc\ncallrnnsfOfTllCr "ilhccnlcrol VoI"II)' 
II G IS wpporloo by a pm al A and a smOOl1l p;td at 8. 
Delcnmnc the honlonllli and >"Cruea! components ofreac'IIon 
II the pinA and the 1l':IC'I;ooOflhc pad 8 on lhe nansformer. 

'" 
" 

I'rub. S-15 

S-16. A sltelelal diagram ofa hnnd holdIng a load issho ... ·n 
in the upper figure. lfthc load and the forearm h3\'c mas5CS 
of 21.:& and 1.21.:g.respcetwcly. and Ihelr «meN of mass are 
Iocaled al Gt and G~. determine the force dC"doped in Ihe 
bi«ps CO and Ihe honlOnial and , 'ertieal (omponent$ of 
reaclion 31 Ihe elbow JOint 8 . lhe forearm supporting 
S)"Slcm can be modeicd as tho: slruclur.tl S)"Slcm sho",n in 
the Io"'er figure. 

" , I G. 
·IOOmm·· ' 135mm 

I'roll. S-Z6 



3-27. As an airplane's brakes arc applied.lhe nose wheel 
excrlS IWO forces on the end of the landing gear as $ho"·n. 
Determinc the horizontal a!ld "crlkal components of 
reaelion at tile pin C and tile force in 5trul AB. 

Prllb.5-27 

*3-28. The 1 .4·~ l g drainpipe is held in Ihe tines of the fork 
lift. DClermine Ihe normal forc-cs al A and 8 as functions of 
the blade angle 0 and plot tile rcsults of force ("crlical nis) 
. 'crsus 0 (hori7.o!lwl axis) for 0 :s 0 :s 90". 

l' rob. 5-28 
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' 3-29. 'The mass of 700 kg is 5us~ndcd from a trolle)' 
" 'lIich moves along tbe ernne rail from II - 1.7 m \0 
II - 3.5 m. Determine Ihe force alo!lg the pin·oon!lected 
knee Sirut BC (sllorllink) and tile magnitud.:: of force at pin 
II as a function of posi tion fl. Plot tlle$C rcsult$ of FII(" and fA 
("crtica! axis) wrsus ,/ (lioriwntal a~is). 

1--- ' --1 

" mh. 5-29 

3-3t1. If the force of F ~ 100 Ih is applied 10 the handle of 
tile bar bender. determine the hornontal and "enical 
components of reaction al pin A and the rcaction of the 
roll er 8 on the smooth bar. 

5-31. If the force of the smooth roller at 8 on the bar 
bender is requi red to be 1.5 kip. determIne the homontal 
and vertical components of reaction at pin It and tile 
required magnitude of force f applied !O the handle. 

-10 ,no 

PrnIK. 3-301.\1 
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' 5-32.. The jiberane is supported by a pin at Cand rod liB. 
Iflhe load has3 mass 0(2 Mg " 'jlh ilseenlc r of mass localed 
DI G. (\clemline Ihe horizon lal and \"Crtical components of 
reaction al the pin C and Ihe force developed in rod 118 on 
Ihe emne when.l .. 5 m. 

' 5-33. The jiberane is supponed by a pin at C and rod A8. 
The rod C"3n " 'ilh5land a maximum lens ion of 40 tN. If the 
load has;'l mass 0(2 Mg. wilh Ilscenler of masslocaled 31 G. 
determine its maximum allowable diSlance .r and the 
corrcspondmg horizontal and ,"ertkal componenl5 of 
rcaction at C. 

3.2m 

..-,--- 'm-­
A 

c 0.2111 

I'robs. s-JUJ3 

8 

G 
D 

5-34. Determine the homontal and ,"ertkal components 
ofrcaction al the pin;l and the normal force at Ihe smoolh 
peg 8 on Ihe member. 

" roh. 5-34 

5-35. the framework is supported by the member ;18 
which rC5ts on the smooth OOOt. When loaded. the pressur~ 
distribution on A H is linear as shown. Delermine Ihe length If 
of member AB and the intensity II' for this case. 

----H, i 

1 

f' rob.5-35 

' 5-36. Outriggers II and B are used to stabilize the crane 
from o'<crlurning " 'hen lifting large lo~uls. If the load to be 
lifted is 3 Mg.detcrminc the lIIa.dl/llml boom angle (J so that 
the crane docs not o,·ertuTll. The cmne has a mass of 5 Mg 
and center of mass at Gc• whereas the boom has a mass of 
0.6 Mg and center of mass at Gil' 

2.¥ no 

"rob. 5-36 



03-.n. The ..... ooden plank resting bet ..... ~en thc buildings 
deneel$ slightly when iI supports the 5()..kg boy. This 
dcnection causes a triangular distribution of load ~ t its ends. 
ha'·,ng maximum inleru.ities of "A and "'B. IXlermine "A 
and "'~. cadi measured in Nj m. when the boy is sTanding 
J m from onc end as shown. Neglect the mass or the plank. 

8 

". ", 
~~ ,. T 'm 
tUSm JU. 

Prob. 3-J7 

3-JII. Spring CD remains in the horitontal position at all 
limes due to the roller m O. If the spring i$ unslretchcd 
..... hen (I .. 0" and Ihe bracket achie"cs its equilibrium 
position when 8 - JO". deh.'rminc the stiffness Ii: of the 
spring and the hori1.ontal and ,"ertical components of 
reaction al pin II . 

3-J9. Spring CD rcmains in the horizontal position at nil 
limes due to the roUer at D. If the spring is Ilns1TelChed 
when (I _ O· and the stiffness is Ii: .. 1.5 kN/ m. determine 
Ihc smallest angle (I for equilibrium and the horizonwl and 
\"ertical components of reaction at pin A . 

, 

Probs. 3-J8Il9 
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"5-40. lhe platform assembly has a weighl of 250 lb lind 
cenler of gm" ity at GI. [f it is intended 10 support a 
maximum lo:od of -100 [b placed at point G!. determine Ihe 
smallest counler ..... eight \I' Ihat should be placed al H in 
order 10 pre"cnl the plalform from tipping o'-er. 

" 

'" 
l'rob. 5-40 

. 5-41. IXterminc the horizontal and '-ertical components 
of reaction 3t Ihe pin II and Ihe reaction of Ihe smooth 
collar B on the rod. 

C 

"." 
~~ Ib 

j 1 
8 

~ 
A 

, 
+ 111 ""1 ' " ,. 2/. 

'" 
Proh. 5-4 1 
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5-42. Deleml;ne tile supporl reaclions of roller A and IIII' 
smoolh colla r 8 on Ihe rod. The collar is fixed 10 Ihe rod 
AB. but is allowed 10 slide along rod CD. 

.. N 

'm--'m 
B 

6(lON ' m , 
.W~ 
~ 

l' rob. 5-42 

5-43. The uniform rod ..18 has a weighl of 151b. Delcmline 
Ihe (orce in Ihe cable when Ihe rod is in Ihe position shown. 

B 

T 

Prob. 5-43 

-5-44. DClermine tile horizonlal and verlical components 
of (orce at Ihe pin A and Ihe reaclion at Ihe rocker 8 of Ihe 
eur.·ed beam. 

""N 

I 

A 

I ,m 
" 

Prob. 5--44 

05-45. ' llIe noor crane and the driver have a tOI,11 weighl 
of 2500 lb wilh a cenler of gm"sly al G. If Ihe crane is 
required 10 lifl tbe 5oo·lb drum. delermine tbe normal 
reaclion on 1101/1 Ihe wbeels al A and bOlh Ibe wheels al 8 
when Ihe boom is in Ihe posilion shown . 

.5-46. The noor crane and lhe dri"cr ba\"l,' a 10lal weighl of 
2500 1b wilh a cenler of gravity at G. Delermine Ihe largesl 
weighl of lhe drum lhal can be lifted wilhoul causing lhe 
crane 10 overturn when ils boom is in Ihe posilion shown. 

", 



5-47. l be mOlor has a weigl1t of &SO lb. Detcnnine the 
fore<: that each of Ihe chains exerts on Ihe. supporting hooks 
at A. 8. and C. N"eglecI the sill.' of Ihe hooks and the 
Ihickness of the beam. 

""" 

I'rob. 5-47 

*5-48.. Delermine the force I' needed 10 pullthe.SO·kgroller 
owr Ihe smoOlh step. Take 0 - 60". 

' 5-49. D1.'lermin~ Ihe magnitude. and dir.."'Clion e of Ihe 
minimum force r needed 10 pulllhe SO·kg roller ovcr Ihe 
smOOlh slep. 

I'rob!;. S-48149 
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5-5tl. "fbe "-inch cablc on a lOW ITUCI.;. is subjected 10 3 
force of T - 6 k1'1 when Ihe cable ;5 directed me '" t:i.f'. 
Determine the magnitudes of Ihe 10lal brnke friclional 
forre F for Ihe remr SCI of ,,·heels Band Ihe 10lal normal 
forces al /Wlir fronl wheels II and bOlh rear whcels 8 for 
equilihrium. The Iruck has a 10lal mas5 of 4 il,lg and mass 
cemer 31 G. 

5-51. Determine the minimum cable force T and critical 
angle 0 which will cause Ihe lOW truck 10 5larltipping. i.e .• for 
lhe nonnal reaction al A 10 be zero. Assume thallhe Iruck is 
braked and will not slip at B. The truck has a t01al moss of 
4 Mg and masseenl~r at G.x 

"'robs. 5-S1.If5 1 

' 5-52. Thrce uniform books. each having a weight IV and 
lenglh <I. arc stacked 35 shown. Determine lhe maximum 
dislane<: d Ih31 Ihe top book can extend OUI from Ihe 
bonom onc so lhe Slack docs nOI lopple o\'er. 

f---,,---'- II-I 

"'rob. 5-52 
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05-.53. D~t~rmin~ t h~ angle 0 al whi~h th~ link ABC is 
held in equilibrium if member HO mo,'es 2 in. 10 Ihe righ l. 
lhe springs arc originally unsln.'lched " 'hen fJ .. 0". Each 
spring has the sliffncss sho\1.'II. 'Ibe springs remain 
horizonml since lhey arc allached 10 roller guides.. 

ka - tOO tb/fl 

l' rob. 5-53 

S-S4. The uniform rod 118 has a weight of 15 Ib and lhe 
spring is unstrelched when fJ .. 0". If 0 .. 30". delermine 
th~ Sliffness k orlhe spring. 

8 

5-55. 'Ibe hotizonlal beam is supported by springs al its 
ends. Eaeh spring has a stiffness of II. .. .5 kN/ m and is 
originally unslretched so thai Ihe beam is in lhe horil-onwl 
posilkm. Dctt!rmint! the angle of lilt of the beam if a load of 
800 N is applied al poinl Cas sho"·n. 

"5-St>. llle hori1.ontal beam is supported by springs al ils 
ends.. If lhe sliffness of the spring 3t A is 11." .. .5 kN/ m. 
determine tht! required stiffness orthe spring at H so that if 
the beam is loaded Wilh Ihe SOO N il remains in the 
hori1.0nlal posi lion. The springs arc originall), ~oll$lructed 
so Ihat Ihe beam is in th~ hon~ontal position when it is 
unloaded. 

c 

" 

.- J ,-

oS-57. The smoolh disks 0 and E ha"", a " 'Cighl of 200 Ib 
and 100 lb. rcspccti,· ... I)~ If a horizon131 force of P .. 200 Ib 
is applied 10 the cenler of disk E. dt!lc rmlne Ihe normal 
reactions al the points of conlael Wilh the ground 31 A . H. 
and C. 

5-58. The smooth disks D and E h3\'''' a " 'eight of 200 Ib 
and 100 lb. respccli, .... ly. Dclermine Ihe largest horizonlal 
for~ f' lhal can be applied 10 the center of disk E: without 
causing the disk D 10 mow up the incline. 

I'robs. S-57158 



5-59. A man slands 01,11 at the end of the dwing board . 
which is supported by two springs A and B. each ha';ng a 
stiffness of k .. 15 kN/ m. In the posit ion shown the board 
is honwntal. l f the n13n has a mas.s of 40 kg. determine the 
angle of till ""hich Ihe boa rd makC$ with the horizontal after 
he jumps off. Neglectlhe weight of the board and assume il 
is rigid. 

4- tm - - --- 'm 

l' roo.5-59 

' 5-60. the uniform rod has a length / and weight IV. It is 
supported at one end A b}' 3 smooth " 'all and the other end 
by a cord of lenglh s which is attached to the wall as 
sho",·n. Show thai for equilibrium it is required that 
" .. [(.I - 1!)!31 '~. 

I' rab. S-6O 

235 

' 5-61. If spring BCis unstretched .... ith 8 .. 0" and the bell 
cTank achie"C"S ilS equilibrium position when 8 " IS". 
de temline the force F applied perpendicular to segment 
tiD and the horizontal and "eTtical CQntponenls of reaction 
at pin A. Spring BC remains in the horizontal postion 3t all 
times due to the roller al C. 

k - 2kNfm 
C H 

\ 
, 

"roh. 5-6 1 

5-62. The thin rod o/length I is supported by the smooth 
lube. Delermine Ihe distance u nceded for eq ui librium if 
the applied Io.~d is P. 

....".,--,. 

I'rob. 5-62 
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• CONCEPTUAL PROBLEMS 

1'5-5. The lie rod 1§ us;:,d 10 support Ihis overhang al lhe 
enl ranee of a building. If it is pin conne<:lcd to Ihe building 
wall at A and to the center of Ihe ovcrhang 8. dete rmine if 
Ihe force in the rod will increase. decrea!oe. or remain the 
same if (3) Ihe support 31 A is movcd 10 a lower position D. 
and (b) the support at 8 is mo,,,d to the OUler posilion C. 
Explain your answer wilh an equilibrium analysIs. using 
dimensions and loads. Assumc lhe overhang is pin 
supported from the building waU. 

~~?"'"--: 

r~' 
1'5-(0. The man al1empls to pull Ihe four ,,·heele r up Ihe 
incline and onlO Ihe Iruck bed. From Ihe posiTion shown. is 
it more effective to keep Ihe rope attached at A.or would II 
be beller 10 allach it to Ihe 8xle of the fronl wheels at B·! 
Ora,,· a free-body diayam and do an equilibrium analysis 
10 explain your ansv.er. 

~--

1'S-7. Like all airerafl. lhisjel plane reSIS on Ihree wheels. 
Why not usc an addi tional wheel 31 the lail for beller 
support? (Can you Ihink of any other rcason for nOI 
including this whe;:,I?) 1{lhere was a fouTlh tail wheel. draw 
a free-body diagram of Ihe plHnc from a side (2 D) view. and 
show ,,·l1y one would not be able to dete rmine all the wheel 
reactions using Ihe cqualions of equi librium. 

P~7 

· P5-II. Where is Ihe best place to arrange mnsl of Ihe Jogs 
in lhe wheelbarrow so that it minimizes The amount of force 
on Ihe backbone orthe person transporling the load·! Do an 
equilibrium analysis 10 explain )·our answer. 



EQUILIBRIUM IN THREE DIMENSIONS 

5.5 Free-Body Diagrams 

The first step in solving three-dimensional equilibrium problems. 3S in the 
case of 11,1'0 d imensio ns. is to draw a free-body diagram. Before we can do 
this. however. it is first ncccssilry \0 discuss the I},IX'S of r..:aclions thai elIlI 
occur 31 the supports. 

Support Reactions. l11C rcacth'c forces and couph: mOlllents 
acting at various Iypes of supports (md connections. when the members 
,Ire vic"'ed in three dimensions. arc listed in "TItbIt 5- 2. It is important [0 
recognize the srnlbols used 10 represent ('a,h of Ihese suppon s and [0 
understand clearly how the forces and couplc moments are dcn~lopcd. 
As ill the two·dimensional case: 

• A force is dC\'clopcd by a support that rest rk ts the u anslmion of ils 
all;\chcd member. 

• A couple moment is dc\·.::Iop.:d when rotation of the attached 
member;s prc\·ented. 

For example. in Table 5- 2. item (4). the ball·and·sod:.::t jOint pre\'ents 
any translation of tht: connt:cting member; therdore. a force must act on 
the member at the point of connection. nlis force has three components 
having unknown magnitudes. F .. F,. F. Provided these com nellts aTC 
known. one can obtain the magnit ud t: of forct:. F - F ; + F; + F~. 
and the forct: 's orientation ddint:d by its coordinate direction angles (I. 
p. y. Eqs.2- 7. · Since the connecting member is allowed to rotate freely 
about /!II)' axis. no couple momt: nt is resistt:d by a ball·and-socket joint. 

II should be notcd thatlhe singh- bearing supports in ilt:ms (5) and (7). 
the Sillg/~ pin (8). and Ihe siIIS/t· hinge (9) :lTe shown to resist both force 
ami couple-momcnt components. If. howt:\'cr. these supports arc used in 
conjunction with otller bt:arings. pin. ... or hinges to hold a rigid body ;n 
eqUilibrium and tht: supports are propt'r/), IlligllN/ when 
connected to Ihe body. then the /or« , .. lIctionf al these supports 11/0I1t' 

arc adcquatc for supporting the body. In other words.. the couple 
moments Ix-rome redundant and arc not shown on the free-body 
diagram. The reason for th is should become cle3r after studying the 
examples which follo\\'. 

• ll>t !hl« uol;n""I11S may also be: If prcscmc.l as an Unknl)"'ll tOf« magn;eudc rand 
'''''0 unkllOlllll ooordma'f d,w:, ioo angk$ ~ ,hild diw:' ion angk Is o btained us;ng !he 
l~nli'yC(Jt.J .. + wi- tJ + ~!y - 1. Eq. 241. 

5.5 F~U-SOoy DIAGRAMS 237 
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Types o f Conne ction 

' OJ 

(" 

,mOl)-lh . urface suppon 

rolkr 

(4) 

ball and SOCkCl 

'" 

singk JOOr",,! bcul1lg 

-Reaction 

/ 
I, 

./ 
I, 

Number of Unknowns 

One unknown. The reaclion is a force which 31'15 away 
from the mend:lCr In the kn()\\"n direction of , he cable. 

Onc unknown. The reac,ion is a force wbich aC iS 
perpendicular 10 Ihe surface althe point of oont3CI. 

One unknown. The reaction is a force which Mts 
perpendicular to Ihe surfmcc al Ihe point of coni act. 

Three unkno ..... ns. The reaclion~ are three rectangular 
force components. 

Four unknowns. The rcactions are two force and tWO 
eouple·momcnt components which act perpendicular to 
the shaft. NOle: The couple momenlS arc generally n01 

applied if the body is supported elsewhcr~. See the 
namples. 



Types of Connection 

,., 

smgle journal bearing 
\11th $(\ .... 'c shall 

OJ 

single Ihru~t bearing 

''l 

lingle "",oolh 1'111 

,., 

$Ingle hinge 

(l D) 

Ii.cd ,uppor! 

Reaction 
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Number of Unknown$ 

Five unkno"·ns. The rcaelions arc IWO force and Iliree 
couple·momenl componenlS. NOlf: Tile couple momeniS 
arc generally nOI ~pplied if the body is supported 
elsc"lIerc. Sec Ille examplcs. 

Fi"e unknowns. The reactions are Iliree force and IWO 
couple·momcnt compellenls. Note: Tile couple momcnlS 
arc gencrally not applied if the body is $upponed 
elsc"here. Sec Ille examples. 

I'i\"e unkno"·ns . The reaelions arc three force and IWO 
couple·momeni components. ,vOle: The couplc moments 
arc gencrally not applied if the body is supported 
elsc,,·herc. See the examples.. 

Fh 'e uukno"·ns. The rcaclions arc threc force and two 
couple·momenl components. N(lIe: Tile couple moments 
arc gcncrall)' not applied if the bod)' is supported 
clsc,,·herc. Sec the eHmples. 

Six unknO"'ns, The rcaetions arc Ihree force and tllree 
couple·moment components. 
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Typical examples of actual supports thai arc refe renced to Thble 5-2 arc 
shown in the following scqUCllt·~ of photos. 

Thi . ball·and·sockel join! providcs , 
connection fur th~ housing of an carlh 
graderlo its frame. (4) 

This Ihrusl bearing IS used 10 .uppor1lhc 
dri,·c !hafl on a machinc. (7) 

This journal bearing ~uppons I he end of 
th~ .b~fl. (5) 

This pin;" u~d 10 suppur1the end .. f Ihe 
$lrul ",;cd on a ITaClor. (Il) 

Free-Body Diagrams. The general procedure for establishing Ihe 
free·body diagram of a rigid body has been outlined in Sec. 5.2. 
Esscluhllly it rC<luires first "jw!;Jling" the body by drawing its outlined 
shape. l 11is is followed by a carcful/llhelill}! of IIIl Ihe forces and couple 
moments with reference to an established x. y. ;:: coordinate system. It is 
suggesled to show the unkuown components of reliction as acting on the 
frec.body diagram in the positi\'l! Sfll.fl'. In this way. if :my neg,lIivc valucs 
ilrc obt;lined. Ihey will indicate Ihal the components ;tcl in Ihe negative 
coordinate di rections. 



 

5 .5 FREE·BOOY DIAGRAMS 

EXAMPLE 5.14 

Consider thc.two rods and plate. along with thei r associated free.bOO y 
d iagrams shown in Fig. 5-23. The .T. y. l axes arc established o n the 
diagram and the un known reaction components a rc mdlcated m the 
p{1)'iri.'e seilS/" The weight is neglected. 

SOLUTION 

l'mperty 3lign.d j<l\lmat 
hearings al A. 8. C. 

I'm al , \ and cable He. 

, 
I'roperl)' ahgn~djoumat hearing 
• 1 A and hinge al C. Rolleral H. 

>OON 

c 

c 

' . 
SOON 

The forc. rnclions dc"cloJX'd by 
lhc bearings arc sufficli; nl ror 
"'Iuihbnum sin"" lhey p",vcnllhc 
.hafl from fotallng Bb<lul 
ench of lhc coordina1e axes. 

Momenl <OloponenlS arc de"Cloped 
try the p'" <lO lhe fIld 10 pre""n l 
rolalion ahoullhex ~nd ~ axes. 

A. c, 

c , ~ , 
Onty foro: reactions alC developed by 
Ihe bearing and hinge on the plale 10 
pr.,·enl IOlntion aboul each coordin"," axis. 
No momenlS Bllhc hinge • ..., dc,·e\opcd . 

.·il:' S-13 

'" 
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5.6 Equations of Equilibrium 

As stated in Sec. 5.1. the conditions fo r e(luilibrium of a rigid body 
subjected to a th ree·dimensional force s)'litem require that both the 
rall/ltilil force and re,$IIIf(IJI/ couplc moment acting on the body be equal 
touro. 

Vector Equations of Eq uilibrium . The IWO conditions for 
equilibrium of a rigid body may be expressed mathematically in vector 
form as 

(5-5) 

where ~ to is the "ector sum of all the external forces acting on the bod)' 

and :::[\10 is the sum of the couple moments and the moments of alllhc 
forces about any point 0 located ei ther on or off the body. 

Scalar Equations of Equilibrium. If all the external forces and 
couple mOlllents arc expressed in CMtesian ,'ector form and substi tuted 
into Eqs. 5-5. we havc 

:i: F " YF, i + !F.d + ~F;k = 0 

YMo :: YM,i + :£: M,.j + rM,k ".. 0 

Since the i.j. and k components arc independent from one another. the 
abovc equations lire satisfied provided 

rF, = 0 
r,.., s O (S-611) 
'iF, = 0 

and 

'i At, => 0 

'iM, '" 0 (S-6b) 
::: At~:: 0 

These six setl/tlr ('t!ltmbrillm t'qlttlliollS may be used to solve for at most 
six unknowns shown 011 the free-body diagf3ll1. Equations 5-&1 require 
lhc sum of the cdem a! force componentS aCiing in the .r. y. and I 

directions to be leTO. and Eqs. S-6b require the sum of the moment 
components about the .t . y. and I axes to be l.<: ro. 
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5.7 Constraints and Statical Determinacy 

To ensure the equilibrium of:l rigid body. it is not only necessary to satisf)' 
the equations of equilibrium. but the body must also be properly hdd or 
constrained by its supporrs. Some bodies may ha\'e more supports Ih:1O arc 
necessary for equilibrium. whereas olhers may not have enough or the 
supports rna)' be arranged in a particular manne r that could cause the 
body \0 mo\'e. Each of these cases will 1I0W be discussed. 

Redundant Constraints, When a body has redundant supports. 
Ihat is., more supports than arc necessary 10 hold il in equilibrium. it 
becomes statically indeterminate. Sfilliclrlly i/Uft'lt'rmilllll~ means that 
there will be more unknown loadings on the body than equations of 
equilibrium aV:li lable for their solution. For example. the beam in 
Fig. 5-240 and the pipe assembly in Fig. 5-24b. shown together with 
their free-body diagmms., arc both statically indeterminate because of 
additional (or redundant) support reactions.. r'Or the !>c:lm there arc five 
unknowns., M". A,. A). D, .. :md C,., for which only three equilibrium 
equations can be wrillen (r F. = o. rF, = O. and rMo = O. Eqs.5-2). 
llie pipe assembly has eight unknowns. for which only six equilibrium 
equations e:m Dc wrilten. Eqs, 5--ti. 

The additional equations needed to soh'':: statically indeterminate 
problems of the type shown in Fig. 5-2-1 arc generally obtained from the 
deformation conditions at the points of support. These equations in\'ol\'e 
the physiclll properties of the body which arc studied in subjects dealing 
wi th the m.::chanics of ddormlltion. such as "mechanics of materials, ... 

, 

(b) 

• s.:c R. C. Uibbdcl, M« /r",,1u IJ/ ;\Ial( ,ilib. 71h Wihon. PCafStlll Educa1iollll'r(nli('~ 
It.)ll. Jnc. 

soo'" 

~rm l 
2 A = 

" c 

, 
A. L , SOO'" 

c~ m j 
M" t ". C. ,.) 

~;J:. s-u 
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.' 

Improper Constraints. ~Ia ... ing the S;lnU; number of unknown 
react ive forces as aV3i l;lble equations of equilibrium docs not always 
gullran!Ce that a body will be stable when subjected to a particular 
looding. fOOT example. the pin support al A and the roller support at 8 for 
the beam in Fig. 5-25a arc placed in such a way that the lines of act ion of 
the re3etive forces arc CQIICllrrl'/U at point A . Consequentl y. the applied 
lo.1ding P will cause the beam to rota te slightly about A.and so the beam 
is improperly constrained. Y.M" '# O. 

[n three dimensions. a body will be improperly constrained if the 
lines of action of all thi;' reactive forces in tersect a common axis. f-or 
example. the reac tive forces althe ball·and-socket supports at A ;md B 
in Fig. 5-25b all intersect the axis passing through A and B. Since the 
momentS of these forces about II and 8 arc alllero. then the loading I' 
will rOl ate the member about Ihe AB axis. ~M"8 '" o. 

,.) 

I' ) 
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(.) 

tOO~ 

(0) 

I 
I" 

Anothcr way ill which improper constr:unmg leads 10 inslability 
occurs when the '(,II(/ il"l! forces :I re all pM/llI"'- Two- and th ree­
dimensional examples of this are shown in Fig. 5-26. In both cases.. the 
summation of forccs along the.r i.xis will nOI equal zero. 

In some cases., a bod)' rna)' ha\'c fl'u ·er reacti \'c forces than cquations of 
equilibrium that musl be satisfi ed. The bod)' then becomes onl)' plI"iafl,. 
COIIS/raill l'd. For example, consider member JlH in Fig, 5- 27/1 with its 
corresponding frce.bod)' di:lgram in Fig. 5-27b. Here 'i f' • .: 0 wi ll nOI 
be satisfied ror Ihe loading condil ions :lnd therefore equilibrium will not 
be maintained. 

To summarize these points. a bod)' is considered impropl'rly 
cOIlS/milll'd if all the reaCl ;"e forces intersect at a common point or pass 
th rough a common axis., or if all the reacti \'e rorces arc parallel. In 
engineering practice, these situations should be avoided at .111 times since 
they will cause an unstable condit ion. 

" 

.JlE 

• '. 

roo~ 

A , 
(.) 

f XlN 

(0) 

~1J:' 5-1:1 
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Important Points 
• Always draw the free-body diagram first when solving any 

equilibrium problem. 
• If a support prel 'l!lIts Irtlllslatioll of a body in a specific direction. 

then the support exerts afQrcc on the body in that direction. 
• If a support prel'cllls rQ{(l/iO/l (11)0111 (ul (uis, thcn the support 

exerts a cOllple mQmCIII on the body about the axis. 
• If :I body is subjected to more. unknown reactions than available 

cquationsof equilibrium. then the problem is slIItirolly intlett'nllim/tl'. 

• A stable body requires that thc lines of action of the reactive 
forces do not intersect a common axis and arc not parallcllo onc 
another. 

Procedure for Analysis 
Three-dimensional equilibrium problems for a rigid hody can be 
solved using thc following procedure. 
Free-Body Diagram. 
• Draw an outlined shape of the body. 
• Show aU the forces and couple moments acting on the body. 
• Establish the origin of thc x. y, t axes at a con\'cnit.:nt point and 

orient the axes so that Ihey are parallclto as many of the external 
for=~ and moments as possible. 

• Label all the loadings and specify their di rections. In general. 
show aU thc IIl1kllOl>'1I components having a /W.firil·e s('lIse along 
the x. y. z axes. 

• Indicate the dimensions of the body neccss.ary for computing the 
moments of forces. 

Equations of Equilibrium. 
• If the .t. y, ! force and moment components seem easy to 

determine, then apply the six scalar equations of equilibrium: 
Olherwise usc the veelOr equations. 

• It is nOllleccssary that the sct of axes chosen for force summation 
coincide with the set of axes chosen for moment summation. 
Actually. an axis in any arbitrary direction may be chosen for 
summing forces and mOlllents. 

• OIOOSC the direction of an axis for moment summation such that 
it intersects the lines of action of as many unknown forces as 
possible. Realize that the moments of forccs passing through 
points on this axis and the moments of forces which arc parallel 
to the axis will then be 1.ero. 

• If the solution of the equilibrium equations yields a negative 
scalar for a force or couple momcnt magnitude. it indicates that 
the sense is opposile 10 that assumed on the free-body diagraill. 
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EXAMPLE 5.15 

The homogeneous platc shown in Fig. 5- 2&1 has a mass of 100 kg ;U1d 
is subjected [0 a force and couple moment along its edges. If it is 
supported in [he horizontal plane by a roller at A. a ball-and-socko,:t 
joint at fl, and a cord al C. delCrmine the componcnts of reaction at 
these supportS, 

SOlUTION (SCALAR ANALYSIS) 

Free-Body Diagram. There arc five unkno ..... n reactions acting on the 
plate, as shown in Fig. 5-2&". Each of th<;S(' reactions is assumcd to :Ict 
in a positille coordinate direction. 

Equations of Equilibrium. Since the three-dimensional geometry is 
r;l\her simple. a $C(lllIr (lI/(I/ysis prOlli(.ks a (/iree! soill/io/l \0 this 
problem. A force summation along each axis yields 

'i.F~ = 0; 

'iF,_ = 0: 

'iF: = U; 

B = 0 , 

B. = 0 

A : + B. + Tc - 300 N - 981 N = 0 

A ns. 

( I ) 

Recall that the moment of a force :lbout:ln axis isequalto the product 
of the force magnitude and Ihe perpendicular distance (moment arm) 
from the line of action of the force to the axis. Also. forces lhat arc 
parallel to :In ;I.~is or pass through it create no moment about the :lxis. 
li enee. summing moments about Ihe posi tivc.1" and }' axes. wc have 

'i.M, '" 0: Td 2 m) - 981 N(I m) + 8,(2 m) = 0 (2) 

'iM .• = 0: 

300N(I.5m)+ 981 N(I.Sm)- B,(3m)- A,(3m) - 200N'm = 0 (3) 

The components of the force at B can be eliminated if mOOlents are:: 
summed about the x ' and y ' axes. Wc obtain 

~M~. = 0: 981 N(1 01) + 30U N(2 m) - 11,(2 m) = 0 (4) 

'i.M,. = 0: 

- 300 N(\'sm) - 981 N(J.501)- 2ooN· m + Td 3m)'" 0 (5) 

Solving Eqs.1 through 3 or the:: more convenient Eqs. 1.4. and 5 yiclds 

A. = 790N B, = - 217N Tc= 707N Am .. 

The negativc sign indicates that B: acts do",nw;m.l. 

NOTE: 111':: solution of this problem docs not require a summation of 
moments about the z axis. 'Ibe plate is panially constrained since the 
supports cannot prcllent it from turning about the l axis if a force:: is 
applied to it in the x- y plane. 

, 

300 1'1 1200 N.m 
"'gN"" J T 'I " , 

1m A .s£-~ 
><i 1 1.5 m y 

A. I /' n, 8 , '-->, , . . ~) 
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EXAMPLE 5 .1 6 

, 

Determine the componenls of reaction that the b'ill·and·socket joint 
at A. the smooth journal bearing at B. and the roller support at C 
exert on the rod ;1ssembly in Fig. 5-2<)". 

,., 
SOLUTION 

c 

0.6 n' -...c....,. 

A, 
> 

'm 
,\ . • R, 

.< o.:i;;;-Z r:::B 
OAm o.~ / 

'" tlg. S-29 

Free-Body Diagram. As shown on the free-body diagram. fig. 5-29b. 
the n::activc forces of the supports will prellenl the asscmbly from 
rotaling about each coordinate axis. and so the journal bearing ,1\ fJ 
only exerts reacti'·e forces on the member. 

Equations of Equilibrium. A diT\~cl solUlion for II,. can be obl:lined 
by summing forces ,']ong thc y axis. 

'iF, = 0; AilS. 

The force Fe can be delCmlined directly by summing moments about 
the y axis. 

'iM, = 0: Fc{O.6 m) - 900 N(O.4 m) '" 0 

Fe = 600N AIlS. 

Using Ihis resuh. 8 , tall be delemlined by summing momenlS aboUl 
the or axis. 

8 , (0.8 m) + 600 N(1.2 m) - 900 N(OA m) = 0 

8, = - 4SON 

The negativc sign indicates that B,. acts dO\\llward. The force B. can 
be found by summing momcnts about the z axis. 

'if..." => 0; 

ThUs. 

'iF, = 0; 

- B .• {O.8m) = 0 B. = 0 

A. +O = O 

FinalJ),. using lhe results of B, and Fe. 

II ,. + (- 450N) + 600N - 900N = 0 

A,= 750N 

A ilS. 

Ans. 

AilS. 
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EXAMPLE 5.17 

The boom is used 10 suppon Ihe 75-lb nowerpol in Fig. 5-3Oa. 
DClcTmine the tcnsion developcd in wircsAB and l i e. 

SOLUTION 

Free-Body Diagram. The free-body diagram of the boom is shown in 
Fig.5-30b. 

Equations of Equilibrium. We will use <I \"cclOr analysis. 

, ( r'IS) ' ( P i - 6j + 3k) ft ) 
f Ail '" FAil - '" f ,li! 

' A ll 2 (2 (1 )2 + ( 6 fl)2 + (3 fI)2 

We ean eliminate the force rC <lelion at 0 by wriling Ihe moment 
cqu3tion of equilibrium about point O. 

r" X (FAB + FAe + W) = 0 

( I ) 

0 = 0 

r./I1~: O; (2) 

Solving Eqs. (I) and (2) simullaneously. 

An ... 

, 

", 

' " 

II' .. 73 1b 
6 ft --. 

< 
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EXAMPLE 5 .1 8 

1 
,. e \ 

Um 

'00 .1 \ 
/ ,. 8 

~ 
I-I 

i 
At ", A, --, 

./' " , 

1 
Ie 

" 
:ZOON 

T, 8 

"I 
fl g.5-31 

,-,. D 

T, 

Rod AU shown in Fig. 5-31a is subjected to the 2()()"N force. 
Determine the reactions at thc ball-and-socket joint A and the 
tcnsion ill the tables BD and BE. 

SOLUTION (VECTOR ANALYSIS) 

Free-Body Diagram. Fig.5- 31b. 

Equation$ of Equilibrium. Represcnting each force on lhe free-body 
di3gram in Cartcsi;m vector (orm. we ha\'e 

FA = A, i + A .. j + A,k 

T£ = Tf:i 

T o = Toj 

F = { - 200k } N 

Applying the force equation of equilibrium. 

:i: I-' = O: F,, + T e + T v + F = O 

{A , + T£)i + (A ,. + Tv)j + ( A , - 2oo)k "'" 0 

:i:F, = 0: II ~ + T f: = 0 

:i:Fl = 0: IIy+ Tv = O 

:iF, = 0: A, - 200 = 0 

Summing moments about point A yields 

:i:M" = 0: re X F + r /j X (T£ + To) = 0 

Since re = irs. then 

( I ) 

(2) 

(3) 

(0.5i + Ij - Ik) X (-200k) + (I i + 2j - 2k) X (T£i + Td ) "" 0 

Exp3nding and n:arrangillg terms gives 

(2T/I - 20U)i + ( - 2Tf.: + 100lj + (li) - 2Te)k = 0 

:iM~ = 0; 

:i:M). = 0: 

2TIJ - 200 = () 

- 2T£ + 100 = 0 
:i: M, = 0: To - 2l 'e = () 

Solving Eqs. 1 through 5. we get 

To = 100N 

T£ = 50N 
A, = - SON 

A,. = - lOON 

A,= 2ooN 

(') 
(5) 

(6) 

Am. 

AilS. 

AlI.t 

Am. 

Ails. 

NOTE: The ncgath'.:: sign indicates Ihal A, and A) have a sens.:: which 
is opposi te to th,l\ shown on th.., free-body diagram. Fig. 5-3Jb. 
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EXAMPLE 5.19 

The bent rod in Fig. 5~32t1 is supported at A by a journal beMing. at 
D by a ball·and-socket joint. and at B by means of cable Be. Using 
only O/I t< equilibrium el/'Ullioll. obtain a direct solution for the 
tension in cable Be. The bearing at A is c"pablc of exerting force 
compunents only in the l and), directions since it is properly aligned 
on the sharI. 

SOLUTION (VECTOR ANALYSIS) 

Free-Body Diag ram. As shown in Fig. 5- 32b. there arc six unknowns. 

Equations of Equilibrium. The" cable tensiun Til may be obtained 
(lirecll), by summing momclIIs about an axis that passes Ihrough 
poinls D and A . Why? The direction of th is axis is ddined by the unil 
veClor u. when:: 

u """ f VA ""' __ 1_ ; __ 1_; 
'VA v2 v2 

= - U.707I i - O.7071j 

lienee. Ih l; sum \)f the mOlnellls about th is axis is zero provided 

"iAt 0,1. = II ' "i{f X F) = 0 

I·lere r represents a posi tion vector drawn from WI)' poilll OIl the axis 
DA 10 any poinl on Ihe line of ac tion of force .. - (sec Eq. 4-11). With 
rderence to Fig. 5-32b. we C'dn therefore write 

u ' (r8 x Til + I E. X W) = 0 

(-0.7071 i - O.707Ij ) - [( - lj ) X ( T8k ) 

+ (-0.5j ) x (-981 11. )] = 0 

(-0.7071 i - 0.7071 j)· (( -Til + 490.5 )il = 0 

- O.707l (-TII + 490.5 ) + 0 + 0 = 0 

78 = 490.5 N 

Since the moment amlS from Ihe axis lu Til and W arc easy 10 oblain. 
we can also determine this result using a scalar analysis. As shown in 
Fig. 5~32b. 

!MIM = 0; 18(1 mStn 45") - 981 N(0.5 m sin 45°) = 0 

T" """ 490.5 N 

c 

~ 

(!.!l m /' 
'< 

O.!l m 

1' ) 

(» 

Fi ~. 5-32 

D ,. 

tOO kg 
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• FUNDAMENTAL PROBLEMS 

All probltm so/miu/IS /IIJISI ;lIdm/l.'ulI fBO. 

B .... 7. The uniform plale has 3 weighl of 500 Ib. Determine 
Ihe lension in each of the supporling cables. 

H c 

f 5-7 

F5-~ Delermine the reanions al the roller support A. 
the ball-and·soc:kCl joint O. and the tel\Sion in cable 8C 
for tile plate. 

, 
O.Jm 

f 5-lI. The rod is support ~d b)' smoolll journal bearings al 
A. 8 and C and is subjected to th~ 11'00 forces. Determine 
the reactions at these supports. 

O.6m -
~, 

O.6m 

c 

.,," 
1) ,.-- 1 
O.6m 

f5- lll. Determine the supporl reanions aI the smootll 
journal bearings JI . 8. and C of the pipe assembly. 

O.6m~ 

o~ / ""'A'"~'-"'-N 
~ O.6m __ 

" 

O.6m 

f 5-IO 

.-5-11. Dctermine thc force de\·clopcd in cords 80. Ct:.. 
and CF and the reactions of the ball-and·socket joint A 
on the block. 

f 5-11 

~·5- 1 2. Ikterminc the components of react ion Illat the 
thrust bearing A and cable 8e e.wrt on tile bar. 

, 

f 5-12 



• PROBLEMS 

1\11 probl.-", S{J/li/jUrl)' III11SI i"c1"d~ 1111 F/JO. 

5-63. The can suppons the uniform craIe ha"ing a mass of 
8S kg. Deleon;nc the ven ital reactions on the IllTc..- casters 
al A. 11. and C. The caSler at B is nOI sllown. Neglect the 
mass oflhc can. 

I' rob. s-oJ 

.~ The pole for a po· ...... r line is subjected \0 the two 
cable forces of 60 lb. cach force lying in a plane parallel 10 
the ),'-y plane. If the tension in the guy wire A8 is 80 lb. 
delermine the.l" . y. ~ oomponcnlS of reaction al the fixed 
base of the pole. O. 

c~-:".,----- 61llb 
..... 45" 

", 
601b -

I' ,ub. S-64 
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· 5-65. If I' ,.. 6 kN. ¥ .. 0.75 m and)' .. ! m. determine 
Ihe tension dC"eloped in cables AB. CD. and EF. Negieci 
the "'eight of tile pia lI'. 

5-66. Delermine tile location x and}' of the point of 
applicmion of force " 50 thai the tension de'"clopcd in 
cables , I ll'. CO. and EF is Ille same. Neglect tile wright of 
Ihe plale. 

, 

" 
F , 

o 

Pr(lbs. ~S166 

5-67. Due 10 3n unequal diSl(ibution of fuel in Ihe wing 
tank.s. Ille centers of gm"it)· for Ille airplane fuselage A 
Md wings 8 nnd C arc locntcd 3S sllown. If these 
componenl$ lIave " 'eights W. - 45 fO) lb. IV~ - SOOO lb. 
and IV, _ 6000 lb. delermillc Ihe normal reaclion5 of Ihe 
wbccl5 D. £. and F on the ground. 

Proh . ~7 

'>« . 
' 4ft Y 

2011 3ft 
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' 5-611. IXI~rmine tile mag1lltude of force ." tllal must be 
exened on Ihe handle 31 C 10 lIo1d Ihe 75-t g ernie in the 
position shown. Also.dclcmline Ihe components Ofre1lelion 
altlle Ihrust rearing A and smOOllljoumal bearing 8 . 

I'rob. S-6iI 

. 5-6!J. The shaft is supported by three smooth journal 
rearings at A. H. and C. Determine Ihe romponcnts of 
rea"ion at these bearings. 

~.6n 

, ... ~/78 
O.9m ~ 

300N 1l.9m 

" rob. 5-69 

~m , 

5-711. Determine the tension in cables 80 and CO and 
the.r. >~ • components of re3ction 31 Ihe ball -and·socket 
joint at A. 

D 

H .?~I--j.lL 

c 

I'roh.5-70 

3m 

V 'm , 

5-71. lhe rod assembly is used tosuppon the 2SO-lbcytinder. 
Iktermine tile eomponenls of reaction al the ball·and­
sortet joint A. tile smooth journal bearing E. and the force 
de"eloped along rod CO. The ronnections al C and J) are 
ball·and·socket joints-

'" 

l'rob.5-71 



°5-72. Delennine Ihe oomponenlsof reacuon aning 311he 
smoolh Journal bearings A. H.and C. 

c 
JOON'm 45' 

OAm 8 -O.~ m"-

Prot!. 5-72 

f "m 

' 5-7J. l)elennme lhe fom.' romponcnls aningon Ihe ball. 
and..sockcl al A.lhe reanion al Ihe roUer H and the tension 
on Ihe cord CD needed for equihbrium of Ille quaner 
cIrcula r plale. 

, 
D 

200N 

t'rnb.5-7J 

5.7 COI>r.iTlWHTS AKJ 5TAllCAt DromIMlKACY 255 

5-701. If the lo:.Id has 3 weight of ZOO lb. dcttnninc the x. y. 
~ components of rcacllon 3tthc ball-and-sod:et JOInt A and 
the tension in each of the wires. 

, 

t'rOO.5-74 

5-75. lr Ihe cable can be subjcr\ed to I maxImum tenSIon 
of Jtl) I". octenmne Ihe maximum force f" ... htch mlw be 
applied to the platt. Compule the x. y. = componenis of 
reaclion II Ihe hinge A for this loading. 

'" "I c , 

/, , or, 

l'roo.5-75 
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· 5-76. Th ... m ... mber is supported by a pin at A and a cable 
Be. If the load Dt /) is 300 lb. determine th ... . f. y. ; 
components of reaction at the pin II and Ihe tension in 
cabJe 8 e. 

, 
, 

, 

"rob.5-76 

·5-n. Th ... plme has a ..... eight of I\' ..... ith cente r of gm.·ity 31 
G. IXlermine the distance d aJong Jine Gil ..... here the 
.'ertieal force I' = 0.75\\'\',;11 cause the t ... nsion in ..... ire ("I) to 
becom ... z ... ro. 

5-7li. lbe pble has a "1:ight of IVwith center of gta";ly al 
G. DelCrmine the tension dc"eloped in ..... ires AB, C/), and 
EF if Ihe force 1' .. 0.7511' is applied alii ,. In, 

, 
D , 

J. 
J. , F , ..-- , 

a , 
J. 

£ ,. , 

I' rnbs. 5-nm~ 

5-19, "Ille boom is supported by a ball·and-SO(ke\ Joint at II 
and a guy " 'ire al B, If the 5·kN lo.lds He in a plallC " 'hkh ~ 
paraUclto the .T-y plane, determine the .T. Y. ~ components of 
reaction at II and the tension in the cable at B, 

I'rob.5-"N 

. 5-80. The cireular door has a ..... eight of S5lb and a center 
of gravit)· 3t G. Determine the .t. y, ~ components of 
reaction 3t Ihe hinge A and Ihe foree acting along Slrut C8 
needed 10 hold the door in equilibrium, ScIIJ .. 45· , 

' S-l! I. lbc circular door has a ..... eight of 55 lb and a cen ter 
of gravi t), 3l G. Determine the .t. y. ~ components of 
reaction at the hinge II and the foree acting along strut C8 
needed to hold Ihe door in eqUilibrium. Sci 8 .. 90". 

Probs.5-8tlI!I1 



5-S1. Member;\8 is supported atH by a cable and at;\ by 
a smooth fixed sq"IJ'~ rod which fit s 10000ly through the 
SQuare hole of the coUnr. If F - {2Oi - 40j - 7S.t } lb. 
determine the x. y. ~ components of reaction at II and the 
tension in the cable. 

5-8.t "'[ember;\8 is supported 3tH by a cable alld at II by 
a smooth fil ed sq""'~ rod which fi ts [OO$Cly through the 
square hate of the collar. Determine the tension in cable He 
if the force t· - {- 45k} lb. 

A 

. s....34. Determine the largest .... eight of the oil drum that 
the noor crane can support without o\·ertuming. Also. what 
arc the \"crtical reactions at the smooth wheels A . H. and C 
for this casc. "Ihe noor crane has a weight of 300 lb, " 'ith its 
center of gra\'it)' located at G. 

, 

I'r,>b.~ 
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' 5-85. t he circular plate has a weigh t IV and cenler of 
gra\;I)' 31 its center. If it is supported by three vertical cords 
tied 10 its edge. delermine the IJrgest distance II from the 
ccnter to where any I"crtieal force P can be applied so as not 
to cause the force in anyone of the cables to become zero. 

.5-36. Soh'c " rob. s-ss iflhe plate'S weight \I' is neglected. 

I' robs. 5-8S1116 

3-87. A uniform square tahle ha,ing:l weighl II' and sides 
"is supported by Ihree ,·erticallegs. Detc rmine the smallest 
I"Crtica l fort"C I' that can be applied to ils top that " 'iIl cause 
illO lip Ol"e r. 

I'rob. S-S7 
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CHAPTER REVIEW 

Equil ibrium 

A bOOy in equilibrium docs nOI rOlate but 
can translate willi eon§tant veloci ty. or il 
docs nOI mo"e al alL 

T,,-o J) imcmio RS 

Before analyzing Ille equilibrium of a bOO)'.il is 
first necessary 10 draw il:5 free·body diagram. 
This is an outlined sllape of the body. wllich 
sllows all Ihe forces and tOUr'.:: momenl:5 that 
acl on il. 

Couple momenlS tan be placed anywhe re 011 

a fr.::e·bod)' diagram since tile)' ar~ free 
veCIOrs. Forccscan act al any poinl along tlleir 
line of action sillcc tlley arc sliding "cctors. 

Angles u~d to rcsolve fortes. and dime nsions 
used to lake moments of tile forces. should 
also be sllown oilibe frce·bod), diayam. 

Some common t~pcs of supports and tbeir 
reactions are sllown 1>;:101" in 1"''0 dimensions. 

Remember 111m a support will exert a force on 
tbe bod~ in a particulardirettion if it pTcvcnL~ 
tmnslmion of the body in Illal direttion. and;1 
"ill exert a couple momen t on tbe body if il 
prevents rotation. 

ro!t~. 

The tbree scalar cquatioll5 of equilibrium 
can be applied wilen solving problems in N -O 
dimensions. since the geomelry is casy 10 
visualize. 

~'l 

tj / 
0 

, 

..--2 m--l SOO N · m 

Wi! .~ 

!ImOOlh pin o. hinge 

':iF, = 0 
':iF,. "" 0 

':iMo = 0 

'm 
-'- B ~30" 

, 
L , 

fixed suppan 

" / 

_t', 
, 



For the most di rect solution, try 10 sum forCt:s 
along an axis that will eliminate as man)' 
unknown forces as possible. Sum moments 
ahout a po1ll1 A Ihal parose! through the tine of 
action of as many un known forces as possible. 

Three Dimensions 
Some common types of supports and their 
reactions arc ShOlll1 here in three dimensions. 

r.F~ "" 0: 
A , - 1'2 = 0 

"'i.M" = 0; 
P2'lz + Blfn - Ptll t = 0 

[WI - J~fz 

/ 
f' I 

.olkr ball and .socket 

In three dimensions. it is often ad,'amageous 10 
me a Cartesian \'ector analysis when applying 
the equations of equilibrium. To do this. first 
cxprcss each known and unknown force and 
couple moment shown on the froo-body 
diagram as a Cartesian "eClor. 1"hen SCI the 
force summation equal to zero. Take moments 
about a poim 0 Ihal lies on the line of aClion of 
as many unknown force componenlS as 
possible. From point 0 direct position \,I:Ctors 
10 eaell force. and then usc the cross prodUCltO 
determine the mom.;,1lI of each force. 

The six !;Calar equations of equilibrium arc 
established by selling Ihe respective ;.j . and k 
components of Ihe!;C force and moment 
summations equal 10 zero. 

Detenninaey and S iabilil ~' 

If a body is supported by a minimum number of 
constraints 10 enS\lre equilibrium. then it Is 
slatically de terminate. If il has more constraints 
than required.thcn il is Sl8tically indetcrmin.lte. 

To properly conslr~in Ihe body. the reactions 
mmt not all be parallel 10 one another or 
concurrcnt 

r. F = 0 
::: 1\10 = 0 

r.F., = 0 
r.Fy= O 
::iF, = 0 

'iM.r = 0 

'i..M , = 0 
'i.. M: = 0 

'"'' j 

StHlica!1y inde'ermin.'IO. 
r,"c rcaCIlOllS. Iht\"'c 
equilibrium equations 

25 9 

fIXed support 

200N 

lOON 

rropc:r cons".,"!. S1al,cal!~ OCl~rm,"alC 
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• REVIEW PROBLEMS 

. 5-l!II. Delermine the hOlUollial and \'crlieal romponenlS 
of reaclion 31 Ihe pin A lind Ihe force in Ihe cable He. 
Neglect che thickness of the membo:n. 

c 

T 
, 

N/ m ,. 

+-
lOON ,. 

L f~u.J 
l' rob. 5-88 

05--lf1l. Determinc I~ hOlUontal and \'crtieal romponenlS 
of reaclion HI the pin A and the rcftclion at Ihe roller H 
required to supportlhe truss. Sci F - 600 N. 

5-9(1. If Ihe roller 31 H can sustain a muimum load o f 
3 kN. determine the largesl magnitude of each of the three 
forces F Ih31 can be supported by the truss. 

'" '" , 
I'rohs. 5-1111190 

5-9 1. Delermine the normal reaction at the roller A and 
horizonlal and \'enical rom(l('ncnts al pin H for equilibrium 
of the member. 

0.6m 0.6m 

" 

" '"'. 

Prob. 5-91 

"5-9!. The shari assembly is supported by t"·o smooch 
journlll bearings A and H lind a short link DC. If a couple 
mornenl is applied to Ihe shall as shown. dclermin .. the 
components of force reaction Btthe journal bearing!' and the 
force in the link. l l1e link lies in a plane 1'<1rallclto the ),-z 
plane and the bearings arc prop.-:tly aligned o n the shaft. 

250 mm 
, JOO mm 

fXiii~, "" N " . 1'>< -
4OOmm- .............. y 

I'rOO. 5-\12 



 

05-'13. Delermine Ihe reaclions allhe supports A and 8 of 
the frame. 

Hip 

A 

rmb. ~3 

IOk,p 
Hip - -.,,-

H 

5-94. A skeletal diagram of the lo"er leg is shown in the 
lower figure. I·lere;t can be noled that this portion oflhe leg 
is lifted by the quadriceps muscle atl3chrd to the hip at A 
and 10 the patella bone Ot 8. This bone slides frcely o'·cr 
(artilage at thc knee join!. The quadriceps is furthe r 
cxtendcd and anached to the tibia at C. Using the 
mcchanical syslem shown in the upper figure to model the 
lowcr leg. detenninc the tension in the quadriceps at C and 
the magnitude of the resultant force 3tlhe femur (pin). D. 
in order to hold the lower leg in the posi tion shown. The 
lower leg has a mass of 3.2 kg and a mass center at G t: the 
foot has a mass of 1.6 kg and a mass center at Gl. 

7~mm 
~. , 

l~mm """ B ! J50 nom 

A F===== .... ~-'~~~_c~ 
Dlw 

Proll. 5-94 

G, 

'" 
5-95. A wrtieal force of 80 III aclS on thc crankshaft. 
Determine the horizontal equilibrium force f' that must be 
applied 10 the handle and the .r.),. z components of force at 
the smooth journal beanng A and Ihe thrust bearing B. The 
bearings arc properly aligned and exert only force rcaClions 
on the shafl. 

, .,,, 

gin. 

~. , 
1' 1"<.b . 5-95 

\4 in. 

05-%. The symmclTical shelf is subjected to a uniform 
load of 4 kPa. Support is provided by 3 bolt (or pin) located 
at each end A and A ' and b~' the symmetrical brace amls. 
.... hich bear against the smoolh .... aU on IXlIh sides at Band 
B'. Detemline the force resisted by caeh bolt at the wall 
and the nonnal force al 8 for equilibrium. 

l'roh.5-96 



The forces wllhll"llhe membe/$ of eath truss bridge mllst be determined if Ihe 
members are 10 be properly desIgned. 



Structural Analysis 

CHAPTER OBJECTIVES 

• To show how to determine the forces In the members of a truss 

using the method of joints and the method of sections. 

• To analyze the forces acting on the members of frames and 

machines composed of pin.connected members. 

6 .1 Simple Trusses 

A (rIISS is a s tructure ,omposcd of slender members joined logcther :u 
their end points. l bc members commonly used in construction consist of 
wOOllen st ruts or metal bars. In part icular.plllll/" trusses lie in a single 
plane and an: often us.::d [0 support roofs and bridges. The truss shown in 
Fig. 6--111 is an example of a Iypical roof,suppoTling truss. In this figure, the 
roof load is Imnsmincd [0 Ihc truss til III~ joims by means of a series of 
,lIIr/ills. Since this loading aCls in Ihc same plane as Ihc truss, Fig. 6-lb, 
the analysis of the forces dc\'\~lopcd in the truss members will be 
two·dimensional. 

Fig. 6- 1 

'" 
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,.) 

'" 
Fig, 6-3 

Bridge mISS 

'" 
In the cas.:: of a bridge. such as shown in Fig. 6-2n. the load on the deck 

is first transmitted to slrillScry. then to floor 111'111115. and finally to the 
jOinls of the two supporting side trusses. Like the roof truss.. the bridge 
truss loading is also coplanar. Fig. 6-21,. 

When bridge or roof trusses extend over large distances. a rocker or 
roller is commonly used for suplXlning one end. for ('xample, joint A in 
Figs. 6-11, and 6-:a,. This type of support allows freedom for e~pansion or 
contraction of the members due to a change in temper-Iture or application 
of loads. 

Ass umptions fo r Design. To design both the members and the 
connections of a truss. it is nece$.1ry fin>! to determine the forel' 
de\'elopcd in each member when the truss is subjected 10 :1 givell 
lo.1ding.To do this we will make two important assumptions: 

• All IOfldillg.l· U1'l' II/lplil'll at Ihl' j oilllli. In most situations. sucb as 
for bridgc and roof trusses, this assumption is true. Frequently thc 
weight o f the members is neglected because the force supported by 
ellcb member is usually much larger than its Weight. Howe\'er. if thc 
weight is to be included in the :malysis.. it is generally satisfactory to 
apply it as a \'erlkal force. with half of ils magnitude applied al each 
end of tbc member. 

• 1'hl' mtmbuli urI' j tlin t tl wgt lhtT by ~'"wQlh p;n,I'. The joint 
connections are usually forniI'd by bol ting or welding the ends of 
the members to a common plate, called a 8'/$$<,1 phl/e, as shown in 
Fig_ 6-31,. or by simply passing a large bolt or pin through each or 
the members. Fig. 6-Jb. We can assume these connections al'l as pins 
provided the cenler lines of the joining members are COIIC//rUIII, as 
in Fig. 6-3. 



T 

T 

Tcn§ioo ,., 

c 

C 

Comprcui<J<l 

'" 

BCC3USC of these two assumptions.tolld! ITIIS$ IIIt'lIIbt'T ... iIIll rlllS (/ />I'(}­

[OTeI': IlIe'mba, ami the refore the fo rce ac ting a l each end of the mcmb..-:r 
will be din:ctcd along the axis of the member. If the force lenus to 
dill/gillt' tbe member. il is a lel/l'Ut force (1'), Fig. 6-41: whereas if illcnds 
[0 shorlell the member. il is a cQmpn$sil'(' faret! (C). Fig. 6-4b. In the 
actual design of a truss it is imporlanllO stale whether the naWfC of the 
force is h:: nsi lc or comprcss;\·c. Often. compression members must be 
made thirkt'r Ihan tension members beca use of the buckling o r column 
erfect that ('JIX urs when a member;s in compression. 

Simple Truss. If three members arc pin connected ;tllhcir ends Ihe)' 
form a lrillllgu/lIr /flUS Ihal wi ll be rigid. Fig. 6-5. Auaching Iwo morc 
members and connccting Ihesc memhcrs 10 a new joinl D fonns a larger 
lruss. Fig. 6-6. This procedure carl be repealed as marl)' limes as desired 
10 fonn an even Inrger !russ. If a Iruss can be conslrucled by expanding 
Ihe basic lriangular Iruss in Ihis way. il is called a simplt' IT/US. 

A 

~lg. 6-S 

6.1 SiMPlE TIIVSS€S 265 

The II~ or "'elal 811sse1 plal.:s in Ihe 
oonSlrllClion or Ihesc Warren IJ"IISSCS is 
elearlye'·ide"!. 
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-.--"",- . 

,. 

1---2. ,., 

6.2 The Method of Joints 

[n order to an111}"l.e or design a truss. it is necessary to dClemline the force 
in each of its members. One way to do this is to use the method of joints. 
1'11is method is based on the fact that if the entire truss is in equilibrium. 
then each of lis joints is also in equilibrium. Therefore. if the free.bod}' 
diagram of ellch joint is drawn. thc force equilibrium equations can then 
be used to obtain the member forces acting on each joint. Since thc 
members of a f,IIIIIt, lruss arc straighttwo.forcc members lying in a single 
plane. each joint is subjected to a force system that is COp/fIllIIT IIml 

(;(Jm:urrf'lll. As a resuh.only XF. =< 0 and rF, = 0 need to be s.1tisficd for 
equilibrium. 

For example. consider the pin at jOint 8 of the truss in Fig.6-7a. 
Three forces act on the pin. namely. the SOO·N force and the forces 
exerted by members 8A and Be. The frec.bod)' di11gram of the pin is 
shown in Fig. 6-7b. Here. F BA is "pulling" on the pin. which means that 
member HA is in !ellSion; whereas F8C is "pushing" Oil the pin. and 
consequently member BC is in cQmprt'ssicm. These effects arc cleMI)' 
demonstrated by isolating the joint with small segments of the member 
connected to the pin. Fig. 6-7c. The pushing or pulling on these small 
segments indicates the effcct of the member being d ther in compression 
or tension. 

When using the method of joints.. always start at a joint having at ic::ast 
one known foro;: and at most twO unknown forces, as in Fig. 6-7b . In this 
\\'a}'. application of ':iF, "" 0 and ':iF. := 0 yields two algebraic 
equations which can be soh'ed for the t":o unknowns. When applying 
these eqmltions. the correct sense of an unknown member force call be 
determined using one of two possible methods. 

~,.""" " 1'.~(I~nsion) t"4;~ ~'K(romprc",,1OJI 

'" 
Fig. 6-7 

'0' 



• The (o m.'ct sense of direction of.m unknown member force can, in 
many cases, be determined "by inspection:' For example, . '/Ie in 
Fig. 6-711 must push on the pin (compression) since ils hori7.0nlal 
component, F/lesin 45°. must balance the 500.N force P: F, '" 0), 
Likewise, . '/1-1 is a lensile force since it balances the vcrtical 
component. F8(' cos 45° ( 'i F y "" 0). In more complicated cases, lhe 
sense of an unknown member forcc can be assumed: then. afte r 
applying the equilibrium equations. the assumed sense can be 
\'eriried from the numerical results. {\ posit;I'" answer indicates th~l l 

the sense is COrfUl, whereas a /It'glll;'''' answer indicates that the 
sense shown on the free.body diagram must be rt!I't'fSt'ti. 

• AIII'(lY$ (I$J'llIIle the IlIIkllOIl'/1 //Ifllliur forcf$ ac ting on the joint's 
free·hody diagram to be in Ie/uioll: i.e .. the forces "pull" on the pin. 
If th is is done. then numerical solution of the equilibrium equations 
will yield l'"sit;I'/! sculurs [or //It'mhers ill /flls;ollllJulllfglllil'f SCillurs 
[or IIIl'1nbers in compressioll, Once an unknown member (orce is 
found, usc its correct magnitude and sense (T or C) on subsequent 
joint free·body diagrams. 

Procedure for Analysis 

The following procedure provides a means for analY/jng a truss 
using the method of joints. 

• Draw the free·body diagram of a joint ha Yi ng atle35t one known 
force and at most two unknown forces. ( If this joint is at one of 
the supports. then it ma)' be necessary first to calculate Ihe 
exleTl13l reactions al Ihe suppon ,) 

• Use one of the t"'O methods described 3b(we for establishing the 
sense of an unknown fo r~c, 

• Ori~n t the .f and), axes such th3t the forces on the free-body 
diagram can be easily rt."SOlved into their x and Y componenlS and 
then apply the two force eqUilibrium equations Y.F", '" 0 and 
'f.F, = O. Sol\'e for the t"'O unknown member forces and verify 
thei r correct sense, 

• Using the calculated results.continue to analyl.:: each of the other 
joints. Remember that a member in cOlllprfs.f;oll "pushes" on the 
joint and a m~mber in Itllsioll"pulls ~ on the jOint.Also, be sure 10 
choose a joint haYing at most two unknowns and at least one 
known force, 

267 

lbc forces in Ihe members of 1his 
simple roof truss Can be dClcrmincd 
usins lhe method of join1S. 
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EXAMPLE 6 .1 

!.-2m--l ,., 
B 5001' , ~:.C •.. 

", 
. '::::,.707.1 N 

'C~lC 
c 

,,' 

'01 

5001' 45' 707. IN 
_~ TcnsiQn ~, C 

500 1'1 + Soo N SOli' + 500 N 
>OO N 

,,' 

Dcccrminc the forcc in each mcmber of Ihe lruss shown in Fig. 6-&1 
and indicate whether the memix:rs arc in tension or compression. 

SOLUTION 

Since we should have no morc Ihan tWO unknown forces at the joinl 
and M least one known force acting there. we will begin our analysis 31 
joint 8, 

Joint B. The frcc·body diagrmn of Ihc joint at B is shown in Fig.6-8}" 
Applying the C(IUations of (,'{juilibrium, we hallc 

.±.'5:.F,=O: SOON - FlI('sin45Q = O FIIC "' 707.1N (C)AIlS, 

+I ~F, ""- 0: f" l/Ccos 45° - FHA'" 0 FhA '" 500N (T) AIlS • 

Since thc force in member BC has been calcu laled. we can proceed to 
amll}"!.e joinl C to de termine the force in member CA and Ihe support 
react ion 31 the rocker. 

Joint C. From the frec.body diagram of joint C, Fig. 6-&. we h3ve 

.±.r.F,= O: - FCA+ 707.Jcos4SQN = O 

+ Ir.F}:o 0: Cy - 707.1 sin4So N = 0 

FCA '" 500 N (Tl AII$, 

C, :0 500 N lint. 

Joint A. AlIhuugh il is nOI necessary. we can detcmline the 
components of the support reactions al joint A using the results of 
F eA and F 1M' From the free-body diagram. Fig. 6-&1. we halle 

.±. 'i.F~ = 0: 

+ 1:£F,= 0: 

SOON - II ,. = 0 A < = SOON 

SOON- Ay= O A,= SOON 

NOTE: The resu lts of the analysis arc summarized in Fig. 6-&. NOIC 
that the free-body diagram of each joint (or pin) shoWli the effects of 
~Illlhe conne~tcd members and external forces ~lpplied to the joint. 
whereas the free-body diagram of each member shows only the 
effeC1S of the end joints Oil the mcmber. 



EXAMPLE 6 .2 

Determine the force in each memDcT of thc truss in Fig. 6-9" and 
indicate if the memDcTS arc in tension OT comprcssion. 

SOLUTION 

Since joint C has onc known and only two unknown forces acting on 
il. it is possible to Slart allhis joint. Ihcn anal}~/.c joint D. and finally 
joint A. This way the support reactions will not havc to be determined 
prior w starting the anal)·sis. 

Joint C. By inspection of the force equilibrium. Fig. 6-9b. it can be 
secn that both mcmb..:rs Be and CD must be in compression. 

+ f~ F,= O; 

.±, "fF. = 0: 

F"oc sin 45° - 400 N = 0 

F/IC = 565.69 N = 566 N (C) 

Fel) - (565.69 N) tOS 45° = 0 

f""c" = 400 N (C) 

Joint O. Using the result F CI) = 400 N (C). the fon;e in members 
8IJ and A IJ can be found by anal)"l.ing the equilibrium of joint D. We 
will assume FAlJ and t '/fD arc both Icnsile forces. Fig. 6-9c. The x'. y ' 
coordinate syst.::m will Dc cstablishcd so that the .t· axis is directed 
along t 'BD' This way. wc will eliminate the need to solve IWO equations 
simultaneously. Now F .. ID can be obtained iii, .. .::,'" by applying 
"f F,..'" O. 

+ /"fFy' :: 0: - F,w ~in 15° - 400 sin 30" := 0 

f AD = - 772.74 N = 773 N (C) A ilS. 

The negati"e sign indicates that F,II.l is a compr.::ssh·c force. Using this 
n;sult. 

+ '.."f.F( :: 0: FBI) + ( - 712.74 cos 15°) - 400 cos 30° = 0 

FBI) = 1092.82 N = 1.09 kN (T) JiltS. 

Joint A. The force in mcmber AB can Dc found by anal)"l.ing the:: 
equilibrium of joint A. Fig. 6-9d. We ha,·c 

.±, 'iF, '" 0: (772.74 N) cos 45° - FAB = 0 

FA/f = 546.41 N (C) = 546 N (C) 

400N 

,., 
" I 
j""N 

. ·CI> C 

--'IY' 
", 

" K 

~<O . ""N 
1) -' ,"" , .',1> 

W ........... 

" 
, ,. 

", 
, 

" .. :~" - , 
' .. 

" . 
l" 

H g.6-9 
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EXAMPLE 6 .3 

I ···· 
'~. , 

'"" 

,,) 

Determine the force in each member of the truss shown in Fig.6--IUa. 
Indicate whether the members <Ire in tension or compression. 

- I 
'm 

---' .. ---1 
A, 

(.) ,0, 

fiG. fi- IO 

SOLUTION 

Support Reactions. No joint c:m be <In<llyled unti l the support 
reactions arc detennined. because each joint has more than three 
unknown forces tlcting on il. A free-body diagram of the entire truss is 
given in Fig. 6--10b. Applying the equations of equi librium. we have 

.±. ~F.r "" 0: 

C +~Mc= O: 

+ i~F, = o: 

6OON - C~= O C~ = 600N 

- " ,(601) + 400N (3 m) + 600 N(4 111 ) = 0 

Ay = 600N 

6OON - 400N - C, = O C.= 200N 

111e antilysis can now start at ei ther joi n! A or C. 1110:: choice is 
:ubitrary since there arc one known and two unknown member forces 
acting on the pin at each of these joints. 

Joint A. (Fig. 6--10.). As shown on the free-body diagram. F,III is 
assumed to be compressivc and FA t;> is tcnsile. Applying the cquations 
of equilibrium. we have 

+ t~F,= O: 
.±. ":iF, = 0; 

600N - ~ FAII = 0 

FA {) - ~(750 N) = 0 

FAIl = 750 N (C) 
FAV = 450 N (T ) 

"//.I, 
Am: 



 

Joint D. (Fig. 6-lOtI). Using the resu lt for F,w and summing forces 
in Ihe horiwnlal direction. Fig. 6- IOtI. we halle 

..±, Y.F, = 0: - 450N +jF D//+ 600N = O F"s =-2S0N 

The negalive sign indicates thaI . '1)8 aclS in Ihe OPI'0sil.> Sl'llse 10 Ihill 
shown in Fig.6-lOd .... Hcnce. 

F08=250 N (T ) Am:. 

To determine FIX'. we can ei th.::r oorrcclthc sense of F I)ll on the free­
bod)' diagram. and Ihen apply Y.Fy = O. or apply th is equation and 
re tain the negatille sign for F 1)11. i.e .. 

+f Y. F, = O: - Foc -;(-250 N)=O 0 x:=200 N (C) AII.v. 

Joint C. (Fig.6-IOe) . 

..±. IFx = 0: 

+l ~Fy= o: 

FCII - 6001'01 = 0 FCII = 6001'01 (C) AmI: 

200 N - 200 N • 0 (check ) 

NOTE: The analysis is summarized in Fig. 6-10[, which shows the 
free·body diagram for cilch joint and member. 

)
"'" d'·ON 600 N Comp'c"ion 600 '" H __ , .... _ 600 1' 

750", \ 250 1'01 ctlOON 

f 
'" o 

7.<.ON 

I ""~i 200 '" Tc~;on 

A ~ ~-===~~~==~--o; '- 600", 

t 450N 450", D 

600'" 
(0 
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'i 

'\ f -- . . --, 
450 1'01 f) 600 N 

[d, 

j 

'"c. cj"":" --~~-x 

MN 

I 
[" 
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6.3 Zero·Force Members 

Truss analysis using the method of joints is greatly simplified if we can 
firs t identify those members which support /If) llJ(Jdillg. These l~TO-forcc 
IIIl!mbers arc used 10 increase the stability of thc [ross during eonstruction 
;md 10 pro\'ide added support if the loading is changed. 

The ;cero·force memlx:rs of a truss can genera lly be found by 
imlp<'Clioll of each of the joints. For example. consider [he truss shown 
in Fig. 6-1111. If :1 frce .body diagram of Ihe pin :11 joint A is drawn. 
Fig. 6-1 lb. it is seen Ihat members AB and AFare zero-force members. 
(We could not have come 10 [his conclusion if we had considered the 
free.body diagrams of joints f ' or H simply because there :m:~ five 
unknowns at each of these joints.) In a similar manner. consider Ihe free· 
body diagram of joint D. Fig. 6-11c. Here again il is $l,!en thal DC and 
DE arc lero·force members. From these observations. we can conclude 
thaI if (IIII)' two IIIl'lIIbay foml II Inus joilll II/lfl 11(1 I'.TII'rIllII loat! or 
SIIPI)(/rt rl'lIclirm is Ilppliet! to Ihe joim, Ih~ IWO IIIl'lIIbcrs IIIIISI bl' z~ro· 

foru ml'lIIbers The load on the truss in Fig. 6-1 III is therefore supporlcd 
b)' only fi\'e members as shown in Fig. 6-1 III. 

" 

" , ,.) 

'1\" D /' \ ". 
• ,.# 

,~ , 
+ \, 'iF," 0: ... ·/)(.<in , _ 0: .... M" .. Ounce <in'" 0 
+ .-''iF, _ O: F",.+ O _ O; fi .. ;" O 

,,) 
~lg. 6-11 

j 
t ,'" 

AL --. ' .. 
1. -:iF, - O;f',u - O 

+t ':!F,_ O; FM - O 

") 

• 
(0) 

, 



Now consider Ihe [russ shown in Fig. 6-1211, The frcc-body diagram of 
Ihe pin al joint D is shown in Fig. 6-12b. By orienting [he y axis along 
mcm bc! rs DC and DE and Ihe x axis atong member DA. it is seen lhal 
VA is a zero-force member. Note thai this is also the ca:;c for member 
CA. Fig. 6-12c. In general then. if Illrer members form 1/ trI/5.'· jO;1I/ for 
... hieh /1\'0 of lire lIIt'mbf" s 11ft' COlli/WI", lire lhi," IIll'miler ;5 II :1"0-/0(("1' 

IIIl'lIIb", I'rOl';Ii('1I 110 ex/crimi for a or stlPIJOrf rl'lI("I;<)I1 is IIPIIlil'd /(} Ihl' 
jdm. The [russ shown in Fig. 6-12d is therefore suitable for supporting 
Ihe load P. 

, 

C·) 

t./ 'i.F, " O; FCA sin8 " 0; 1'",, _ Osincc sinfJ "' O: 
+". '!.F, " 0: Fe. " I'cn 

C<) 

Fig. &-11 

, 

, ,. 
+,; :::" , - 0; l'nA - O 
"\o !F, _ O: " x. f 'flt 

") 
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EXAMPLE 6 .4 

f 
r~ 
~. --" 
Fr." G I'c.r 

") 

(,) 

'ff~l/ 
-" - -.' 
1',,: f ' Fr.r; 

Cd) 

,,) 

Using tho.: method of joints. det<:rmino.: all the lero·forco.: members of 
the Fink roof mus shown in Fig. 6-13l1. Assume all joints arc pin 
oonnCClcd. 

H" 

c 

,.) 

SOLUTION 

Look for joint geometrics that ha\'c threc mcmbcrs for which two arc 
oollinear. Wc ha,'c 

Joint G. (Fig.6-13b). 

+ f:lFy= o: FGC = 0 A/ls. 

Realize that we could not conclude that GC is a zero-force member 
by considering join! C. where there arc five unknowns. The fact that 
GC is a l.erO-fllfce member means tl1:lt the 5-kN load at C must be 
supported by members cn. cn. CF. and CD. 

Joint O. (Fig.6--13c). 

+,(rF~ = 0: FOf' = O 

Joint F. (Fig.6-13(f). 

NOTE: !fjoint B is analYled. Fig.6-1k 

+ .... 'iF, = 0: 2 kN - F ilII = 0 FBIr = 2kN (C) 

Also. ~/C must sa tisfy 'i.F,. = O. Fig. 6-13f. and therefore HC is /lQI a 
l.cro-force member. 



• FUNDAMENTAL PROBLEMS 

F6-I. Determine Ille force in each member of the truss. 
Siale if the members arc in tension or compr~s.sion. 

' --H, 

" 

F6- 1 

F6-! . Determine Ihe force in each member of the truss.. 
Slate if the members arc in tension orC()mprcssioll, 

1 
'" 

" 1 
._ ,,, - - -

n -2 
F(j- J . Determine the force in members A F. and DC. Slale if 
Ihe members arc in tension or ~omprcs.sion. 

F t·: 
W'====zii=====zII~ 

~~~~J 
~4ft - " --H, 

""" 
I'6- J 

275 

."6-1. Dclcnninc the grcalc:slload l'lhal can be applied IOthe 
truss so Ihal 001\1,' of the mcmbcrs arc subjected 10 a fol'(C 
cxCC1Xling dlbcr2 k.N in tension or l.5tN in com~on. , 

c 

" 
1--'m-< , ...... 

HI- S. Identify the ze ro-force members in Ihe truss. 

HN 

'm -- 'm--· 
c 

Um 

,-.-, 

F6-6. De termine the force in each mcmhcr of the truss. 
St:uc iflhe members arc in tension or compression. 

' ''-_-3(1_ 
, ..... 
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• PROBLEMS 

. 6-1. Determine the force in eaeh member of thc truss.. 
and state if the members are in tension or compression. 

Il001'1 

i 'm J 
---"''-------''''-

-'- 211' - -
" rob. 6-1 

6-2. The truss.. u5Cd to support a balcony. is subjectcd to 
thc loading ~hown . Appro.\imatc each joint as :I pin and 
determine the force in each member. State whether the 
members arc in tension or compression. Sct P, ~ 60CJ lb. 
"z ,., 0100 lb. 

6-3. lbc truss. used 10 supporl a balcony. is. subjectcd 10 
the loading shown. Approximate cach joint as a pin and 
determine tbe force in each menlbcr. Sta te whelher the 
members arc in tension or compression. Sct P I .. 8(JO lb. 
p! .. O. 

I 
'" 
I 

Probs. 6-2I31' roh. 6-1 

.6-4. Determine Ihe forcc in each member of the truss 
and state if the members arc in tension or compression. 
Assume eachJolni as a pin. Set f' ,., .j kN . 

• 6-5. Assume thaI cach member oflhe truss is made of steel 
ha'ing:l mass per length of oj kg/m. Sct P .. O.detennine the 
force in c3Ch member. and indieme if the membeTli arc in 
lension oroompressioo. Negleci tile weighl of the gussel plales 
and assume each joint is a pin. Solve Ihe problem by assuming 
Ihe weigh! of each member can be represented as a "crlical 
forcc.harf of which is applied althe end of each member. 

1 'm 

L ,m--+-- ,m- 1 
I'rubs. 6-VS 

(Hi. Determine Ihe force in each member of Ihe truss and 
st3lC if the membeTli lITe in te nsion or compression. Sel 

' '! " 2 kNandf'!- 1.5kN. 

6--1. Determine Ihe force in each member of Ihe lruss and 
st31e if Ihe members are In tension or compression. SCI 
, ,, - P! - .jI:N. 

" 

D -----'m---

" I' robs. 6-6/7 

c 



-6-8. Ocumninc Ihe for,,! in eaeh member of Ihe truss.. 
and state if the members are in i<'nsion or compression. Sct 
P - SOOlb. 

' 6-9. Remove the 50()..Ib force and then dete rmine the 
greatest force P th~ t can be applied to Ihe truss so that nOllc 
of the menlbers are subjected tO:l. force exceeding e ither 
800 Ib in tension or 600 III in compression. 

H , 

,,,,," 
' " 

"~-""'; 
8 

Pro",",. 6-lII9 

"1 
'" 

c 

6-10. Oetemline thc force in each member of the truss 
and statc if the members are in tension or compression. Sct 
1'1 - SOOlb.l'l - O. 

6- 11. Octermine the force in each member of Ihe truss 
and Slate if the members arc in tension or compression. Sel 
P I - 6(lO lb. f'~ - 400 lb. 

P.ob'\.. 6-IOI II 
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' 6-12. Detennine the force III each member of the trUSS 
and state if the members arc in tension or oomprcs:sion. ScI 
I'J - 2-10 lb. /'1 - 100 lb. 

· 6-B . Octenninc the largest load I'l thal ean be applied 
to the Iruss so Ihal the force in any member docs not exceed 
5OOIbCT)or 350lb(C).TakePI "' 0. 

l'rIll». 6-IUIl 

6-14. I)ctermilll.' thc force in each member of the truss. 
and stale if the members arc in ten510n or compression. SCI 
P ", 2500 lb. 

6-15. Remove the 1200-lb forces and determine the 
greatest forc.: I' Ihat can be applied 10 Ibe truss so Ihal none 
of the members are subjected to a force exceeding either 
2000 Ib in tension or 1500 Ib in compression. 

1200111 , 1200tb 

· HI •• 4(1 - H I .. I• ~fl -
£ D C 

1 
4f1 
I 

8 

Pmbs. 6- 14I15 
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· 6-16. Del~nnine Ihe force in each m~mbcr of Ihe!russ. 
and 5.311.' if the members afC in tension or comprcs:sion. Sct 
P - SkN, 

· 6-17. I)ctermine the greatest force I' lhal can be applied 
\0 'he truss so ,hal none oilllc members arc subjected to a 
force c:c.cccding either 2.~ kN in .ension or 2 kN in 
compression. 

, 
i 

"m 
1 

I 
l..'i n, 

" I 
L'i n, 

, 
~ 

« 
'm ", 'm 

PrIlbs. 6- 16117 

6- 18. [klcrminc the force in each member of .he lru~ 
and Male if ' he members arc in tension or compression. 

6-19. The !rUSS is fabricated using members having 3 
weight of 10Ib/ ft. Remove .hl" cx'crnal fOKeS from the 
truss. and dClcrn.inc the force in exh member due lolhe 
"-eight of the members. State whether the members arc in 
tension or compression. Assume 111m Ihe IOIliI force acting 
on a joinl is Ihe sum of half of the weight of e"ery member 
connected to lhe joint. 

..,,, 
- 411-

1 
H, 

' " 

-6-20. Determine the force in eaeh member of the truss 
and Slale if the members ore in tension or compression. The 
load has a mass o f 40 kg. 

06-21. Determine the Inrgesl mass III of the suspended 
block so thaI the force in any member docs nOl exceed 
30 kN (T) or 25 kN (C). 

r 
3>m 

t 
.m~ 

2.S m 

L 
I" 

l'ro"5. 6-20121 

6-22. Determine the force in each member of lhe truss. 
and Slate if the members are in tension or compression. 

6-23. The truss is fabricated using uniform members 
hD'i ng a mass of 5 kg/m. Remove the external forces from 
the truss. and determine the force in caeh member duc to 
the weight of the lruss. State whether the membcn are in 
tension or compression. Assume that the tOla l force aCling 
on a joint is the sum of half of the weight of every member 
connected to the joint. 

600N 

---2m 2m 

Pr(lm. 6- 111119 Prubs. 6-221'-.I 



*6-24. Determine the Ior~e in eath memlX'r of the truss.. 
and state if the memlX'rs arc in tension or compression. Sct 
1' - 4kN. 

· 6-25. Determine the greatest force P tliat can be applied 
10 the t ru~ so that Ilolle ofl lie me mbers arc subjected to a 
force eKcteding ei tlier 1.5 kN in tcnsion or I kN in 
compression. 

l'rob!l. 6-W25 

6-26. A sign is SUbjected 10 a .... illd loading lhat e~ern 
horizontal fom:s of 300 Ib on joints 8 and C of one of th~ 
side supporting trusses. Determi ne the force in each 
mcmlX'rof Ihe truss and Sla te if the members ;'IrC in tension 
or compression. 

'."b~C~ 

A 

I' rob. 6-26 
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6-27. Determioe tlie force in eacli member of Ihe double 
scissors truss in terms of the load Pand state If the members 
arc in tension or oompressioll. 

, ...,jCb. ___ T 

l' rob.6-27 
*6-28. Determine the force in each member of the truss in 
terms of the load I'. and indicate .... hether the members arc 
in tension or compression . 

• 6-2'). If the maximum force that any member can support 
is 4 kN in te nsion and 3 kN in compression. determine the 
maximum force I' thai can be applied at joint H. l:,kc 
,/ - 1 m. f' B 

6-30. The two· member truss is subjected to Ihe forc.: 01 
300 III. Delcnnine the mnge of Of or application oIthc load so 
thai the force in either mcmbo'r does not exceed 400 Ib m or 
200lb (C). 

R 

• 

C 

• 
~\'c---," ----1 

,.,," 

", 

l 
"rob. 6-30 
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T 

T 

T 

Inlcrn~1 T 
ten,iit 
foltcs 

T 

Ten.ion 
T 

C 

C 

C 

Internal 
compress"",, C 
for<'C, 

C 

C""'prc",ion 
C 

tl g.6-14 

6.4 The Method of Sections 

When we need TO find the force in only a few members of a Truss. we can 
anal}"le Ihe Tross. using the III1'IIItHl of SI'CI;OIlS. II is based on Ihe principle 
Ihat if the truss. is in equilibrium Then any segment of the truss is also in 
equilibrium. For example. consider The two truss members shown on the 
kf1 in Fig.6-14. If the forces within The members arc TO be deTermined. then 
an imaginary section. indicated by the blue line, can be used to CUT each 
member into two P:lrtS lll1d thereby "expose" each internal force :IS 
"exTernal" to The frcc-body diagrams shown on The righT. aearl y. il C:iIl be 
seen thaT equilibrium requires ThaT the m.;mber in tension (T) be subjcctl-d 
to a "pull:' wherea'> the member in compression (C) is subj{.'Cted to a "push:' 

The method of s.xtions can also be used to "cut" or section The members 
of an emire truss. If The section passes through Ihe truss and the free-body 
diagram of eiTherof its two p:,rts is drawn. we can then apply the equations 
of equilibrium to that part to dcternline The member forces at the "cut 
so.'Ction:' Since onl}'/lm!1' independent equilibrium equations (I F , = 0, 
IF, ". 0, ~Mo = 0) can be applied to the f",.-c-body diagram of any 
segment. then we should try to select a section that. in general. P.1SSCS 
through nO! more Than Illree members in which The forces arc unknown. 
f"CIr example. oonsid('r the truss in Fig. 6-15u. 1f the forces in members BC. 
Gc. and GFare to be detennined, then section /III would be <lppropriaTe, 
The fro::e-body diagrams of Ihe IWO segmenTS arc shown in Figs.. 6-15b and 
6-15c, Note thai the line ofaelioll of each member force is speci fied from 
the gl!Ollll.'fry of the truss.since the force in a member is along its axis. Also. 
Ihe member forces aCTing on one P.UT of the truss arc equal but opposite [0 
those acting on Ihe Olher part - NCwton's third law, Members Be and GC 
arc a'>sumed to be in 11!1IS;Oll sinee the)' <Ire subjected to a "pull." whereas 
GF in OOIllI"I!S5iol1 since it is subjected to a "push," 

The three unknown memDcr forces l'IIt·, "'GC' and "'GF can be obtained 
b)' applying the three equilibriulll equat ions to The (rec-body diagr:tlll in 
Fig. 6- 15b, If. ho\\'el·cr.the free-body diagram in Fig. 6-15c is considered. 
the Ihree support react ions D " 0 , and E, will hal'c to be known, 
because onl)' three equations of equil ibrium are avai lable. (This. of 
course, is done in the usual manner by considering a free-body diagram 
o f the I'IJI;n (russ.) 

A -lo_-;;; .'f" G U 

l m-+--2 m- - . - , m 

lOOON (., 



 

6,4 THE M E1HOO or SeCtIONS '" 
When applying the equilibrium equations, we should tarefully 

COli sider w:lys of writing the equations so as to yicid a direct ,wlll/ioll for 
each of the ullknowns. rather than having to solve simultaneous 
equations. For example, using the truss segment in Fig, 6- ISb and 
summing mOments about C would yield a dir>;ct solution for . 'aI' since 
. ' Be .1IId .'oc create zero moment about C. Likewise, f Be can be directly 
obtained by summing moments about G, Finally, Fcc can be found 
dircctly from a force summmion in the vertical direction since . ·(iF and 
F He hitvi: no vertical components, This ability to dr/trm/Ilt' liirtClly the 
force in a particular truss member is one of the main advantages of using 
Ihe method of sections,· 

As in the method of joints, there arc two ways in which we can 
determine the correct sense of ,In unknown member force: 

• The correct sense of an unknown nK'mber force can in many 
cases be determined "by inspection," For example, Foc is u tensile 
force as represented in Fig, 6-1Sb since moment equilibrium 
about G rcquires thill FHC ere'lte a moml'nt oppOSite to that o f 
the 10000N force. Also, Fcc is tensile since ils vertical componcnl 
must balance the IOOO·N force which acts downward, In morc 
l'omplicat",d CiISCS. th", sense of :11\ unknown mClIlb",r force may 
be I/SSUmtrl, If Ihe solution yicids a Ill'gmil '/! scalar, it indicates 
that the force's sense is opposill' 10 Ihat shown on Ihc free -body 
diagram, 

• AI"'II),S aSSllllle thaI the unknown membcr forces at the cut section 
arc lellsile farccs. i,e" "pulling" on the member. By doing this, the 
numcrical solution or thc ",quilibrium equat ions will yield I"'$ilil"« 
,fClrla' l ' fo , II/l'IIlbers ill lellsioll Imd 1I1'8 111i1 '1' sC'IIlars fo , IIIcm bt"s ill 
cOIIIIJrt',fSioll. 

4NOIicc that if lite method of JOinlJ wele wed 10 determine, say. Ihe 10= in member 
Gc, it ,",'Outd be necessary to anat)'"'" jOlnls A , 8 , "od G in ""<I""IICC, 

~ '-I~- -= 
_" •• ' ,..-1 ._-_.1 

The forreo in "" terled membe," 01 th i~ 
Prall lru,s ca n readily be determined 
u.ing Ihc method of ""clion" 
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Simple trusscs arc o ftc n used in the 
ronSlruC';On of brgc cl an.cs in "I'<Je' 
t" led UC'e the " 'e ight of Ihe 1>\>0 ... 
a nd 10WC •• 

Procedure for Analysis 

The forces in the members of a Iruss may be delemlincd by the 
method of sections using the following procedure. 

Free-Body Diagram. 
• Make a decision on how to "cul" or section Ihe trU$S through the 

members where forces are 10 be determined. 
• Before isolaling the appropri:lle seclion, it may firsl be necessary 

to determine Ihe truss'S support reactions. If Ihis is done then Ihe 
three equilibrium equations will be available to solve for member 
forces at the seclion. 

• Draw the free-body diagram of that segment of the sectioned 
truss II'hich has the least number of forces acting on il. 

• Use one of the two methods described abc",e for establishing Ihe 
sense of the unknown member forces. 

Equations of Equilibrium. 
• ~Iomenls should be summed about a point that lies 31 the 

intersection of the lines of action of \11'0 unknown forces. so that 
the Ihird unknown force can be determined directly from the 
moment equation. 

• If \11'0 of Ihe unknown forces arc PQr(llfti. forces may be summed 
PUf1f'fldictlllIr 10 Ihe direction of Ihese unknowns to determine 
directly the Ihi rd unknown forcc. 
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EXAMPLE 6 .5 

Determine the force in members CE. GC.and flC of the truss shown 
in Fig. 6-1&,. Indicah:: whelher the members arc in tension or 
compression. 

SOLUTION 
Sectiun Ilfl in Fig. 6-10(1 has heen chosen since it cuts through the (llree 
members whose forces are to be uClemlined. In order to usc the 
mel hod uf section!!. huwever. it is /irst necessary to determinc the 
e)(ternai reactions at A or D. Why? A free-body diagram of the e ntire 
truss is shown in Fig. 6-1611. Applying the equations of c(juilibrium. 
we have 

..±. :iF, = I); 

<;'+:iM,\ = 0: 

+frF .. = O: 

400N-A,= O A.= 400N 

- 1200 N(8 m ) -400 N(3 m) + D
J
.( 12 m) = 0 

D,= 900N 

A . - 1200N + 900N = 0 A,. = 300N 

Free -Body Diagram. For tht analysis tht free-body diagram of the 
left portion of the seclioned IruS.~ will be used. sine!: il involves the 
1c~'SI number of forets.. Fig. 6-16c. 

Equations of Equilibrium. Summing momentS about point C 
eliminates f a t: <lnd f"oc and yields II direct SOlution for Foc. 

(+:£Ma= O; -300N(4m ) - 4OON(3m) + Fsc{3m ) = 0 

FIP: = SOO N (T) A m:. 

In the s.1me manner. by summing moments aboul point C we obtain a 
djre~1 solmion fur Fa t:. 

(+~MC= O: - 300 N(8 01) + h ·d3 m) = 0 

Fat: = SOO N (C) A m :. 

Since f ISC and f ot: have no vertical components. summing forces in 
the y di rection directly yidds F GC. i.e .. 

300N - ; Fac = 0 

Foe = 500 N (T) Am: 

NOTE: Here it is possible to tell. by inspection.lhe proper direction 
for l'aeh unknown member forcc. For cxample. ~Mc = 0 requires 
f GE to be comprrssiH' because il IIIl1st balance the mom .. nt of the 
300-N force .. bout C. 

,., 

I ,. 
! _ =10 A, 

---,.-- 'm 
,\ , tWO I' I), 

,>, 

", 
Fig. 6-16 
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EXAMPLE 6.6 

Determine the force in member CF of the truss shown in Fig. 6--17(1. 
Indicate whelher the member is in tension or compression. Assume 
cach mcmbcr is pin connect!.!d. 

c " 
1o- 4m - "l'"- 4m - -~m-

HN 
(oj 

J kN US kN 

SOLUTION 

HN 

(' l 

3kN 4.1S ~N 

Free.Body Diagram. Section IIlI in Fig. 6--1711 will be used since this 
section will ··cxposc·· the intcrnal force in member CF as ··external"· 
on the free·bod)' diagram of either the right or Jeft portion of the 
Iruss. It is first necessar)'. howev.::r. to determine the support reactions 
o n either the left or right side. Verify th.:: results shown on the free­
bod)' di3gram in Fig.6-17b. 

llli: fr.::e·body diagram of Ih!.! right porlion of the truss. which is the 
casicsl to analYl.e. is shown in Fig. 6-17c. There arc lhrce unknowns. 
Fro. Fa . and FeD-

Equations of Equilibrium. We will apply Ih.:: moment equation 
about point 0 in order to eliminate the two unknowns F FG and FeD. 
The location of point 0 measured from E can be determined from 
proportional triangles. i.e .. 4/(4 + x) = 6/(8 + x ) . . \" = 4 m. Qr. 
~tated in another manner. Ihe slope of member GF has a drop of 2 m 
10 a horiwntal dislanee of 4 111. Since FO is .. 111. Fig. 6-17c. then frolll 
D 10 0 the distancc must be 8 m. 

An casy way todet!.!nnine th.:: moment of F Cf" about point 0 is to usc 
Ihe principle of transmissibility and slide Fa to point C. and then 
r.::solvc t-'Cf" into its two rectangular componcnt~. We haw 

C +~Mo = 0: 

- Fasin4S°(12m ) + (3kN)(SIIl) - (4.75kN )(4m ) = 0 

FCf"= 0.589kN (C) JlI/.I: 
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EXAMPLE 6 .7 

Determine the force in member £ /J of the roof truss shown in 
Fig. 6-1&1. Indicate whether the member is in tension or compression. 

SOLUTION 

Free-Body Diagrams. By the method of sections. any imaginary 
section that cuts through £8, Fig. 6-1&1. willa1so have to cut through 
three other members for which the forces are unknown. For example. 
section Illl CUIS through ED. EB. FB . and AB. lf a free-body diagram of 
the lefl side of this ~clion is considered. Fig. 6-18b, it is possible 10 

oblain F /£D by summing moments about B to eliminate the other 
three unknowns; howe,·er. F '<; /I cannot be dete rmined from the 
relllaining two equilibrium equations. One possible way of obtaining 
fo' t ' lI is fir~t to determine f ED frum section (1II. lhen usc Ihis result on 
section bb. Fig. 6-18u. which is shown in Fig. 6-1& . Here the force 
system is concurrent and our sec tioned free-body diagram is the same 
as the frce·body dhlgram for Ihe joint at E. 

tOilO N 

3000 :"1 

(" 

"It. 6-111 

Equations of Equilibrium. In order to determinc the l\lom.;nt of 
FED about point 8. Fig. 6-18b. we wi ll usc the principle of 
transmissibility and slide the force to point C and then reso[ve it into 
its rec((l1lgu[ar components as shown. Therdore. 

[000 N(4 01) + 3000 N(2 m) - 4000 N(4 m) 

+ Ft ' /) sin 30°(4 m ) = 0 

FED = 3000 N (C) 

Considering now the free-body diagram of section bb.Fig.6-I&. we have 
..±,. ~F. = 0; F £ J' COS 30" - 30Q0cos 30& N = 0 

F Ef" = 3000 N (C) 
+ trF, = O; 2(3000 sin 30· N) - 1000 N - F f.8 = 0 

Fell = 2000 N (T ) Am. 

IOOO N 

1000 N 
b F. b 

IOOON 
, 

"~~~ 
1 .' I" 

- 2n, + 2 m + 2 m-r-2 m 

.uJOO N 2000 N 

/. ) 
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• FUNDAMENTAL PROBLEMS 

F6-1. Determine the forcc in member! Be. Cf: and FE. 
Sute if the members are in tension or compre.s.sion. 

F 

I 
'" 

~~==~.==~~c~==~.l 
~~fl - 411 - - ." 

'"''' '"''' ..,,, 
F6-1 

F6-II. Determine the force in members LK. KC. and CD 
of the Prau truss. Stale if the member! arc in tension or 
compression. 

F6-' . Determine the force in members KJ. KD. and CD 
of the Prau truss. State if the members are in tension or 
compression. 

3m 

J!! 

" 

, C 

2m ·- 2m 

) £ ,.. 

2m J. 2 m--2m -

G 

F6-IIl. Determine the forcc in members EF. CF. and 8 C 
of the truss. Slate if the member! afe in tension or 
compression. 

.lOO lb )(K) Ib 

F6- IO 

f lo- II . Delermlne the force in member! GF. GD. and CD 
of the UlISS. Siale if the members lire in tension or 
compression. 

Imj 

I ,-
, 

F=2m- - 2m - 2m- -- lm---. 

IO~N 
15kN 

F6-11 

. '6-11. Determine the force in member! DC. I II. and JI 
of the truss.. State if the member! arc in lension or 
compression. 

G 
I 

61, 

'" 
12ft 

\---9 ft 

-~, -~"~:±=l.!:.' 
I. 6 fl ....,..-611-1 

t"6-12 



• PROBLEMS 

6-31. 1111.' inlcrnal drag lro" for the wing of a light 
airplane is subj~'C1cd to Ihe forces sliown. DClcmlinc the 
force in members BC. BII. and IIC. and Slale if Ihe 
members arc in tension or compression. 

l' rob. 6-jJ 

·6-3l. The lIowe b,i<lgc /TIW is subje<:lcd to the looding 
shown. DClcnninc Ihe force in members 110. CD. ~nd GD. 
and Siale if the members afC in tension or compression. 

' 6-33. 1111.' 1I0wr bridge IfIIlS is 5ubjCClCd to the Joadilll 
shown. Ol.'lcrminc the force in members III. liB. and BC. 
and stale if the members arc in tension or compression. 

6.4 TIE MOHO!> Of' S(CllONS 287 

6-."". Determine the force in members JK. CJ. and CD of 
the truss, and state if Ihl.' members arc in tension or 
compression. 

6-35. Determine the force in mcmbcrs III. Fl. and 1;'1' of 
the truss, and Slate if the members arc in tension or 
compression. 

" kN HN 
8kN 

!'robs. 6-J.II3S 

· 6-36. Determine the force in members HC. CG. and GF 
of the I l 'urrt'l! truss. Indica te if the mt!mbers arc in tcnsion 
or compression. 

· 6-31. Determine the force in members CO. CF. and fC 
of the lI'urrm 1"'$$. Intlicate if the membc/'$ arc in tcnsion 
or compression. 

[-' . - - - 3m- " 
8 d n 

" E 
G , 

-- ,.- - ,.- - lm- -

UN 
H kN 
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6-JS. Deleml;n" the for("C in members DC. IIC.and III of 
the tru~ and state if the members arc in tension or 
compression. 

6-3<,1. Determine the force in members ED. Ell . and Gil 
of thc truss.. and stale If the members arc in tension or 
compression. 

l' robs. 6-3813<,1 

.~. Determine the forte in members GF. GO. and CD 
of the truss and state if the members arc in tension or 
compression. 

·6-4 1. Determine the force in members BO. BC. and IIG 
of the truss Dnd st3te if the members arc in tension or 
compression. 

Prom. 6-40141 

6-42. Detennine the force in members IC 3nd CO of the 
truss and state if these members arc in tension or 
rompression.,.\lso. indicale aIl7.cro·force mcmbers. 

6-43. Determine the force in members JE and OF of the 
lruss and Slate if lhese mcmbcrs arc in tension or 
compression. Also. indicate all tero·force members. 

8 C D 
~-

,. 
I 

-l 

2. 

" £~ 

'1 c , 
,- "m ,-' . Urn . 1.5 hI 

6kN 6kN 

l' robs. 6-12143 

. 6-44. Determine the force in memllersJl. £ /0'.1:'1. and J£ 
of the tru~ and stDte if the members arc in tension or 
compression. 

· 6-4S. Determine the force in members CO. LO.and KL 
of lhe truss. and stDte if the members arc in tension or 
compression. 

150011> 
1000 II> 1000 II> 



t.-.4li. Determine the for~c del'eloped in members He and 
e l l of the roof tru$S and state if the members are in tension 
or romprcssion. 

6-47. Determine the force in members CD Dnd GF of the 
truSS and state if the members arc in tension or 
romprcssiOll. Also indicate all1.ero-foree members. 

c 
HN 

G 

t.5kN 

"rob$. 6-4614' 

-r 
T 

r 'm 
£ 

~ m "I 

. 6--4S. Determine the force in members 11. £J. and CD of 
the ffOlW truss. and state if the members arc in tension or 
compression. 

06-49. Detennine the force in members Kl. KC, and Be 
of the //" ..... truss.and state if the members are in tension or 
compression. 

"rolK. 6-41!J49 
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6-SO. Dctumine the force in each member of the tr\lS$ 
and sta te if the members are in tension or compression. Set 
I'J - 20 kN.I'! - IOkN. 

6-51. I)ctermine the force in each member of the truss 
and sta te If the members arc In lension or compression. Set 
1'1 - -W kN. I'! .. 20kN. 

'm 
~" ~C=~G?===""~F~~cl 

1- l .5 m- 105 m T 105 m 1.5 m--' 

" 
l' robJo. l>-5(),I.!i I 

· 6-52. Determine the force in members Kl. "'1. NO. and 
CD of the K ""ss. lndicate if the members arc in tension or 
compression. ifill!: Use sections /III and bb. 

06-53. Determine the force in rnembeu 11 and DE of 
the K IfII$S. Indicate if the members arc in tension or 
compression. 

,. K" b J 

"' 1200lb 
CO l 

I I~Lb L800tb 
I" 2011_.!OI • .l WfI_ 201.-

u 

G 
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TypICal roof·supporling spate 
lruss.. NOlic~ lhe uSC 0( ball~nd · 
sockcl jolnls for Ihe connections 

fur CC'Onomk reasons. large dCC1rical 
Iransmis5ion to"",,,, arc often constructed 
using sp,lC<' 1rus.\CJ. 

*6.5 Space Trusses 

A spu(r truss consists of members joined together at their ends to form a 
stable three·dimensional structure. The simplest foml of a space truss is a 
1I:lroluulrml , formed byconneCling six members logclhcr. as shown in Fig. 
6-19. Any additional members ;idded to this basic clement would be 
redundant in supporting the forC"C P. A simplt' Splice mISs can be built 
frolll this basic tetrahedral clement by adding three addi tiona l members 
and :1 joint. and cOnlinuing in this manner 10 form a system o f 
multiconnected tetrahedrons.. 

Assumptions for Design The members of:1 sp:tCC truss may be 
Ireated as two·force members provided the external looding is applied at 
the joints and the joints consist of ball·and·sockc:t connections. These 
assumptions arc justified if the welded or bolted connect ions of the 
joined members intersect :It II common point and the weight of the 
mClllbers can be neglected. In cases wheT!; the weight of a lIIember is to 
be included in the analysis. it is generally sa tisfactory to apply it as a 
vertical force. half of its magnitude applied al ellch end of the member. 

Procedure for Analysis 

Either the method of joints or lhe! method of sections Co1n be used 10 

determine the forcesdevelopcd in Ihe members of a simple space truss. 

Method of Joints. 

If Ihe forces in Il/l lhe members of the truSS arc to be detemlined, then 
the method of joints is most sui table for the analysis.. liere it is 
necessary to apply the three t'<tuili briulII equations 'iF, = O. 
'iF 1 '" O. 'iF, ,.. 0 to lhe forccs acting at each joint. Remember Ihal 
the soIulion of many simul taneous equations Co1n Ix: avoided if the! 
force anal )'Sis begins at a joint having at least one known force and al 
most three unknown forccs..Also. if the Ihree·dinu,:nsional geometry of 
the force system at the joint is hard to visualize. it is recommended tha i 
a Cartcsian vector analysis be us.::d for the solution. 

Method of Sections. 

If only a fell' member forces arc to be determined. the method of 
St."Ctions can be used. When an imaginary sect ion is passed through a 
truss and the truss is separated inlO two pans. tilt- force s)'Stem acting 
on one of the segments must s..1tisfr the sir equilibrium equations: 
'i.~ = Q'i~ = QI~ = QI~ = QIM,= QIM,= O 
(Eqs. 5-6). By proper choke of the section and axes for summing forces 
~md moments. many of the unknown member fOfct.'S in a space lruss 
can be computed llirfflly. using a single t'<jui librium equation. 



 

EXAMPLE 6 .8 

Determine the forces ;\cting in the members of the space truss shown 
in Fig. 6-20{/. Indicate whether the members arc in tension or 
compression. 

SOLUTIO N 

Since there ;Ire une Known force and three unknown forces ;lcting;l\ 
joint A. the force analysis of the truss will begin at this joint. 

Joint A, (Fig. 6-2Uh). Expressing each force acting on the free.body 
diagram of joinl A as a Cartesian \"cctor, wc ha\'e 

I' -= 1-4j} KN, 

For equilibrium. 

~ F = 0: 

'iFx = U; 

"fF. = 0; 

'iF: = 0: 

== F,If;(O.577i + U.577j - O,577k) 

U.577F"'t: == 0 

- 4 + fAil + 0.577 F"' t, ", 0 

- fA" - U.577F"'t: == 0 

F",e == F",I'! == 0 AII.t 

F.<I1l = 4 kN (T) Ails. 

Since F.<III is known.joinl J1 elm be analyzed nex\. 

Joint B. (Fig.6-2Oc). 

'i.Fx= O; - RHcos45Q + U.707FBE = U 

:i.F,= O: - 4 + R/l sin45°= O 

'iF: = 0; 2 + FII/J - 0.707FII£ = U 

RII "" Flit: = 5.66 kN (T ), F BI) = 2kN (C) AIlS. 

111C scull" equat ions of cquilibrium may also be applied direct ly 10 
the forces acting on Ihe free-body diagrams of joints D and C since 
the force componcnls arc easily determined. Show that 

Foe = FIX = Fee = 0 AIlS. 

6.S $ PACE TRVSS€S 291 

HN 

,.) 

J /<~ P-4!t\: 
.'~(" 

f" 

, 
'U---.", ""- . 

"~B_ 4kN .',£ 
.',,, 
", 

Fig, 6--20 
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• PROBLEMS 

6-54. The space truss 
F - {- SOJi + 600j + 4OOl;} lb. 

suppons 
Determine 

a forcc 
tile force in 

each member. and §t3le if Ihe members arc in tension or 
compression. 

6-55. Tile space truss supportS a fom~ 

F _ {6()'.)j + <l5Oj - 7501;} lb. Delermine the force in each 
member. and state if Ihe members arc in tension or 
compression. 

I , . . " 
I 

I' robs. 6-~S5 

· 6-56. Determine the force in each member of the space 
truss and swte if Ille members are in tension or 
compression. The truss is supported by ball·and·socket 
joints at A. B. and E. Sct F - lSOOi ) N. flim: The suppon 
rcanion at £ acts along member EC. Wh)'? 

·6-57. Determine the force in each member of the space 
truss ;.nd Sl3te if Ihe members arc in tension or 
compression. The truss is supported by ball-and-socket 
joints at A. B. and E. ScI ,.' - 1- 200i + 4OOj ) N. flim:Thc 
support reaction at e ;}CIS along member eG. Why? 

Probs. 6-S6I57 

6-511. Determine the force in members BF.. DF.and Be of 
the space truss and state if the members arc in tension or 
compression. 

6-5\1. Octennine the force in members 118. CD. ED. and 
CFof the SP.1CC truss and state if the members arc in tension 
or compression. 

]- 2kl ~N 

('rull!;.6-5!lJ59 

' 6-60. Determine the force in the members 118. AE. BC. 
IIF. B f). and BF. oflhe space truss. and state if the members 
are in tension or compression. 

I'rob.6-60 



'641. Determine the force In the mcm~rs EF. 0"-' CF. 
and CD of the spa« truss. Ind Slite 1f the mem~rs arc in 
ten~1OI1 or comprCS$l.on. 

, 

..,,, 
HI .. 

j .. " 
" rnt.. 6-61 

6-62. If the truss supports 3 for~ of ,, _ lOON. 
determine the force 111 each member and state if the 
members arc In tension or comprcsslOn. 

/HiJ. If each member of the spacc truss can suppon a 
m.uimum force of 600 N 10 compression and 800 N in 
tension. determine the ,rentest force F the trun can 
suppon. 

"".m 

l 

6.5 Sl'ACf TlIVSsn 293 

' 6-4J. DeteTTOme the forcc dnclopcd in each member of 
the space truss and staLe If the members arc in tension or 
compression. The crate hu a I"Clght of 150 Ib. 

." 

l'rub. 6-6.I 

.~. Del~rmlnc Ihe force 10 membt:rs fE and ED ofthc 
space truss and Slate if the members nrc in tension or 
compression. Tile truss is supported by a balt .and·SO(kct 
joint al C and short hnks at A and H. 

6-66. Determll1c the forcc 10 membo!rs GO. GE. and r'D 
of the space truss and stale ir,he members arc 10 tenSlOtl or 
compression. 

,~ , 
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Thi.lar&" "I'll .. " iJ a I)"pi<:al 
cumpl" of a frame,,·ork . 

CornnlOn look ... d, ... Ihne plien; xl as 
oimplc: n!Xhi".". 11"", Ih" applied for"" 
on lhe Iur.ndks Cfcalc:~ a much larger forre 
at thcja""S. 

6.6 Frames and Machines 
Frames and machines arc two types of structurcs which arc orten 
composed of pin.connected 1IIIIIIiforet mrllllHrl". Le .. members that arc 
subjccted 10 more Ihan two fon.::es. f'rtllIIl!$ arc uscd to support loads. 
whereas IIIl1d,itrl!$ contain moving pans and are designcd to tnmsmit and 
alte r the effect of forces. Pro"ided a frame or machine contains no more 
suppons or members than arc neces:>ary to pre"cnt its collapse. the forces 
acting at thc joints and supporls can be determined by applying the 
equations of equilibrium to each of its members. Oncc these forces arc 
obtained, it is then possible to tltsigllihe size of the memhcrs.eonneclions, 
and supports using the theory of mechanics of materials and an 
appropriate engineering design t"Ode. 

Free-Body Diagrams. In order todClerminc the forces acting at 
the joinls and supports of a h aOle or machine. the slructure must be 
disassembled and the free.body diagrams of its parts musl be drawn. The 
following important poinlS mus/ be observed: 

Isolate each part by drawing its millinI'll simpI' Then show all Ihe 
forces andfor couple mumenlS that acl on the pint. Make sun:: to 
labt/ or idenllfy cach known and unknown force and couple 
moment with rderence to an established .r. y coordinate system. 
Also. indicate any dimcnsions used for laking moments. Most often 
the equations o f cquilibrium arc easkr \0 apply if the forces are 
represcnlCd by their reclangular components. As usual. the scnsc (If 
an unknown force or couple moment C'In be assumed. 

Identify all the two-force members in the Structure and rcprcscnt 
their free·body diag .... ms as having two equal but opposite colline;lr 
forc.:.'S acting at theiT points of application. (Sec Sec. 5.4.) By 
recognizing the ' wo·force members. wc can a,·oid solving an 
unnecessary number of eqUilibrium equations. 

• Forccs common to any IWO cOl/filetillg members act with equal 
tnagni lUdes but opposi te scnsc on the respec ti,'c members. If thc 
two mcmbers arc trealCd as :, ·'system "" of CO/lllff/,rtf mtmbcr$. then 
these forces are ""iII/emil!"" and ;I re lIot l "IIII"''' on the ffl'e.bod)' 
diagflllll of Ihe S)'Sltm: howe\'er. if the free·body diagram of tllch 
membtr is dnlwn. the forces art ··extemo/"" and mils/ be shown on 
each of the free·bod)' lIiagmms. 

·fbe following examples graphically illustrate how 10 dmw the free· 
body diagnmls of a dismembered frame or machine. In all c;\ses. the 
weight of the members is neglected. 



EXAMPLE 6 .9 

For Ihe frame shown in Fig. 6-2111, draw Ihe frce~body dingram of 
(3) each membcr.(b) Ihe pin al B.3nd (c) the IWO membcrsconnccted 
togelher. 

", c, 
1>, 

SOLUTION 

Part (a). By ins!,<,ction. members BA and BC arc /101 two·force 
members. Instead. as shown on Ihe fn::e-body diagrams. Fig. 6-2Ih. BC 
is subjected to a force from ,he pins 3t Band C and the extcm:ll force 
)' . Likewise. AD is subjected to a force from the pins at A and 8 and 
the external couple moment 1\'1. The pin forces arc represented by 
their x 3!1d y components. 

Pa rt (b), The pin at 8 is subjected \0 only IWO fortI'S. Le .. the 
fo rce of membcr 8C 3nd the force of member A8. For cllui/ihriulI! 
these forces or their respective componclIIs musl be equal but 
opposit e, Fig. 6-21c. Realize th3t Newton's third law is applied 
between the pin and its connected members.. i.e .. Ihe effect of Ihe 
pin on Ihe IWO members. Fig. 6-2111. :tnd the equal but opposite 
effect of the two members on the pin, Fig, 6-21t. 

Part (e). 1'1Ic free-body diagram of both members connected 
together, yel removed from Ihe supporting pins 3t A and C. is shown 
in Fig, 6-2111. The force components 8 , and By arc /lot show" on this 
diagram since they arc ill/ernul forces (Fig. 6-2Ib) and therefore 
cancel au\. Also. to b<: consislenl when later applying the C(luilibrium 
equations. the unknown force components at A and C must act in the 
iiI/IIII' .~el1.~e as those shown in Fig. 6-21 b. 
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EXAMPLE 6 .10 

T T 

A 

,OJ 

~. ~: 
- 1" T ,<, 

A constant lension in thc conveyor belt is mainlained by using the 
device shown in Fig. 6-22t,. Draw the free-body diagrams of the frame 
and the q -linder that the belt surrounds. The suspended block has a 
weight of IV. 

Ftg.6-22 

SOLUTION 

The idealized model of the de,-icc is shown in Fig. 6-22b. Here the 
angle 0 is assumed to be kno'Hl. From this model. lhe free-body 
diagrillns of Ihe cylinder (lnd frame aTe shown in Figs. 6-22c and 6-22t1. 
respectively. Note that the force that the pin at B exerts on the l.),linder 
can be represented by dther its horizontal and ,·crtical componcnts B~ 
alld B, .. which CilU be delemlilled by using the force equ;l\iolls of 
equilibrium applied 10 the cylinder. or by the IWO components T. which 
provide equal but opposite moments Oil the cylinder and thus keep il 
from turning.Also. reali7.c Ihm OIlce the ]Jin reactious at A h(IVC been 
dete rmined. half of their v;ducs aCI on each side of the frame since pin 
connections occur on each side. Fig. 6-22l1. 



EXAMPLE 6 .11 

for the frame shown in fig. 6-.2.ffi.Jraw the frec.body diagrams of (a) 
the entire frame including the pulleys and cords. (b) the frame without 
the pulleys and cords. and (c) each of till; pullc)'$. 

75 tb 
(.) 

SOLUTION 

Part (al. When the entire frame induding the pulleys and cords is 
considered. the interactions 3tthe points where the pulleys and cords 
arc connected to the frame become pairs of ill/tmlll forces which 
cancel each other and therefore arc not shown on the free-body 
diagram. Fig. 6-.2Jh . 

Part (b l. When the cords and pulleys are removed. their cfft:ct on 
Iht' 1mlllc must be shown. Fig. 6-.23c. 

Part (cl. Th,;- force componentS B •. D.,. C,. C, of the pins on the 
pulleys. fig. 6-2311. arc equal but opposi te to the force components 
e.xerted by the pins on the frame. Fig. 6-23c. Why? 
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EXAMPLE 6 .12 

(. ) 

Fig. 6-2-& 

" 
, 

c 
"'~'l\I.l ' 

(0) 

(,) 

Draw the free.bod)' diagrams of the bucket and the vertical boom of 
the backhoe shown in the photo. Fig. 6-24u. The bucket nnd its 
contents have a weight IV. Neglect the weight of lhe members. 

SOLUTION 
'111e id~'ali1.cd modd of the :isstmbly is shown in Fig. 6-24b. By 
inspection. members AB. BC. 8E. and III arc all two-force nwmi>crs 
since they arc pin connected at their end points and no other forces 
act 01\ Ihem. ' 1Ie free-body diagrams of Ihe buckel and Ihe boom arc 
shown in Fig. 6-24<:. Note th;ol pin C is subjecled to onl)' IWO fo rces. 
whereas the pin at 8 is subjected to three forces. Fig. 6-24d. These 
three forces arc related b)' Ihe IWO equations of force equilibrium 
llpplied 10 each pin. The free-bod), diagmm of the entire i1sscmhly is 
shown in Fig.6-24e. 

(' ) 

, , 

L L 
(, ) 



EXAMPLE 6 .13 

Draw the free.body diagram of each part or the smooth piston and link 
mechanism used to crush recycled cans, which is shown in Fig. 6-2511. 

(' J 

til:, 6-25 

SOLUTION 
By inspection. member AS is a two-forcc member. The free-body 
diagrams of the parts arc sho"'n in Fig. 6-25b. Since the pins at B and 
D COIll It'CI 011/)' I IWI plms IOselhl'f. the forces there arc shown as equal 
but opposi te on the separate frce-bod)' diagrams of thei r connected 
memb<!rs. In part icular. four components of force act on the piston: O. 
and O v represent the effect of the pin (or lever E8D ). N •. is the 
rf~'lllla;1I force of the support. and P is the resultant compressive f(m"C 
causc:::d by the can C. 

NOTE; A free-body diagram of the e ntire assembly is shown in 
Fig. 6- 25c. Here the forces between the components arc internal and 
an.: no t shown on the fre{'-body diagram. 

B"fore proceediliS. il il' hiShly fl'COIllIlIt'lIlll'd 111111 YOII ("/>I'er Ihl' 
.Wlilliolis 10 lill' flred<JI/s I';rllllll,k~ 111111 (l1II'IIIPIIO Iffllll' lire reiflll'.~lell {rfl'· 
bUlfy ltingrllllls. W/lt"tl doillg so. IIIlIk.: SIIfl' Ihe lI'ork is IIIm/lllllf 1111/1 1111 Ihl' 
j oret·.,· Will collple IIIO/IIClill' ar,. properly If/belt'd. II'h"" fillishl'd. dlll/l.,,,!;,, 
yoursef{ 1I11l1 sllll't Iht f o/lilwillg jt) I" problems. 
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• CONCEPTUAL PROBLEMS 

1'6-1. Ora'" the free·body diagrams of elKh of the crane 
boom segmentS JIB. BC, and BI) , Only the weights of Jl8 
Dnd BC are signirtant. Assuml.' II and B are pins. 

" 6-1 

1'6-l. Draw the free-bod)' diagrams of the boom "HCI) 
Dnd the stick EDFGII of the backhoe, The weights of thesl.' 
tWO members arc significant, Neglect the " 'eights of aU 
the other mcmbel'$. and assume all indicated points o f 
connection arc pins. 

1' 6-2 

1'6-3. Draw the free-bod)' diagrams of the boom tlBCDF 
and the stick FGII orthe bucket li ft . Neglect the " 'cights of 
the mcmber, The buckct weighs IV. The tWO force membl.'rs 
arc 81. CE, I)E and (iE, Assume all indicatcd points of 
connection are pins. 

1' 6-3 

1'6-1. To operate Ihl.' can crusher one pushcs down 011 the 
Ie\'cr arm ABC " 'hkh rotates aooutthc fixed ptn lit 8. This 
mo\'cs the side links CD do"-nward , whkh cau$Cs the guide 
plate t: to also mm'c downward and thereby crush the can. 
Draw Ihe free·body diagrams of the IC"er, side tink, and 
guide plate, Make up some reasonable numbers and do an 
equilibrium analrsis loshown ho'" much an applied \'crlial 
force at the handle is magnified " 'hen it is transmined to Ihe 
can. Assume all poinlsof connection are pins and the guides 
for the plate arc smooth, 

-- , 



 

Procedure for Analysis 

lbe joint reactions on fmmes or machines (structures) composed of 
nlllhiforce members can be determined using the (allowing 
procedure. 

Free-Body Diagram. 

• Dm\\' the free-body diagram of the entire frame or machine. a 
portion of it , or elleh o( its m(:mbers. 'Ib(: choice should be made 
so that it leads to the most direct solU1ion of Ihe problem. 

• When the free·body diagram of a group of members of a frame 
or machine is dmwn.the forces between the connected P;lrlS of 
this group arc internal forces and arc not shown on the free-body 
diagram of the group. 

• Forces common to two members which nrc in conlact act wilh 
I..'qual magnitude but opposite sense on the respectille free-body 
diagrams of Ihe members. 

• Two-forcc members. regardleSS of their shape, have equal but 
opposite collinear forces acting at the ends of the member. 

• In many cases it is possible to tell by inspection the proper scnsc 
of the unknown forces acting on a member: however. if this $l'elITS 
diHicult. Ihe sense can be assumed. 

• Remember that a couple lI10melll is a frec vector and can act at 
any point on Ihe free-body diagram. Also. a force is a sliding 
vector and can act at any poinl along its line of aclion. 

Equations of Equilibrium. 

• Count the number of unknowns and compare it to the total 
number of equilibrium equations thai arc available. In twO 
dimensions. there are Ihree equilibrium equations Ihat can Ix: 
written for each member. 

• Sum moments about a ]loint that lies al Ihe intersection of the 
lines of action of as many of the unknown forces 3S JKlSsible. 

• I( the solulion of a force or couple moment magnitude is found 10 
be negative, it means the sense of the force is the reverse of th3t 
shown on the free-body diagram. 
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EXAMPLE 6 .1 4 

(.) 

2000N 

8 1 c, 

;~--211l --r-
.',,~ c, •. ~ 

(" 

:!OOO N 

Il~ Jm/ 
-/.If "' 
~A~ 

A, 

«) 

til:' 6-26 

Determine the horizontal and vercicHI components of force which the 
pin at C exerts on member HCofthe frame in fig. 6-2&1. 

SOLUTION I 

Free-Body Diagrams. By inspection it can be seen that A8 is a 
two-force member. The free-body diagrams arc shown in fig. 6-26b. 

Equations of Equilibrium. l11C IIiTer: "nknowns C,1n be dctcrmined 
by applying the three eq uatiolls of equi librium to mcmber CH. 

(+ ~Mc = 0; 2000 N(2 m)-( F;\ II sin eiif)(4 m) = 0 F;\II = 1154.7 N 

.±.r.F" = 0: 1154.7oos60o N - CA = 0 C. = 577N AilS. 

+ f ~F. = 0: 1154.7 sin 60° N - 2000 N +C, = 0 C .• = 1000 N Am: 

SOLUTION II 

Free-Body Diagrams. If olle dO('s not recognize thaI AH is:1 t\\'o­
forC!! member. then more \\'ork is involved in solving th is problcm. 
Thc free-body diagrams arc shown in Fig. 6-26c, 

Equations of Equilibrium. The six IInkllOwllS arc detemlined by 
applying the three equaliuns of equilibrium 10 each member. 

MemberAB 

(+r M", = 0: HA3sin600 m) - 8 ,(3 c0560° m) = U ( I) 
±'~F., = 0: A,- 8. = 0 (2) 

+t!Fy= O: A,- By=O (3) 

MemberBC 

(+ ':iMc = 0; :1:000 N(2 m) - IJ.,.(4 1ll ) = 0 

.±. 'i.F. = U; B. - C., = U 

+t r.Fy = 0; H" - 2000N + Cy = 0 

(') 
(5) 

(6) 
The results fur C, and C" can be determined by solving these 
equatiuns in the following sequence: 4. 1, 5. then 6. The results arc 

8y = lOOON 

B,=577 N 

C.= 577N 

C, = lOOON 

All$. 

By comparison, Solution [ is simpler sim;e thl' reqlli rementthal FAB in 
Fig. 6-26b be eqllal. opposite. and collinear at the ends of member AB 
automalically sa tisfies Eqs. I. 2. and 3 above and therefore eliminates 
the need lO wri le these eqllalions. A.,' II Ttl'llir. Sln't JOt/Tulf sOllie lilllt 

ami efforr by a/wap idl'llti/yilrg tire r"'o-force mel/lbcr~' "(1ore starting 
lire II/w/)'sis! 



EXAMPLE 6 .15 

Tho.: compound beam shown in Fig. 6-2711 is pin connectcd at 8. 
Detcrmine the components of reaction at its supports. Neglect its 
weight and thickness. 
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SOLUTION 

Free-Body Diagrams. By inspection, if we consider a free-body 
diagram of the ('mire bellm AfJC, there will be three unknown 
reactions at A and one at C. These four unknowns cannot all be 
obtained from the three available equations of equilibrium. and so for 
the solution it will b\:eome necessary \0 dism('m1xr Itle beam into its 
Iwo segments. as shown in Fig. 6-27b. 

Equations of Equilibrium. The six unknowns arc determined as 
follows: 

Segment BC 

.±. '$.F. = 0; 

C+tMH = O; 

+ frF,= O; 
SegmentAB 

'±"~F¥ = O; 

C+~M,,=O: 

+T'$.Fy =O: 

B~ = 0 

-8 kN( \ m) + C,(2 1lI) = 0 

By - SkN + C. = 0 

II, - (lO kN )U) + B, = t) 

AI" - (10 kN )U)(2 m) - 8,(4 m) = II 

A t - (lOkN)W - By = t) 

Solving each of these equations successivcly. using previously 
calcuiated results. we obtain 

A . = 6 kN 

B, = 0 

C, =" kN 

A" = 12kN 
8 ,,= 4kN 

.1111.1: 

AilS. 

<') 
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EXAMPLE 6 .1 6 

(.) 

A SUO-kg ckvaloT car in Fig. 6-2811 is being hoisted by mOlor A using 
the pulley systcm shown. If the car is tTn.-c1ing wi th a constant speed. 
dctcrminc the force developed in [he t\\"o cable$.. Neglcctlhc mass of 
the cable and pulleys. 

N I-
--NJ 

1'1', j __ N. 

SOO (9.1I1} 1" 

'" 
fi):. 6-U 

SOLUTION 

Free-Body Diagram. We c.1n solcc this problem using the frce­
body diagrams of the elevator eM :md pulley C. Fig. 6-28b. The [ensile 
forces dcveloped in the cables arc denoted 3S T \ and T 2. 

Equations of Equilibrium. For pullcy C. 

+liF,= o: Tz -2T I = 0 or Tz = 2TI () ) 

For thc clcV"Jtor car. 

+ fiFy= O: 3Tl ... 2Tz - 500(9.81) N = 0 (2) 

Substituting Etl. (1) into Eq. (2) yields 

3T I + 2(2T I) - 500(9.81) N = 0 

T I = 700.71 N = 701 N Am: 

Substituting this result into Eq. ( I). 

T 2 = 2(700.71)N = 1401 N = 1.40kN AilS. 



EXAMPLE 6 .17 

The smooth disk shown in Fig. 6-29..1 is pinned at D ,lnd has a weight 
of 20 Ib. Ncgkcting the weights of the other members. detcrrnine the 
horizontal and \'ertkal components of reac tion at pins Band D. 

c 

(., 
SOLUTION 

Free-Body Diagrams. The free-body diagrams of the c.ntire frame 
and each of its ml'mocrs arc shown in Fig. 6-296. 

Equations of Equilibrium, The eight unknowns can of course be 
oblailK'd by applying the eight equilibrium equa ti on~ to each 
member- three to member AB. three to mcmbcr BCD. and two to 
the disk. (Moment cquilibriu m is automatically satisfied for the diSk.) 
If this is done. how(.'l'cr. ullthe results C,1Il be obtained only from ,\ 
simultaneous solution of some of the equ~tions, (Try it and find OUI.) 
To avoid Ihis sit uation. il is besl first to determine Ihe three support 
reactions on the tlllire frame: then. using thtsc results. the n;m"ining 
fi ve e(luilibrium equat ions can be applied 10 two other paris in order 
10 solve succcssivcly for the other unknowns. 

Entire Frame 

C+ ~"'fA=O: - 20 Ib (3 f1) + C~(3.5 fl ) = 0 C~ = 17.llb 

..±. ":iF. = 0: A , - 17. l lb = 0 A = , 17.llb 

+t ":iF, = O: A, - 20 lb = 0 A y = 20lb 

MemberAB 

'±':i.F. = O: 17. l lb - B,= O B, = 17. l lb AII.~ 

<.+I Mf:I = O: -20 Ib (6 ft ) + No(J ft ) = 0 Nf) = 40tb 

+trF,=O: 20 Ih-40lb + 8, = 0 B. = 20lb AII.~ 

Disk 

.±. ":iF. = 0: D" = 0 Am: 

+tIFy= O: 40Ib -201b - D ,. = 0 D,. = 20 lb A".~ 
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EXAMPLE 6 .1 8 

Determine the tension in the cnblcs .md also the force P required to 
support the 600-N force using the frictionless pulley system shown in 
Fig. 6-301,. 

1" c 

c ) , , 
T 

,I " 
H 

,.11,. 
, , 

t 
, 

A 

! " 

I""N 600N 

(. j 'OJ 

Fi~. 6-341 

SOLUTION 

Free-Body Diagram. A free-body diagram of each pulley inc/lUling 
its pin and a portion of the contacting cable is shown in Fig. 6-30b. 
Since Ihe cable is CQlllilillOIlS, it has a CO/lSlllllt Il'IIsifJ// P acling 
throughout its length. The link connection between pulleys 8 nnd C is 
a two-force member. and therefore it has an unknown tension T 
acting on it. NOlicl' thai the pril/cipll! of I/c(ioll. efJual bill Opll1)silf 
rfaclioll must be carefully obscn'ed for forces P and T whell the 
sep /lflile free-body diagrams nrc drawn. 

Equations of Equilibrium. The three unknowns arc obtained as 
follows: 

Pulley A 

+f~F!= O: 3P - 600N = O 1) = 200N 11m: 

Pulley B 

+f~F,,,, O: T - 2P = 0 T = ~OON All"; 

Pulley C 

+f~F., = O: R - 2P - T = 0 R = SOON /III"; 



EXAMPLE 6 .19 

The two planks in Fig. 6--31(/:'Ire connech:d together by c:'Iblc BC ;U1d 
a smooth spaccr DE. Determine the reactions at the smooth supports 
A :'I ud F. and also lind the force developed in the cable and spacer. 

SOLUTION 

l00tb 

'- 2 ft .' 2 ft .)2 ft .' 

A 
H 

c £ 

HXllb "J 

~Ig. 6-3 1 

200 Ib 

D 

'" 

Free.Body Diagrams. 111e free·body diagram of each plank is 
shown in Fig.6--3Ib. 1t is important 10 ;Ipply Newton's Ihird law to the 
interaction forces as shown. 

Equations of Equilibrium. For plank AD. 

C+H/,l = 0; Fne(6fl) - FI.lc(4ft) - lOOlb(2ft) = 0 

For plank cr. 
C + H/~. = 0; IiJl (4 ft) - F8C(6 ft) + 200 Ib (2 fl) = 0 

Solving simu1t:lI1eously. 

Foe = 140lb Foc = 160 Ib 

Using Ihcse results. for pl<lnk AD. 

+fn;= o; N,I + 140lb - 160Ib - IOOlb = 0 

N" = 120lb 

And for plunk CF. 

+f:£Fy = o; Nr + 160lb - t40lb - 200 lb = O 

Nr = ISO Ib 

Am: 

Am: 
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EXAMPLE 6 .20 

", 

A, 

,., 
r"lT'1, r{ 

i"'''''N tN· 
tG 

4O(9.8t)N 

'" T, T, 

r , 

r, 

A b .-::",::/-- I.5 n. -1"'9 _ 0 ·O.8 mO.7n1 

40 (9.IH) N 

,,' 
t lg. 6-32 

The 75-kg man in Fig. 6-3211 anempts 10 lift the 4ij-kg uniforn! beam 
off the roller support al 8. Determine Ihe tension developed in the 
cable attached to 13 and Ihe normal reaClion of the mall on the beam 
when this is about to occur. 

SOLUTION 

Free-Body Diagrams. The tensile force in the cable will be denoted 
as Tt .Thc free-body di:'grams or the pulley E.the man. and the beam 
arc shown in Fig. 6-32b. The beam has no oontact with roller B. so 
N fJ = O. When drawing each of Ihese diagrams. it is "cry important 10 
"pply Newton's third law. 

Equations of Equilibrium. Using the free-boJy diagram of pullcy E. 

+1 "i.F,. : 0; 2T1 - T2 = O or Tl= 2TI (I) 

Referring to the frec-bod y diagr:lm of till' 1111111 using this resull. 

+ T~F., = 0; N", + 2Tt - 75(9.81) N = 0 (2) 

Summing moments about point A on tile beam. 

(+"i. M A = 0; T I(3 m) - N",(0.8111) - 140(9.81) N](l.5 m) = 0 (3) 

Solving Eqs."2 and 3 simultaneously for T, and Nm• then using 
Eq. (1) for T:. we obtain 

N~, = 224N A/u 

SOLUTION II 

A direct solution for TI can be Obt(lined by considering the beam. the 
man. and pulley £ as a l'illgle syl·l~m. The free-body diagram is shown 
in Fig. 6-32.-. ThUs. 

(+ ~M" = 0; 2Tt(O.Sm) - PS(9.81)N](0.8m) 

- ]40(9.81) N](1.5 m) + TI(3 11l) = 0 

T I =256N All.\". 

With this result Eq:>. I and 2 can Ihen be- used to find N m 3nd T~ . 
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EXAMPLE 6 .21 

The frmnc in Fig, 6-33<'1 suppoTlS the 50-kg cylinder. Ddemlinc the 
horizontal and vcrtical components of reaction at A and the force at C. 

T _ SOj9.Mt J N 
O,_ 41105 N 

D. • '" ............ F~.:;c ......." <' • .~,:D~.C.: 490.s N 
FM • 0.3 m 

! D. 

0.6 m 

1 0.6n. 

~I 
SO (9.11I) N A, I---- t.:!Om 1 

,.) '"' 

SOLUTION 

Free-Body Diagrams. The free-body diagram of pulley D. along with 
the cylinder and a portion of thc cord (a system). is shown in Fig. 6-33b. 
Memlx:r Be is a two·force member as indicated by its fn::e-body 
diagram. The free-bod)' diagram of mcmlx:r ABO. is also shown. 

Equations of Equilibrium. We will lx:g.in by analy-ting the 
equilibrium of the pulley. The moment elluation of equilibrium is 
autommically s~uisfied with T ", 50(9.81) N. and so 

.±. '£ F.r = 0: 

+ f~F).= O; 

0 , - 50(9.81) N = 0 0. , = 490.5 N 

D, - 50(9.81) N = 0 D. "" 490.5 N AII.~ 

Using these results. F 8C can be determined by summing moments 
about point A on member ABO. 

(+ ~M..I = 0; FsdO.6 m) + 490.5 N(O.9 m) - 490.5 N(L20 m) = 0 

F 8C = 245.25 N AIlS. 

Now A , and A . can be determined by summing forces . 

.±. :£F., = 0: "A , - 245.25 N - 490.5 N = 0 A" = 736 N A'15. 

+ 1 :i,.', -;. U: A, - 490.5 N = 0 A v = 490.5 N A" .(, 

O.~m 
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• FUNDAMENTAL PROBLEMS 

H .. - I3. Delemlinc tlte force I' nct'ded to hold the 6O·lb 
"-eight in equilibrium. 

• '6-13 

H.- I",. Dctcmline the horizontal and \'crtieal components 
of reaction at pin C. 

c 

F6-15. If 3 1000N (orce is applied to the handles of the 
pliers. dClCrmine Ihe clamping for« exerted on Ihe smoolh 
piiX' 8 and Ihe magnitude of Ihe resultant force al pin A. 

lOON 

j 

H.- 16. Determine the horizontal and ,·erti~:1.1 eom(1(.m~nl$ 
of reaction m pin C. -100 N 

t"6- I7. Determine Ihe nomlnl (orce Iltal the 1tXl-lb pl3te 
A exerts on Ihe JO..lb plale B. 

" ..... - .. ..... 

• 

f6-17 

H - i ll. Delermine Ihe force I ' needed 10 lift the load. 
"Iso. determine the proper placcme11l x of Ihe hook for 
equilibrium. Neglecllhe weig)1I of Ihe beam. I 0.9 In 

, 



 

• PROBLEMS 

6-67. DClcnnine Ihe forc~ P required to holtl Ihe 
100·11t wcig.hl in equilibrium. 

D 

c 

, 

l".oll. 6-67 

. 6-68. DelCrmlllc lhe force I' required \0 hold the 
ljO·kg nale in equilibrium. 

I' . ob. 6-6/1 

6.6 FRAM€S ANO MAC~N€S 311 

06-6\1. Determine Ihe force P rcquircd \0 hold the 5O-Itg 
mass in equilibrium. 

Prob. 6-69 

6-10. Determine Ibe force I' needed to hold Ihe 2().lb hlock 
in equilibrium. 

!'roll. 6-70 
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60-7 1. Dclcmllne lh" force P n«dcd 10 suppan the 100000b 
w"ighl. Each pulley has a .. -eighl of iO Ib.Also. .. hal are the 
cord reactoons al A and 8 1 

B 

Prob. 60-71 

, . 
•• n. 

, 

' 60-7':" The cable and ptllIC)" arc used 10 lifl the 6OI)..1b 
Jlone. DclemurIC lhe force Ihal must be euned on lhe cable 
al A and lhe corresponding magnuude oi lhe resullanl fora' 
tbe plillcy III C aens on pin 8 .. hen lhe cables are In Ihe 
pos.i lion $ho\\·n. 

n , 

Prob. 6-11. 

' 60-73. If the peg al 8 is smoolh. determlnc Ihe 
componcnlsofrca<:lIon allhe plO A and fixed support C. 

6OOmm - ' 

c 

Prob. 6-73 

6-7... DcICffi"UrIC lhe hon1.onlal and \"Cnltal componc:nls 
of reKuon al pins A and C. 

150lb 

B 
IOOlb 

'" ----2.,, -

Pmb. 60-7~ 



6-7~. The compound beam is fI.~cd 3t A and supporud by 
rockers at 8 and C. Thcre arc hinges (pins) at /) and E. 
Detcmline the components of reaction at the supports. 

t5 kN 

3OkN'm 

l' rob. 6-75 

*6-76. The compound beam IS pin-$upportcd aI C ~ nd 
supported by rollel'S at A and H. There is D hinge (pin) at /). 
Determine the components of reaction at thc supports­
Neglect the thickness of the beam. 

A D 
15 kip · h 
R 

-·-11 -
. -6ft - - -,- Hft -Hfl 

4k,p Jfl!fl 

1'(ob. 6-76 

12 ~,p 

, . 
c 

·6-n. The compound beanll$ supported by a rocker a1 H 
and is fixcd 10 the 11'3 11 al A. If il is hinged (pinned) logelh.-r 
al C. determine Ihe components of reDction at Ihe supports. 
NegJeC1lhe thickness of the beam. 

""" MIt> 

A ( 
- Jfl - ,--Bfl---4f, 

l' rob, 6-n 

6.6 FRAMES AND MACHIN£S 3 13 

6-78. lXlumine the hori;(ontal and \'crtical contpooenlS 
or reaction at pins A and C of lhc two·member fra me. 

3 m 

c 

r 3 m 

l'rob.6-7lI 

6-79. tr a force or F - SO N aclS on 11M: rope. de termine 
the ('\luing foree on Ihe smooth tree limb at I) Dnd tbe 
horizontal and \'crt1cal components of force acting on pin A . 
The rope passes through a small pulky nt C and 3 smooth 
ring at t: . 

HlOmm 

30mmJ 

I'rob. 6-'7'>I 
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• 6-410. Two beams are ~oonetted together by Ihe sllOn 
link BC. Determine the components of rcaction at the fixed 
support A and al pill D. 

12kI' 
llJkN 

c 

, I " 
1m 

3m 
Urn 

Prob.~ 

oH I. l lle bridge frame consists of three segments which 
can be considered pinned al A. D. nnd E. rocker supported 
al C and P. and roller supported at H. Determine th" 
horizontal and venical components of reaction at all these 
supports due!O Ihe loading sho"·n. 

Proh. 6-II1 

6-82. If the JOO..kg drum has a renter of mass al point (; . 
determine the horizontal ~nd ,"ertical components of forct: 
~cting ;'It pin II and the reactions on Ihe smooth pads C 
and D . The grip al H on member OAH resists both 
hori1.Oniai nnd ,"ertical components of force al Ihe rim of 
lhe drum. 

I' 

/-
tal ",m 

• IE A ,,,," 

~::;:ij ~IE}·'·:'"""I -'" 
390 rnm 

lOUmm 

" 

Proo. 6-82 

6-83. I)clermine tile lIomonlal and wnkal componenls 
of reaction Ihal pins II and C exert otlille Iwo-member arch. 

Prob. CH!3 



"6-4l. "l'he truck and the tanker h3\·1.' weights of SOOO Ib 
3nd 20 000 Ib rcspect;\"c1)'. Their respecti\"c cenlen of 
gral'ity arc localed al poims G, and G). If the lruck is 31 
reSl.delcrmine Ihe rcactions on both whccls 31 A. at B. and 
al C. Thc tankcr is connccled 10 thc Iruck 31 the lurntable 
o whkh acts as a pin. 

l' roo. 6-!W 

.6-35. Tbc platform Sl:alc consists of a combination of 
third and fint class !cl'cn so Ihat the load on onc lel'Cf 
hecomes Ihc cfforl lhal mo\"es the nelflle,·cr. lhrough this 
arrangement. a smallwcight can balance a massi,·c objcct 
If l ' - 4SO mm. dClemlinc Ihe required maM of Ihe 
countel'll'cighl S required to halance a 9O-kg load. L, 

6-86. The plalform Sl:ale consisls of a combinalioo of 
Ihird and lirsl class lel'en so Ihat Ihe lo.1d on onc le,"cr 
becomes the effort lhat mo\"es Ihe nelftlel·er. 111rough Ihis 
arrangemenl. a small "'eighl can balance a maMi\"c object. If 
.r - 450 mm and. the maM of tlte counterweighl S is 2 kg. 
dClennine Ihe mass of lite load 1_ required to mainlain the 
balance. 

''''nmm
, mm "" m~ 

" E , 

C D 

tSO mm 
)SO mm 

~=::I.;JH 
- -- , -

"rolK. 6-8M16 

s 
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6-87. ·1111' hoist supports the 12S·kg engine. Determine 
lite force lite lo.ld erea les in member DB and in member 
FB. ,,·ltich contains thc hydraulic cylinder II. 

'm 'm ----

r 
'm 

" 

---- , m ---'- I m - -

Prob. 6-87 

*6-88. '1111' frame is used 10 suppon Ihe lOO-kg cylinder E. 
Determinc the horiwntal and I· ... rtical components of 
reaction al A and O. 

Um 

O.6m 

-'--t~====< 

I'roh. 6-88 
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06-119. D~lerntillC tll~ lIoriwntaJ and 1"CI"i~aJ components 
of reaction wlliclltlle pins ~xert on member AB of ille frame. 

6-90. Detcmlinc Ihe lIoriwntaJ and I·erlkal components of 
reaclion wlliclilhe pins l'xen on member 1::I)C ofille frame. 

, A 8 

1 
H. 

i£ii:::===~=;.l 
""" 

!'rllbs. 6-119190 

6-!U. The clamping hooks arc used 10 lifl Ihe uni foml 
smootliSOO-kg plate. Delermine Ihe resulwnl comprcssh·c 
jorce Ihattlle hook exerts on tile plate at II and B. and Ihe 
pin reaelion 31 C. 

, 
, , 

u 
" rob. 6-':1 1 

-6-92. lbc wall crane supports a lood of 70) Ib. Detcnninc 
Ihe horiwntal and l·eTtical oomponent~ oj Teaelion at the pim 
II and D.Also. what is the force in Ihe cable 3tlhe "inch IV? 

06-'./3. The wall crane supports a load of 700 10. 
Delermine Ihc horizontal and vertical componems of 
reaction 31 ,he pins A and D. Also. what is the force in Ihe 
cable 311he "inch W! The jib AHChas a l\"Cighl of 100 Ib 
and "Icmber YD h:u a weight of 40 lb. Each member is 
uniform and has a center of gravity at its centCT. 

I'robs. 6-91193 

6-94. The lel·eT-actuated Kale ronsis!.\' of a seriCli of 
compound levers. If a load of weij;h l IV - ISO lb is placed 
on the pl:ttform. det.,'rmine the required weight oj the 
counter .... eighl S 10 b.1lancc Ihe load. Is il necessary to place 
the load symmetrically on the platform? Explain. 

1 23 m 
_",n.J t J? ;b 

, 
. '. < 

FI~II' 

in. ' ~ 7.!i in • .1._ 7.5 in . .!ii" , , 
G II" ,, 1.5 in. 

E I)!l~ , 

!'rob. 6-'.I-I 



6-95. If" '" 75 N. determine the force F that the toggle 
clamp exerts on the " 'ooden block. 

-6-96. If the wooden block e.~er1S a force of F '" 600 N 
on the toggle clamp. determine the force I' applied to the 
handle 

1- 1000n"" 

SOmm 
~ 

!is mm I -,- I 
140mm r 

r 

· 6-97. The pipe CUller is clamped around the pipe P. If 
the ,,-heel Dt A exerts a normal force of fA '" 80 N on the 
pipe. dctcrminc the normal forces of wheels 8 and Con 
the pipe. The th ree wheels each ha\'e a radius of 7 mm and 
the pipe has an outer radiUS of 10 mm. 

I'rob. 6-97 
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6-911. A JIX)·kgCCluntcrwcight. with center of mass at G. is 
mounted on the pitman crank A8 of the oil-pumping unit. 
If a force of f - 5 kN is to be developed in the fixed callie 
311aehed to the end of Ihe walking beam O£I'. determine 
the torque M that must be supplied by the motor. 

6-9'J. A 3O(l·kgCClunte,vieighl. wilh center of mass at G. is 
mounted on the pitman crank AH of the oil-pumping unit. 
If the motor supplies a torque of AI '" 2500 N· m. determine 
the (orce F developed in the fixed cable 311ached to the end 
of the walking beam Off. 

I'robs. 6-98/99 

· 6-100. The two·member structure is connected at C by a 
pin. ,,-hich is fixed to HOE and passes through the smooth 
slot in member .-IC. Determine the horizontal and \'ertical 
CClmponcnts of reaction at the supports. 

r , 
D 

4ft 

L "" .. " I 
I---J fl ------r--- J (I -J-l (1-, 

I' rub. 6-loo 
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· 6-101 . Th~ frame is used to support Ihe so.~g cylinder. 
DClcnnine the lIoril'.ont~] and "utical components of 
reaction a1 A and D. 

6-102. llIc frame i$ used 10 suppon tile so.kg cylinder. 
DClennine Ille force of Ille pin al C on member AIJC ~nd 
on member CD. 

r
- o.~ m- - I- - O.l! m- ' 

IOOmm 

o C 

" 

Um 

D 

!'rob!<- 6-10]/I0l 

6-103. DClcnnin~ Ihe reaclioll$ al ille fixed support If. and 
the smootll support ;\ . The pin. auached to member BO. 
passes tllrough a smoolh S]OI at /). 

C 

600N 

" 

" 

0.3 m- - -O.3 m-Lo.3 m-l-o.3 m~ 
!'rob.6-103 

1 
0.4 m 

-6- 10." The oompound arrangeOient of tile pan 5(a](' is 
shown. If tile mass on Ihe pan i$ " kg. determine the 
hOnl.onla] and "('rlical components;'I\ pins It . IJ. and C and 
Ihe distance:r of the 25·g mass 10 k~p the 5(ale in balance. 

7jmm m mm - __ 

I'roh.6-II1-1 

06-105. Determine Ihe horizontal ;'Illd "cnical conl(lOl\entS 
of rcaction thalthc pins at A . B. and C exert on the framc. 
The cylinder lias a n18SS of80 kg. 

IOOmm 

- -- 'm---
r [R-_""",,!!;:jC~ 

l 
05 m 

" 

!'rob.6-105 



6- 106. Tbe bucket of the backhoe and its ronlents ha\'e a 
,,·e ight of lWO lb and a cenler of gm,"it)' at G. Determine 
Ihe forces of Ihe hydmulic cylinder , IB and in links , IC and 
AD in order to 1I0id Ihe load in Ihe position sIl0"·n. 111e 
bucket is pinned 31 E. 

!'roh.6-I06 

6- 107. A man ha~ing a wciglll of 1751b IIUcmpl5 10 hold 
lIimsl:lf using one of Ihe IWO mctllod$ shown. Dete rmine Ille 
total force he must exe" on bar AB in each case and 
Ihe normal reaction he exerts on the platform 3t C. Neglect 
the weight of Ihe platform. 

-6-10ti. A n",n h~ving a weight of 1751b IIl1emptS to hold 
lIimsclfusing one oflhe IWO metllods ~lIown. I)ctermine tile 
toml force he m~t exert on bar AB in each case and the 
normal reaction he cxertson the platform al C. The platform 
has a weigM of 30 lb. 

(.) '" 
"rulls. 6-107flOIl 

6.6 FRAMES AND MACHIN£S 319 

-6-111':1. If a d~mping (orce of JOON is required 3t A. 
determine tile amounl of force F thai mU~1 be applied 10 the 
lIandle of tile 1Og,gle damp. 

6-11D. If a force of F - 350 N is applied to Ille lIamUe of 
IIIe toggJeclamp.delerminc llIe rcsultingdamping force at II. 

romm 
'-1l3mm~' 

I'rorn.. 6-111911 10 

6-111. 1'wo smooth tubes , \ and 8. eacll ha,·ing Ihe same 
weight . lV.are suspended from a common point 0 by means 
of equal·length rords. A third lube. C. is pbced bet" ·een II 
and B. Detcrmine the grea test weight of C without 
ups;:uing equilibrium. 

" 

~ , 

.J. 
c . ,r-

r '" " H , , 

"- ~"- ~ 

Proll.6- 111 
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· 6-112.. The handle of ell .. sector press is fi.~cd to g .. ar G. 
""hich in turn is in mesh ,,·ilh thc $«tor gear C. Note that 
AS is pinned al its ends 10 gear C ~nd ehe underside orlhe 
table Ef·. ,,·h[,h is ~lIowed to nlo'·c '·eT1i,~IJ)' due to Ihe 
smoolh guides at E and f: If Ihe gears only e!(eT11angenlial 
forces between them. determine Ihe comprcssi\"C force 
de'·eloped on the cylinder S when a ,·crtical force of 40 N is 
applied to Ihe handle of Ihe preS$. 

Urn 

Prob. 6-112 

.6-113. Show Ihal the weighl II' , of Ihe counterweight 3t 
If required for .. qu;librium is WI • (bJ/I)W. and so it is 
independent of the placemenl of the lo.1d I I' on Ihe 
platform. 

-- " • 
Dr---.,r.,t1I~--~~" 

A , £ 

1 

I' rob. 6- 113 

6-114. The tractor shO\·ci carries a SCJO.l.:g load of soil. 
ha"inga center of mass a1 G. Compulc Ihe forccsde,·cloped 
in Ille hydraulic cylinders JJ and BC due 10 tllis loading. 

""mm 

-: --"'" ""mm 
300mm 

J 
IOOrnm p..-="'. 

~:!OOmm 

" rob. 6-114 

6-115. If II force of P - 100 N is applied 10 Ihe handle of 
Ihe loggle clamp. dctermine the hori1.on1al clamping force 
Nt: thai thl' clamp exerts on the smoolh ,,·oo!Icn blocl.: 3t E. 

· 6-116. If the 1I0ri7.onlal damping force thai Ihe loggle 
clamp exerts on the smooth wooden block 3t £ is 
N l: - ZOO N.dctermine Ihe force P applied 10 Ihe handle of 
the clamp. 

Prubs. 6- 115/116 



 

· 6-117. The ellgine hoist is used to support the 2(11). kg 
engine. Determine tlie force acting in the hydrHulic cylinder 
AB. the horiwntal and ,"ertical romponcnts of force at the 
pin C. and the reactions at the fixed support D. 

J 
I'rob. 6-1 17 

6- 1111. Determille the force that the smooth roiler C 
exerts on member AB. Also. ~' hat arc tlie horizontal and 
,·ertkal components of reaction at pin A '! Neglect the 
weight of Ihe frame and roller. 

601b · II C D 
~ , 0.5 f. 
~ 

r ' h L 4ft "J 
Pruh. 6-1]8 

6- 119. Dctermme the horizontal and "crtical components 
ofreactioll which the pins exert 011 member I IBC. 

1 
tl.5ft '" I , 

f '" "1 ", c~ 

I .,,, 

Proh.6-119 
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· 6-1211. IXtcrntinc the couplc moment M thai must be 
applied to member DC for equilihrium of the quick-return 
n.echanism. Express the result in terms of the angles <b 
and O. dimension L. and the applied l"micu/ Juru P. lbc 
block at Cis confined to slide " 'ilhin the slal of member A8. 

· 6-12 1. Dctemline the couple moment M that must be 
applied to member DC for equilibrium of the quick-return 
mechanism. Express the result in te rms of the angles 4> 
and O. dimension L. and the applied force P. which should 
be changed in the figure and instead directed horizomally 
to the right The block at C is confined to slide withill the 
slot of member liB. 

8 

Probs. 6-1201121 

6-122. 111e kinetic sculpture requires thai ench of Ihe 
three pinned beams be in p~rfeel halance at all times during 
its slow motion. If each member has a uniform " 'eight 
of 2 Ih/ ft and lenglh of J fl. dClennine the necessary 
counterweights Wt. IV!. and IV J which must be added lothe 
ends of each member to keep Ihc system in balance for any 
position. Neglect the sizc of the counterweigbts. 

I'rob. 6- 122 
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6-1lJ. l 'he four-membe r "A" frame is supported alII and 
E b)' smooth collars and at G by a pin. All IiiI.' other joint$ 
arc ball·~nd·sod:ets. If Ihe pin al G will fail when the 
resulcanl force there is SOO N. determine tlie largest "erlical 
force P that can be supported by tlie fromI'. Also. " 'liat arc 
the x. }~ : force components which member HD exerls on 
members EDe and IIBC! The collars 3111 and I': and the 
pin DI G ani)' e~en force components on the frame. 

"" mm r 
"mm 

1' - - f'k 

PWh. 6-12J 

· 6-124. Thc structure is subjected 10 Ihe looding sliown. 
Member AD is supported by a cablc I \H and roller al C and 
!its tlirougli a smooth circular holc 3t D. Member £0 is 
supported bY:l roller at 0 and a pole that fits in a smooth 
snug circular hole at E. Determine the .r. y. t oonlponents of 
reM'tion 3t £ and the tension in cable £lB. 

O.4m 

F " \ - 2.5k)kN 

J' wh. 6- 124 

· 6-125. l'he three·member frame is connected at its ends 
IJ:5.ing IxII1-and-5OChl ;Oin!.§. [);: Iennme the x.)'. z components 
of reaction 3t B and lhe tension in member 1::0. The force 
acting at Dis " .. {IJ5i + 200j - 11o:Ot) lb. 

' " 

/ . 
Ht J 611 

j fl ~ .. ~ 

"rob_ 6-125 

6-126. The structure is subjected to the loadings shown. 
Member AB is supported by a b.ll1·and-5OCkct at II and 
smooth collar 3t B. Member CD is supported by 3 pin 3t C. 
Determine the x.)'.: componenlS of reaction 3t" and C. 

f'rob.6-I26 



CHAPTER REVI EW 

Simple Truss 

A simple truss consists of triangular 
clements connected together by pinned 
joint$. The forces wilhin its members 
can be de termined by assuming llie 
members arc all two-Coree members.. 
connected concurrently 31 each joint. 
-m e member.; arc citller in tension or 
romprCSl;ion.or carry no force. 

Melhod of Join.s 

The method of joints stales that if a truss 
is in equilibrium. then each of ils joints 
is also in equilibrium. For a plane truss. 
the concurrent force s)'S\cm a1 each 
joint must satisfy force equilibrium. 

"10 obtaIn 3 numcncal solution for llle 
fo rces in Ihe members. ""Iect ajoinl that 
has a free-body diagram wilh a1 most 
two unknoW!1 forces and one known 
force. (This may require firs! finding llle 
reactions 1I1 the supports.) 

Once a member (OfCt: is determined. usc 
its \'aluc and apply it to an adjacent joint. 

Remember that forces that are found to 
pull on the joint arc lensift forcu , and 
those that pusiJ on the joint are 
(omprcss;"t forus, 

' Ib avoid a simultaneous solution of IWO 
equalions.sel one of the coordinate axes 
along Ihe line of action of one of the 
unknown forces and sum forces 
perpendicular to this axis. This will allow 
a direct solution for the Olher unknown, 

The analysis can also he simpl ified by 
first identifying aU thc lcro·forcc 
members. 

323 
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Method o r~ttion~ 

The method of sections statcs thai if a 
truss is in equilibrium. then each 
segment of the truss is also in 
C(juilibrium. Pass a section through the 
truss and the member whose force is to 
be dete rmined. Then draw th.c free-body 
diagram of the sectioned p~rt ha~lIlg Ihe 
least number of forces o n it. 

Scctiooed members subjected to pili/mg 
arc in ItIIS;o/l. and those that are 
subjcdcd tOpliS/illig are in COI/III'O»lo/l. 

Three equations of equilibrium arc 
available to determine the unknowns. 

Ifpossible, sum forces in a direction that 
is perpendicular to t ..... o of the three 
unk.nown forces. This will yield a direCI 
solution for Ihe third force. 

Sum moments about the point where 
the line5 of action of two of the three 
unk.nown forces inlC=<:1. so thai the 
third unk.nown force can be determined 
dire<1ly. 

AI Gar E 
- 2 m-l-z m-J----z m---l 
IOOON 

:£!', .. 0 

'SF .... 0 

~Mo "' O 

.;. l~F, .. O 

- I~N + Facsin 45~"' O 

FGC .. IAJ kN (T ) 

< +'SMC '" 0 

I~ N(4 m) - Fr.! (2 m) .. 0 

!'(if' ''' 2 k.N (el 



SpaceTm~s 

A space truss is a thn:c-dimellSionaltruss 
built from tet rahedral clements.. and is 
analYLCd using the same methods a!; for 
plane trusses. The joints are assumed to 
be b~11I and socket oonne!;1ions. 

Frames and machines an: structures that 
(ontain one or more multiforce members. 
that is.. members with three or more 
forces or couplc$ acting on them. 
Frames arc designed to support loads. 
and machines transmit and alter the 
effect of forces. 

The for(CS acting at the joints of a frame 
or machine can be determined by 
drawing the frcc·body diagrams of e1\(1t 
of its members or parts.. The principle of 
action- reaction should be carefully 
observed when inditating thes.: forces 
on the fn:c-body diagram of each 
adjacent member or pin. For a coplanar 
force system. the re arc three equilibrium 
equations available for each member. 

To simplify the analysis.. be sure to 
recognu.e all t ..... o-force members. They 
ha"e equal but opposite collinear forces 
3ttheir ends. 

8 

2000N 

Multi·forC<' 
membor 

2000N 
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32 6 C",APTH 6 STRUCTURAl ANAlYSIS 

• REVIEW PROBLEMS 

6--1Z7. Determine Ihe clamping force exerted on the 
smooth pipe at 8 if a force of 20 Ih is applied to the handles 
of the pliers. The pliers arc pinned together DI A. 

20th 

} lOin. 

1 05 in. 

:!O th 

Prob.6--IZ7 

· 6-1211. Determine the forces which the pins at A and 
8 exert On the t"o-member frame which supports the 
tOO -kg crate. 

D 

Prob.6--I28 

' 6-- 129. Determine the force in each member of the IruSS 
and state if Ihe members arc in tension or compression. 

" rob. 6-129 

6--130. l1w:: spac ... truss is supported by a ball·and-socket 
joint at D and short links at C and E. Determine the force in 
each member and Slate if Ihe members are in tension or 
compression. Take F, ... j - SOOk) lb and Fl .. 1400j) lb. 

6--13 1. Tlle spate truss is supported by a ooIJ -and-SO(ket 
joint at D and short links 3t C and E. Determine Ihe force 
in each member and state if Ihe m ... mbers are III tension 
or compression. Take f l ,.. {ZOOi + 300j - 5(lOt} lb and 
f : .. {400j ) lb. 

'. 
"ro~ 6-- 130113 1 



01i-1J2. Determine the horUonla);md \'Crtit::lJ romp(lI1Cnls 
or rcaC1ion thaillil: pins " and H exert on Ihe I""o-mcmbcr 
frame. & t F - O. 

06-lJl. Determine Ihe horizontal and "crtical rompon~nls 
of rcact ion Ihal pins A and H exert on Ihc two-member 
frame. ScI F - 500 N. 

, r ,. i ,. 
C 

,. 

8 ~ 

I'robs. 6-1J2IIJJ 

6-134. The two-bar mechanism ronsislsof a le"cr arm AB 
and smooth link CI). which has a fIxed smOOl h rollar al its 
end Carn! a roller 31thc OIher cnd D. Determine Ihe force P 
needed to hold Ihe lel'cr in Ihe posi tion (J.llle spring hs a 
st iffness k and unslrclchcd length 2L. The rolle r contacts 
either Ihe lop or bollom portion oflhc horizontal guide. 

A 

"rob. 6-1.14 

327 

li- lJ5. Determine Ihe hori~OIIlal and vert ical oomponcnts 
of re~C1ion at Ihe pi" supports " and E of llie compound 
beam assembly. 

C 2 ~ip/f1 

~A ",~A~~E 
8 1 I " j 

", --211 I lf. 6fl 

Prob.6- IJS 

"6-136. Determine the force in members Jl H.AI).and JlC 
of lhe spa« lruss and state if the members are in tension or 
compression. 

I 
Y 

8 f 
---Sf! 

" rob. 6- 1.\6 

A - , 

•• - t - 6CXlkllb 



These f'f!Infordng rods will be enused in concrete In order to tteate a building toIumn. 
The intem"lloadlllgs developed wlth,n the material resist the extemalloadmg that.s 
to be placed upon the column. 



Internal Forces 

CHAPTER OBJECTIVES 

• To show how to use the method of sections to determine the 
Internal loadings in iI member. 

• To generahe this procedure by formulating equations that can be 
plotted so that they describe the internal shear and moment 
throughout a member. 

• To analyze the forces and study the geometry of cables supporting 

a load . 

7 .1 Internal Forces Developed ,n 
Structural Members 

To design a structural or mcch3nical member it is ncccsSilry \0 know thc 
loading aCling \lilhin thc member in orde r to be sure the material can 
resis t th is loading. Inte rnal loadings can be dclcmlincd by using Ihe 
methml I1f srct;o.lIs.To illus tra te this method, consider Ihc cantilever beam 
in Fig. 7- 1a. If Ihc inlcrnalloodings acting on the cross section 3\ point B 
arc \0 be dclcnnint.'tl. \I e must pass an inmginaryscction 11-(.1 perpendicular 
to the axis of the beam through point 6 and then separate the beam into 
two segments. The in tcroalloadings acting at 8 lI' iI1 then be exposed and 
become I'."I'nllll on the free-body diagram of cach segment. fig. 7- 1b. 

(.) 

r 
''I 



330 CH"'PfE~ 7 INTE~N"'l FO~CES 

In ~3(b case , the link Ofltbc oockt.oc is a 
t"·Oofor.:c member. In tbe top photnit is 
subje(ted to both bending and an axial 
load at its ce:ntcr. S ymaking lhe mcmbo:r 
stra;"hl. as in Ihe 11011001 pboto. th(:n onl)' 
3n ui~l fo«,( i>(l~ .... ithin the member. 

c 

,.) 

A~" M. M. r I" 
N. N. 

M" ". v. 
(') 

fo'j:,7- 1 

The force component N8 that aCls f/1!"/lt'l1IliCllill' 10 Ihe cross section. is 
termed the 110"11111 foret'. The force component V 8 that is tnngenl to the 
cross scClion is called Ihc :;11(0' furC<', and the couple momcnt 0\1 8 is 
referred to as lhe bnl(lill$ IIUJ/lIt'IlI. The forcc components prevcnt Ihc 
relath'c translalion betwcen the two segmcnts. and Ihe couple moment 
prc\"cnlS Ihe rel:uh'c rotation. According to NewIOII 's third law, Ihes.:: 
loodings must act in opposite di rec lions on each segmcnt. as sho l'ol1 in 
Fig. 7- l b. They can be dctemlined by applying the equations of 
equilibrium 10 Ihe free-body diagram of either Sl:gmcn(. In Ihis !;ase. 
however. the right segment is Ihe beller choice since il docs nOl in\'ol\"e 
Ihc unknown supporl rcaclions at A .A direci solulion for N B is obtained 
by appl)'ing ':i.F, = 0, VB is oblained from ':i.F r = O. and 1'11 8 !;an be 
oblained by applying 'tM/J = O. since Ihe moments of NB and VB about 
IJ arc lero. 

In twO dimensions, we ha\'c shown thai Ihree inte rnal loading 
resultants exist. Fig. 7- 2#: howcver in three dimensions. a genenlt 
internal force and couple moment resultanl will aCI althe section. The x. 
y. ~ components of Ihese loodings arc shown in Fig. 7- 2lJ. Here Ny is the 
norma! furct'. and V~ and V: arc :;11(1" force COII/f/()/lfIllS. 1\1, is a 
w,siolllfl 0' l,..islillS mllllll' lII. and i'll, ;lIId 0\1: arc bl'llilillg IIWIllt'1lI 
cOIII/WIlt'IIIS. For mOSI applications. Ihese '(SII//(1II1/0Ililillg:; .... ilI act at the 
gcometric celller or centroid (C) of the section's !;ross-sectional area. 
Although the magnitude for each loading generJlly will be different al 
various points along Ihe axis of the member. the method of sections can 
always be used to determine lheir values. 

, Normal fom: 

7- 1'0' 
" 

, 

1'ormal force: 

N,n '\\, 
\.-.,o--'r -> 
'\\,)<5 V, 

/ 
~i g. 7- 2 

~Shur for« compotlcn!s 

(b) 



 

7.1 ImERNAl FORCe DMloPEO IN ST"VCTVRAl. MEMa€~ 

Sign Convention . Engineers generally use :I sign convention to 
report the three in!Cmal loadings N. V. and M. Although th is sign 
convcmion I;..'ln be arbit rari ly assigned. thc one thai is widely accepted 
will be used here. Fig. 7- 3. The nomml force is s.'l id to be posi live if il 
creates {('miGII.;1 posith'e shcar force will cause the beam segmcnl on 
which il acts 10 rOtale clockwise. and a positive bending mome nt will 
tend to bend the segment on which il aCls in a oonca\'e upward manner. 
Loadings tha t arc opposite 10 these arc considered negati\'c. 

If the mcmbcr is subjccled to a three-dimcnsional external loading. 
then the in te m:ll loadings are usually expressed as posit ive or negath·e. 
in accordance "~th an established x.y. ;: coord inate system such as shown 
in Fig. 7- 2. 

Procedure for Analysis 

The method of sections can be used to detennine the imernal 
loadings on Ihe cross section of a member using the following 
procedure. 

Support Reactions. 

• Before Ihe member is sectioned. it may first be necessary 10 

determine ilssupport reactio ns. so that the equilibrium equatio ns 
can be used to solve fo r the in ternal loadings only after the 
member is sectioned. 

Free-Sody Diagram. 

• Keep all distribu ted loadings. couple moments. and forces acting 
on the member in their eX/lct focll/iolls . then pass an imaginary 
seclion through the membcr.p!.: rpcndicular to its axis at the point 
where the inlernalloadings arc 10 be detennined . 

• Afler Ihe sectio n is made. draw a free-body diagram o f the 
segmcnl thal has the least number of loads on it. and indicate the 
componenlS of the internal force and couple moment rcsuhants 
at thc cross sectio n acting in their posth'c di rections to the 
es tabl ishcd sign convention. 

Equations of Equilibrium. 

• Moments should be summed al the section. This way the normal 
and shear rorces 3t the section 3rc clminated. and wc can obtain a 
direct solut ion for the momcnt. 

• If the solution of the equilibrium equations yidds a negative 
scalar, the sense of the- quantity is oppositc to that shown on the 
free.body diagmm. 

'I 
, 

M M 

';( 
r ooili .... • montenl 

.\I M 

( '; 
~ig. 7- J 

The <i<:signcr or Ih" shop cr" n<: 
rcalileel thc IIceel for adeJitioRal 
reinforcement around the jOint ;n 
order 10 pre"em . c"ere inrerllal 
bending of the joint " hen D 1af8C INd 
i5 s~ndeel from the Ch3in hoist. 

331 
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EXAMPLE 7 .1 

1
6~N 

9 kN · m 

A ~Ii=_ ,::;. +== .. =i_fD) 
lA, u, 

'M 

(,) 

~
"N 

M, 

;\ ~N'-
-- 3m ' \ ',-
HN 

") 

Dclermine the normal force. shear force. and bending moment ~cting 
JUSt to the left. point B. and just to the right. point C, of the 6-kN force 
on the beam in Fig. 7-4". 

6~N 

,.) 
SOLUTION 
Support Reactions. The free-body diagram of the beam is shown 
in Fig. 7-4b. When determining the <,xl/mllll r .. lIc/iollS. realize that the 
9-kN -m couple moment is <I free v(''CIor and therefore it can be 
placed Iwy,..huf! on the free-body diagram of the entire be:lm. Here 
we will only determine A ,. since the left segments will be used for the 
analysis. . 

C+ :iMo = 0: 9 kN· m + (6 kN )(6m) - A)"(9m) = 0 

A , = 5 kN 

Free-Body Diagrams. The free-body diagrams of the left segments 
AB and AC of the beam arc shown in Figs. 7-4c and 7-411. In this case 
the 9-kN · m couplc moment is /10 / inelm/"I} on these diagrams sincc it 
must be kept in its origilw! po~·ilio/l until after the section is made and 
the appropriate segment is isolated. 

Equations of Equilibrium. 

SegmentAB 

.±. '5:.F. = 0: NIJ = 0 AIlS. 

+ l:iF,= o: 5 kN - VIJ = 0 V/j = SkN JIll.!: 

C+ '5:.MI< = O: -(5 kN )(3 m) + M8 = 0 M/j = 15kN'm AilS. 

SegmentAC 

.±. Y.F, = 0: Ne = 0 Ails. 

+ fYF,= O: 51.:N - 6kN - VI.." = 0 Vc=- lkN AilS. 

C+ ~M("=(): -(5 kN )(3 m) + M e = 0 Mc~ 15kN'm A ilS. 

NOTE: The negative sign indicates that V c acts in thc opposite scnsc 
to that shown on Ihe frcc·bOOy diagram.AlSO.lIIe moment arm for the 
5-kN forcc in both cases is approximately 3 m since lJ and C llrc 
"almost" coincident. 
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EXAMPLE 7.2 

Determine the normal force. shear forcc. :lOd bending moment at C 
of the beam in Fig. 7- 511. 

1:!OO N/ m 

~Jn~ i I ! ! 
1200N~ ',lr I 

~I 

" f 

" .. -J " ,. 
<----- 1.5 m (b) 

(.) 

"OJ;:. 7- 5 

SOLUTION 

Free-Body Diagram. It is not necessary to find the support 
reactions at A since segment BC of Ihe beam can be used to 
determine the internal loadings at C. The in tensity of [h.; IriangulaT 
distributed load at C is determined using similar tri:lngles from the 
geometry shown in Fig. 7- 5b. i.e .. 

(
1.5 on) We = (1200 N/ m) ~ = 600 N/ m 

The distributed load acting on segment Be can now be replaced by its 
resultant fo rce. and its location is indi<:atcd on the free-body diagram. 
Fig. 7- 5c. 

Equations of Equilibrium 

..:I;. ~F!t= O: Ne = O 

Ve - 1(600 N/ m)(l.S m) = 0 

Vc '" 450N 

c + ~Mc = 0: - Me - ~(600 N/ m)(J.5 m)(O.5 m) = 0 

Me'" - 225N 

Ails. 

AII.I". 

The negati\·e sign indicates [h;l[ Me acts in the opposite sense to that 
shown on the free-body diagram. 

= 
1.5 ru 1 

t (6OU N{lnJ(1.5 mJ 

600 N{ln 

];M~'Ij~::lC:::::::I ' 
Nc " 1"1 

• 0.5 ", 

(e) 



33 4 C",APTER 7 IN TERNAl FORCES 

EXAMPLE 7 .3 

D 

Ddermine the normal force. sheur force. and bending moment acting 
at point B of the two-member frame shown in Fig. 7-&1. 

_ =.;= '-.,..; .... c SOLUTION 
Support Reactions. A free-body diagram of each member is 
shown in Fig. 7-fib. Since CD is a two-force member. the equations of 
equil ibrium need (0 I>c applied only to member Ae. 

,., 

.. " 

c + ~M,\ = 0: - 400 lb (4 f\) + m PIJd8 fl) = 0 

.±. '5:.P, = 0: -A. + W( 333.3 Jb) = 0 

+ Ir.F,.= 0: Ay- 400Jb + m (333.3lb) = 0 

,.,,' 
~ 2ft· -!ft ~ ----, 

r ~fl 4ft--oj 

, 
266.7 Ib ' b "" ,-------- --------, 

P IJ(" = 333.3 lb 

A. = 266.7Ib 

Ay = 200lb 

, , 
A~'~A~'=====::::;,:oc:;:, ;;~ c 

A , • 

A 

100 ib 

B t ) ..... N8 

v. 
«, 

''l 

Free-Body Diagrams. PaS5ing'ln imaginary !'Cetion perpendicular 
to the axis of membcr AC through point B yields the free-body 
diagrams of segments .t1 Band BC shown in Fig. 7--6c. When 
constructing these diagrams it is imponanl to keep the distriblued 
I03ding where it is until /lfler ,he St'CliU/1 is/luu/<,. Only then can it be 
replaced by a single resultant force. 

Equations of Equilibrium. Applying the equations of equi librium 
to segment A B. we have 

.±. ":iF, = 0: 

+t":E.F,.= O: 

C+ ~M/J = O: 

/If /J - 266.7 Jb = 0 

2001b - 2oo 1b - VB = O VII = 0 

Mil - 200 lb (4 ft) + 200 Ib (2 [t) = 0 

M/J= 400lb·ft 

An," 

A m, 

NOTE: As an excrcisc. try loobwin these s,1mc results using segment Be. 
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EXAMPLE 7.4 

Determine the norm(d force. shear force. and btnding moment l1cting 
at point E of the frame loaded as shown in fig. 7- 7l1. 

, 

I') ,., 
SOLUTION 

Support Reactions. By inspection. membcrs AC and CD arc IWO­
Corce members. Fig. 7- 7h.ln order to determine thi: intcrnallo,ldings 
at E. we must firs t determine the force R acting 8tthe end of member 
AC.To obtain it. Wi: will analy-I.C the equilibrium of the pin at C. 

Summing forces in the vertical direction on the pin. Fig. 7_7b. we 
have 

+ r~F,= O; Rsin45· - 600N = 0 R = 848.5 N 

Free-Body Diagram. nil: free-body diagram of segment CE is 
shown ill Fig. 7- 7c. 

Equations of Equilibrium. 

.±. "rF. = 0: 848.5 cos 45· N - V E "" 0 Vt· = 6UO N ' ''I .... 

+ 1"rF,. = 0: - R48.5sin4So N + N £ = 0 N£ = 600N All.!: 

C + :::,.\If: = 0: 848.5 cos 45· N{O.5 m) - AI £"'"0 Aft: = 301HI-m AilS. 

NOTE: Thcse results indicate 3 poor design. Member AC should be 
~'Irtliglrl (from A to C) so that bending within the member is 
I'liminllll'd. If AC were slTaight then the inlern.lI force would only 
create ICnsion in the mt'mbcr. 

v, , 
c 

(,) 

r;, . 7-7 
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EXAMPLE 7 .5 

.' ". ..,..,... 1 
'L • UJ 

....!....!,. 

,.) 
'm----1 , 1----1 

l 'w----------' 
'm 

~ A 

Om 

'0' , 

1 ,.~~~tc,,=,C'='NC.J 
5.25 m 

L~ __ 
M •• 

The uniform sign shown in Fig. 7-& has a mass of 650 kg ;lnd is 
supported on the fixed column. Design codes indicate that the 
expected maximum uniform wind loading thai will occur in the area 
where it is loc;! ted is 90U Pa. Delermine the intcrnalloadings at.A . 

SOLUTION 

The idealiled model for the sign is shown in Fig. 7-8b. Here the 
nCttSSary dimensions arc indicated. We can consider the free-body 
diagram of a scction above poinl A since il docs not in' ·olve the 
support reactions. 

Free.Body Diagram. The sign has 1'1 weight of \V = 650(9.81 ) N '" 
6.376kN. lind the wind creates a resullant fo rce of F •. = 
900 N/ 01l(6 01 )(2.5 01) "" 13.5 kN. which acts pcrpcl1dicuhlT (0 the 
face of the sign. These loadings arc shown on the free.body diagram. 
Fig. 7-&. 

Equations of Equilibrium. Since the problem is three dimensional. 
a vector analysis will be uscd. 

r F "" 0: ,. 
~ - U.Si - 6.376k = 0 

f A == {13.5i + 6.38k} kN 

1\1 A + r X (F ... + W) "" 0 

M ,l + I ~_ 
- 13.::. 

j 
3 
o 

M A = {I9.1 i + 70.9j - 40.5k} kN'm 

Amr. 

.!Ins. 

NOTE: Here F" , - {6.3SI.: } kN represents the normal force. whereas 
t ..... , - {n.5i} kN is the shear force. Also. the lOn;ional moment is 
M ... - {- 40.5k} kN · nl . and the bending moment is determined from 
its components MA , - jl9. li} kN·m and M ... , - {70.9j } kN·m: 

i.c .. (M~)A = V( MA ); + ( M,,);= 73.4kN'm. 
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• FUNDAMENTAL PROBLEMS 

~i- 1. Iktermine the normal force. shear forcc. and 
momcnt at poinl C. 

10kN 
IHN 

A , 
c 

-- 15m-- 1.~m -- I .~ m-. 

n - I 

fi - Z. Determine the normal forcc. ~hear force. and 
moment at point C. 

IfIkN 

Xl kl'l' m 

n -z 

ti-J . Delermine the normal forcc. shear force. and 
moment at point C. 

H 

'" + ~.~ fI !C 4.5 fl 

>7-' 

ti-4. Delenninc. lhc normal force. shear force. and 
momem at poim C. 

A 
H 

. 15 m - l.Sm 1 15m 

n -5. Determine lhe normal force. shear (orce. and 
moment at point C. 

A H Ie 
' m--- ' m---, 

ti ..... Oclenninc the normal force. shear force. and 
momcm at point C. Assume A is pinned and H is a roller. 

A 

--'m--T-- 'm _ 
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• PROBLEMS 

.7- 1. Determine tile imcrnJI normal force and shear 
force. and the bending I11()mCnl in lhe beam al points Cand 
f). Assume Ihe 5uppon 3tH isa roller. Point Cis loc3tedjust 
to Ihe righl of the g·kip load. 

Hkip 

0' 1 - - .,, - - " ' '' - -
... ob.7_1 

.II) kip · fl 

;) , 
I! fl - • 

7- 2. D~tcrmine the sllcar force and moment at points C 
and I). 

" E 

, ~:j a 

D 

~ " '" -2(1 

" rob. 7- 2 

7- 3. Determine tile internal nomlal force. shear force. and 
I11()m~n1 al point Cin Ille simply supporled beam. Point C is 
10('3ted just 10 Ihe right of tile 15(X)-lb . fl couple momen\. 

", ---- ", --, 
" rob. 7-3 

· 7-'. Determine Ihe internal normal force. sh~ar fOKe. 
and moment at poinl'l E and Fin Ihe beam. 

c 

• l o5 m"'t" l.'5m - l.'5m - l .'5m ... 

" rllb.7-4 

· 7- 5. iktcrminc the internal normal fllfCe. shear force. 
and moment al point C. 

0.2 m ""HI --, 
'r 

" " t»m-: 'm-J 

Prob. 7-5 
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7-6. Determinc Ihe inlernal nonna! fOITc. shear for~c. and 
moment al point C in the simpl)'supported beam. 

'm --T 'm 
I'rob.7-6 

7- 7. IXterminc tile internal normal forcc.shear force. lind 
moment al point ein the cantiJc\"~r beam. 

c 
t --· 

l'tob. 7-7 

~7-8. Determine the internal normal force. shear force. 
and momcm 3t points C and 0 in tile simply supported 
beam. Point D is located just to the left of tile 5-kN force. 

J kNfm T 
J. D 3m 

c 
r 15m - - Un. 

Prllb.. 7-8 

' 7- 9. ·Ille bolt shank is subje~lcd to a tension of SO Ib. 
Dctermine the internal normal force. shear force. and 
moment at poinl C. 

A , 
l' rob. 7- 9 

7- 10. IXtermine the internal normal force. shear force. 
and moment at point C m the double-n,·erhang beam. 

l'rob.7- IO 

1- 11 . Dctcrmine the internal normal force. shear force. 
and moment 31 points C and 0 in the simply supported 
beam. Point D is located just to the left of the IO-kN 
concenlrated load. 

~- 15m - 15m - 15m -- I.5n. ~ 

Prob. 7_11 
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· 7-12. Determine tile internal normal force. sll ... ar [orce. 
and moment in the beam at points C and D. Point 0 is just 
to til ... rigllt o[ ,he 5·kip lo.,d. 

Hip 

Jc J (' H 

~-6f' - 6[1 -6r'-"--6ft-~ 
1'rOO. 7- 12 

.7- 1J. Determine tile internal normal force. she3r force. 
and moment at point 0 of the two·member frame. 

7-14. Determine the internal normal force. shear force. 
and moment at point £ of the two-member frame. 

"" Nim , 
i:'--'m~D >5m 

l C £ 
JOON /m 

II---,m---I 

I>robs. 7- 1.!I14 

7- 15. Determine the internal normal force. shear [orcc. 
and moment acting Dt point C and at point D. "hkh is 
loellled JUSt to the right of the roller sUppoTl at 8. 

l'rob. 7_15 

· 7- 16. Detennine the internal nonnal force. sllear force. 
and moment in the eantile,'cr beam 31 point 8 . 

~ipf11 

" H 
"'-----12[. -----

' >rob.7_16 

'7- 17. Determine tb ... ratio of (JIb for wllicllthe shear force 
will be lero at the midpoint cor the douhle-o\"erhang beam. 

• -b!2 -b!2 '" " 

l' roh.7- 17 

7-18. Detemt;ne the internal normal fo~e. shear force. 
and moment 3t points 0 and E in Ihe o"cThang beam. Point 
D is located JUSt to the left of the roller support at 8. where 
,he oouple moment acts. 

HN 

Prob.7- 18 
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7- 19. DClermine Ihe dislance u in lerlllS of the bealll's 
length L bet .... een the sYlIlmetrically placed supports A 
and /) so lilat Ihe Imernal momenl at the eemer of the 
beam is ~ero. 

•• 

L - - 1-, 
I'rob.7- 19 

· ' _211. Determine the imernal normal force. shear force. 
and nmment at points D and E in the compound beam. 
l'oint E is located jusl 10 the Jefl of the lo..kN concentrated 
load. Assume Ihe support alii is fi~ed and Ihe connection at 
B is a pin. 

IOkN 

C 

o I 
· ··t..'lm-· l..'lm ~~l..'lm r 

Prob.7- 1O 

.7- 21. Determine the internal normal force. shear force. 
and moment at points Fand G in Ihe compound beam. Point 
Pis loca ted just to the right of the 500-lb force . ..-hile point G 
is I~tedjust 10 the right of Ihe 6CJO.lb force. 

~- Zfl .. 2fl 1 
F 8 l..'lf. 

C_~EII::±:",,!~F 
G 

HI • . H. L !II .r 
Proh.1- 21 

1- 21. The s tacker crane supports a 15·Mg boat w,th the 
center of mass 31 G. Determine the internal normal force. 
shear force. and nlomenl 31 point D in the girder. l hc Irolley 
is fr<'e to roll along the girder rail and is lCM;aled Dt the 
position sho"·n. Only \enkal reaclioos occur at II and 8 . 

. 2m 

7.5 m 

J>rob.1- H 

1- 23. Determine Ihe internal normal force. ~hear force. 
and moment at points D and Ein the 110'0 members. 

Proh. 1- 2.3 
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· 7- 24. Dete rmine tile internal normal force. sll<'ar forc<'. 
and moment 31 points F and £ in tile fram<'. "he crate 
weighs 300 Ib, 

'" 

"rob. 7- 1.1 

. 7- 25. Dete rmine 1111.' internal normal force. sllcar forcc. 
and mom<'nl at points f) and c of Ille frame wllich supports 
Ihe 200-10 crate. Negie<:t Ihe size of 1111.' smooth peg al C. 

I 4.5 (t -1 

'" 
i 

HI 

1.5 rl 

I.HI 

"rob. 7- 25 

7- 26. The beam has 11 weighl ... per unit length. Determine 
Ille inte rnal nonnal force. sllear force. and moment 3t point 
C due 10 its ..-eight. 

" rob. 7- 26 

7- 27. Determine Ihe interna l normal force. sllear force. 
and moment acting at point C. The cooling unit has a 10lal 
mass of225 kg willi 11 ccnle r of mass al G. 

]'rob. 7- 27 
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.'-!II. The jad: ;18 is uscd 10 waighten Ihe bent beam 
DE using the arrangement sho"·n. If the axial compressh·e 
force in the j~ck is SOOO lb. determine the in1cm~1 mnment 
dC\'elopcd at polOl Cnf Ihe Inp be~m. Neglccllhc ,,·cight of 
the beams. 

· 7- 2'J. 501\·1' Prob.7-28 3'1Suming thai each beam has a 
uniform weight of ISO Ib/ fl. 

to([ 
- - - 10 ([ -.:.~ 

.c 

I dt 
B 

"-"-
D 'P ,. 

7- J(l. The jib crane supporls a lood of 7SO Ib from Ihe 
trolley which rides on the top of thc jib. Delermine the 
inlernal normal force. shcar force. and mnment in Ihe jib at 
point C when Ihe Irnlie)" is at the posilion shnwn. The nnne 
members nrc pinned loge ther al 8. f: and F 3/ld supporled 
by a ~hnn link BII. 

7- 31. The jib er~ne supporlS :1 load of 7SO Ib from Ihe 
trolley which rides on Ihe lop of Ihe jib. Delermine 
the IOlernal normal fnrce. shear fnrce. and mnment in Ihe 
column at point D when the trollc}, is 311he posilinn shown. 
The crane members nrc pinned togelher at 8 .1:." and F and 
supported b)" a short link 81/. 

Probs. 7-.J(l1JI 

· 7- 32. Determine Ihe in ternal norma! force. sheaf force. 
and mnment acting al points 8 and Con Ihe curved rod. 

" 

Prob. 7- 32 

· 7- 33. Determine the inlernal normal fOKe. shear force. 
and moment al pomt D which is located lusl 10 Ihe right of 
the 5Q.N fnre.:. 

l'rob. 7_3) 
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7- J.4. DClernline the x.y. = components of internal loading 
at point C in the pipe assembly. Neglect the .. "eight of the 
pipe. The lo.~d is f l - {- 24i - JOk} lb. f1 - {- SOillb. 
and "' - {- 30k j lb·ft. 

M' 

J" 

I'rob.7- 34 

7-35. Determine the ~'. y,: components of intcTDalloading 
at a scrtion passing through point C in the pipe assembly. 
Neglect the weight ofthc pipe. Take t·, .. j3SOj - 400k l lb 
and f ! .. {l SOi - 3OOk l lb. 

*7-36. Dctcnninc the x.y.: eomponenlSofinlemal Joodingal 
a s..~ion passing through point Cin th~ pipe assembly. Ncgk.-..:t 
the ... ·cighl of the pipe. Take 1-'1 .. { - 1IOi + 200j - 300k \ Ib 
and t·~ - {25Oi - 150j - 200k) lb. 

, 

I'robs. 7- 35136 

' 7-37. The sbaft is supported br a thrust bearing at A and 
a journal bearing at B. Determine the x,y. = components of 
imCrMllo.lding at point C. 

, 
] 'n ............ 900 I'-' 

'm " . 

l>,ob. 7- 37 

7501'-' 

, 

7-38. Dctcnnine the x. y. :: componcnlS of inlcrnalloading 
in the rod at point D. The re are journal bearings at A. B. 
and C. Ta~ c 1-' ' ' Pi - 12j - Sk) ~N. 

7-39. Detcnmne the x.)'. l components of intcTDalloading 
in the rod at point E. TAke t' .. {71 - 12j - Sk 1 kN. 

I'rnlts. 7- JlV39 
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*7.2 Shear and Moment Equations and 
Diagrams 

B~"IIIS arc structural members designed to support 10:ldings applied 
pc!~ndicular to their axcs. ln geneml. th..:y arc long and straight and have 
a constant eross-scctional <lre<l. They arc often classified as to how they arc 
supported. For example. a simply Slillfl0rl~(1 belllll is pinned at one end 
and roller supported at the other. as in Fig. 7-911. whereas a cllllli/eVi'u(1 
bC(l1l/ is fixed at one end and free at the other. ,.lIe actual design of a beam 
requires it det;,iled knowledgc of the o'a,illlio1l of the intcrnal shcar force 
Valid bending momcnt /II acting at ellc" lloim along the axis of the beam.· 

lbes¢ ''Ofi(l(IOIlS of Valid M along the hcam's a)(is can be obtained by 
using the method of sections discussed in Sec. 7.l. ln th is Citsc. however. it 
is necessary to $Cction the beam M an arbitrary distancc.r from one end 
and then apply the equations of equilibrium to the segment having the 
lengthx. Doing this wc can then Ob1ain Vand /II <lS functions OLf. 

In gellcral. the in"!rnal shear and bending-moment fUnctions will be 
disconlinuous. or thei r slopes will be discontinuous. :It poims where a 
disHihuted load changes or where concentrated forces or couple 
moments arc applied. Because of this. these functions must be 
determin..:d for I'IIC" seSIll~m of the beam hxat..:d between any two 
discontinuities of loading. For example. segments h;/ving lengths .fl' Xz. 
and .fl will ha.·c 10 be us.:d 10 dcscribe the variat ion of V and M along 
the length of Ihe beam in Fig. 7-911. These funclions will be valid fIIlly 
wilhin regions (rom 0 1011 for .fl. from 1110" for Xl. and !rom 1/10 L for 
Xl' If the rcsulting functions of.r arc plolted. the graphs arc tcrnlcd th..: 
$"1'1" diaSrlllII and bemi illS-1II111111'1II diugrlllll. Fig. 7-9b and Fig. 7-9c. 
respectively. 

t " , • L 

·1 

V 

r JEll!" ::a.. ,. 
' d j " • 

.r ) 

" 
, 

"1 
"1 foil;:. 7-9 

'"ll>c Inlc,nal normal force ;5 not oonsidcrcd fOf ''''0 '''''SOf>S. In nloS' c::Iscs. 'he Io3ds 
appllfd loa bum a.ct I"'.pcndicula/IO Illf bcam·sa.~~ and bcnce produceont)· an inlflllal 
she" fOOTe and bendin,. /IIoru"m. And for cltsign pUI"J'OS<". 11\" beam's IfS~la""" 10 shea/, 
and pallir\lla,ty ,0 bo:ndin,. is mo'f impn"anl than;1$ allili'Y'o /fsilJ a no""al force. 

, 

To <:IV" on mal(ri31 an<llhc reb), produce 
an dficicnl <lc,ign.lh~~ beam .. atso""II~<I 
girders. ha,'~ been ' 3I"'re<l. ,inc" ' he 
,nlernat mon",nt In th" bi:3m ... iIl be lar,u 
at the supports.or picr>.lhan at the cent"r 
of the span. 

M 

kh 
" • L 

"I 

• 
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j, , 

, Iv 
Posit i~e she .. 

" '" ')( 
P"","i\'c n,o mont 

" " ( ') 
Ik~nl sign COII\'e RUon 

til!.7- 1U 

Th" extended to"';"8 a ,m mu., ,esist both 
bending and 'hear loadings th,o ugho ut its 
leng.th due 10 the " " ight o f the ,·chicle. The 
' -J,i.,ion of the.., loadings must he known 
if ,he arm is 10 be properly d..'Signed , 

Procedure for Analysis 

The shear and bending-moment diagrams for a beam <;an be 
oons(ru<;ted using the following proced ure. 

Support Reactions. 

• Determine all the rea<;tive fOr(:<;s and couple moments acting on 
the beam and resolve all the fo rces into components acting 
perpendicular and parallel to (he beam's axis. 

Shear and Moment Function$. 

• Specify separate coordinates x having an origin at the beam's left 
end and extending to ~gions of Ihe beam belween con<;cntralCd 
forces and/or couple moments,()r whcrc thc distributed loading is 
oontinuous. 

• Section tht: beam al each distance .r and draw the free-body 
diagram of one o f the segments. Be sure V and 1\1 arc shown 
acting in their pmilive sellse. in acoordance with the sign 
cOII\'elltion givcn in rig. 7- 10. 

• Tho: shear V is obtained by summing forces pcrpcndicular to th<; 
heam's axis. 

• l b e moment M is obtained b)' summing moments ahoUl Ihe 
sectioned end o f Ihe segment. 

Shear and Moment Diagrams. 

• Plot Ihe shear diagnlm (V versus x) and the moment diagram (M 
\'eNus x). If oomputcd values of the functions describing Vand 1'<1 
arc posilive. thc values are plotted abo\'c the x axis. whereas 
neglll;I'#! values arc plotted helow the x axis. 

• Gencrally. it is convcnientto plot the shear and bending-moment 
diagrams di rectly below Ihe free-body diagram of the beam. 
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EXAMPLE 7.6 

Dmw the shear and moment diagrams for the shaft shown in Fig.7- lla. 
The support at A is ~ thrust bearing and the support at C is a journal 
bearing. 

SOLUTION 

Support Reactions, The support reactions arc shown on the shaft's 
fn::e.body diagram, Fig. 7- 1111. 

Shear and Moment Functions, The shaft is sectioned at an 
arbitrary dist:mcc of from point A. extending witbin the region A8, 
and the (rec-body diagram of tM left segment is shown in Fig. 7- 1Ib. 
The unknowns V and 1\1 arc assumed to act in the I1OSilil"l' Sl'llSI! on the 
right-hand face of the segment according to the eSlab[ishcd sign 
convention. Applying the equilibrium equations yiclds 

+ t:iF, = (): V : 2.5kN (\) 

C+ IM : O: M = 2.5.lkN·m (2) 

A free-body diagram for a left scgml'nl of the shaft extending a 
dis \il!lCC x within the region Be is shown in Fig. 7- llc. As alwitys. V 
and M HC shown acting in the positive sense. Hence. 

+ l:U:y = 0: 2.SkN - SkN - V '" 0 

V = - 2.5kN (3) 

C+ IM = 0: AI + SkN(x- 2m) - 2.S kN(.Y) = 0 

M =( JO - 2.Sx) kN·m (4) 

Shear and Moment Diagrams. When Eqs. I through <I are plotted 
within the regions in which they :tre valid. the shcar and moment 
diagrams shown in Fig. 7- 11t! arc obtained. Thc shear diagram indic:ttes 
that the internal shellr forcc is always 2.5 kN (positive) within scgmcnt 
AB. Just to the right of point B.the shcarforcc chang\.'s sign and remains 
at a oonstant value of -2.5 kN for segmcnt Be. The momcnt diagram 
stllrts at zero. increa$CS linearly to point 8 (II .l = 2 m. where 
Mnl"", :; 2.5 kN(2 m) "" S kN· m. and thcrcaftcrdecrcaScSback tozcro. 

NOTE: It is seen in Fig. 7- lld that the gr:tphs of the sheH :tnd 
moment diagram.~ arc discolllinuous whcrc the conce!1lr.Hed force 
acts. i.c., at points A. 8. and C. For this reason, as statcd earlier. it is 
necessary to express both thc shear and moment Functions separately 
for rcgions octween concentrated IOllds. It should be realized. 
howevcr. that all loading discontinui ties lITe mathema1icaL arising 
from the ir/ealizlUioll of /I COIiCe/llrlUet/ force /l1/l/ coup/e mOll/e/ll. 
Physically. loads arc :.lways ltpplicd o\'er a finite area, and if thc l1C[Ulll 
IOlLd variation could be accounted for. the shear and momen1 
diagrams would thcn be continuous ovcr the shaft's cntirc length. 

(,) 

n 5 .« 2 ", 

'>l 

2.5 kN 

'<I 

HN 

Ai ! ' C 

t " t 
2_~ ~N 2_~ kN 
V(kN) 

V · 25 

, , 
.«m) 

1 
M (kN · nL ) 

I. 
V _ - 25 

,\1 - 2.1< 011 ... - 5 

/ "lI' - (10 - 2.5.. ) 

V _____ ~·L' ____ ~' __ 
- ~· (m) 

(0) 

Fig. 7- 11 



348 C",APTER 7 IN TERNAl FORCES 

EXAMPLE 7.7 

r---'m--~-,., 

!xlkN , 

~
,-,~ .tkN/m --, 

1
------ :1>'" 

r--' _~ , -'..L 

'ON 

'" 

6 kN/ m 

'1kN 

IUN 

1--:-,,--''':>,,--;'' -.t (m) I--- S.20 m ~..! 

M \ kN ' m) 

M-9x-t 
~ 

.11_ .. 31.2 

Draw the shear and momen! di(lgr~lI11S for the beam shown in 
Fig.7- 12n. 

SOLUTION 

Support Reactions. The support reactions arc shown on lhe 
bo::3m's free-body di3gram, Fig. 7- 12r. 

Shear and Mome nt Functions. A free-body diagram for a left 
segment of the beam having a length x is shown in Fig. 7- 12b. Due 10 

proportional triangles. the distributed loading acting at the ent! of this 
scgrm:nl has an intensityo[ "'/ .1' - 6/ 9 or It' '" (2/ 3).1'. It is replacet! by 
a resultant force a/ler the segment is isolated as a free-body diagram. 
The IIwlprillitie of the resultan! force is cquaito 1(.l)(i X) '" 1 x ~. 11lis 
force lIelS Ihrollg" 11r~ Ulliroid of the distributed 10,Iding 11(ea. a 
distance l.r from the right end. Applying the IWo elJuut ions of 
equilibri um yiddJl 

C+~AI = O: 

, , 
9 -- t' - V = 0 

'" 
V: (9 - f)kN 

AI + .!. ~l(!) - 9r = 0 3' 3 . 

M = (9X - ~)kN.m 

(' ) 

(2) 

Shear and Moment Diagrams. The shear and momenl diagrams 
shown in Fig. 7- 12c arc obtained by plOlling Eqs. ! and 2. 

The point of ~em JIrMr can be found using Eq. I: 

x' V = 9 --= 0 , 
x = 5.20m 

NOTE: It will be shown in Sec. 7-3 Ihat this value of x h,tppcns to 
represent the point on the beam where Ihe IIwxilllllllJ 1II0llJelll occurs. 

"-___ ,j;; __ ~. ~'\m) Using Eq. 2. we h,we 

$.20 9 ((5.2W) 
(t) lit.,.,. = 9(5.20) - - ,- kN· m 

I-"i~. 7- 11: 

= 31.2kN·m 
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• FUNDAMENTAL PROBLEMS 

t""'7- 7. Determine tile shear and moment as.1 function of x. 
and then draw the 51\c3r and moment diagrams. 

f ,_J I 
ff----.1m~ 

F7- 7 

6kN 

~"7-11. Determine the shear and moment as a function of x. 
and then draw the shear and moment diagrams. 

2 kipJft 

15kip·fl 

( 

r' j A 

,,, 
n-< 

1"7_9. Dctcnninc the shear and moment as a function of .1'. 

and then drnw the shear and moment diagrams. 

6kNj m 

t-' -
A 

_J ;m 

ti - IO. Determine tile shear and moment as a function o f 
.\' , and Illen dmw the shear and moment diagrams. 

.- Om 

1'7- 10 

F7- II . Dctemlinc Ihe shear and moment as a fUllc tion of 
.r , where O:;; .r < 3 mand3m < .l' s 6m. and then draw 
the shea r and moment diagrnm$. 

3O~N' m 

A 8 
c , , 

;m'---- ;m 

F7- 11 

F7- 11. Determine lile shear and moment as a function of 
l ". whcrc O :s J{ < 3mand3m < x s 6m. and Ihen draw 
Ihc shear and momCni diagr;lOlS. 

12kN ·m 

~ 
R 

;m 

F7- 12 
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• PROBLEMS 

· 7-46. Draw tile slIe~r aod momem diagrams for the 
beam (a) in ICmlS of tile parameters 5110wo: (bJ sct 
P · SOOlb.u - S ft.L - llfl. 

" 
, 

I I --.A: 
'-t-_"-=---_ L_-_"I-J 

Prob. 1~ 

· 7 .... 1. Draw tile shear and moment diagrams for the 
simply supported beam. 

HN 

A - " '- --'m----2m 
!'rllb.7 .... 1 

, .... 1. Ora .... the shear aod momcm diagrarll$ for the beam 
ABCOE.AII pulleys have a radius of I ft. Negk'ct the weight 
orthe beam and pulley armngement. The load weighs SOO lb. 

, 

Prnb. 7 .... 2 

7-43. Dmw the shear and moment diagrams for lh~ 

cantilever beam. 

l kN/ n> 

~I QI I I !"! I I I I I I jl.N"' 
Prob. 7-'3 

· 7-44. Draw the shear and moment dia!!-rams for the 
beam (3) in terms of the parameter.; shown: (h) set 
Mo - 500N ·m.L - 8m. 

· 7 .... 5. If L - 9 m. th" beam .... ill fail when the ma.~imum 
shear force is V .... , - 5 J:N or the maximum bendin!!-
moment is AI .... .. 22 J:N· m. Determine thc largest couplc 
moment Mo the beam will suppan. 

7-16. Draw the shear and momem diagrams for the 
simply supported beam. 

", 

£P PTI"'IIIIIIIIII!!lL 
r- l' I +--1 

Prob. 7-16 
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7-47, Draw lite sltear and momenl diagrams for lite 
simp.}' 5upporlcd beam. 

,.----1 

P'(lb.7-47 

' 7-48. Draw Ihe shear and moment diagrams for Ihe 
ol"erhang beam. 

c 

, 
Prob. 7-48 

. 7-49. Om ... · lhe shear and moment diagram~ for lhe 
"",m 

,. ----,. 

I'rob. ,-49 

7- SO. Draw lhe shear and momenl diagrantS for Ihe beam. 

C,JfIllTo-rn-rrlll!k) 
1501h . fl ,~ __ ___ 41S01h. h 

1'.uI •. 7_50 

7- 51. Draw ,he shear and momcnl diagrams for lite beam. 

'.$ kN/tn 

~-n1I1l11Tf'W: 
~---'m---

P.ob.7- 51 

' 7-52. Draw Ihe shear and moment diagrams for lhe 
simp.y supported beam. 

A 

ISO lb/fl 

I rrl;,""" " 
" 

,HI 
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' 7-5.\ Dr:J.w the shear and moment diagr:J.nlS for the beam, 

JOtb/ h 

~rrrllr' ,"".f< 
#WW1±t U 
f----"'----I-~.sft-1 

" rob. 7- 53 

1-54. I( L - 18 [t. tile beam " 'ill fail wilen tile maximum 
shear force is V ... - 800 lb. or thc maximum moment is 
,II .... .. 1200 lb· ft. Determine the largest intensity", oflhe 
dimibuted loading il will suppan. 

" rob. 7..54 

7-55. Draw the shear and moment diagrams for the beam. 

t2f1 t2ft 

· 7- 56. Draw the shear and momcnt diagralJlS for the 
cantilc"crcd beam. 

T. 200 tb/fl 

In nl 
A 

I' rob. 1- 56 

' 1- 57. Draw the shear and momenl diagrams for thl" 
ovcrhang beam. 

3. T 3. 1 

l'mb. 1- 57 

1- 511. IXterminl" Ihe largest mICnsity Kg of thc distrihuted 
load thai the beam can suppotl if the beam can withstand a 
maximum shear force of V ..... - 1200lb and a maximum 
bending moment of Mau, .. 600 Ib . fl . 

f-- 6 h ----- ---6 ft --, 

I'roh.1_511 



7 .2 SHEAR AN!) M OMENT EauAl10NS ANO DEA(;RAMS 353 

7-59. Delermine Ihe largest inlensit)' nil of the dimibuted 
load thRt the beam can support if the beam can withstand a 
muimum bending moment of M .... - 20 kN· m and a 
maximum shear force of V .... '" 80 kN. 

I' rub. 7- 59 

' 7...00. IXtermine the placement" of the roll er support iJ 
so that the ma.\imum momeot within the span AH is 
equivalent to the moment at the support iJ. 

rTrrm ('I II I I 
" , 

" 
r------- L-------

I'rl)b.7...oo 

' 7-61. The compound beam is fix supported 8t A . pin 
connected 3t H and supported by a roller at C. Draw the 
sh,,-,ar and moment diagrams for the beam. 

500 Ib!ft 

1IIIIm 

r c 

'" 
I'rul).7-6 1 

7-62. The fruslum of the cone is cantile"crcd from poio t 
A . If the cone is made from 11 material having a specific 
weight of 1. determine the internal shear force and moment 
III thc conc as a function of.~, 

'. 

Proh.7-62 

7-63. Express the internal shear and momcnt components 
acting in the rod as a function of ,'. where 0 s )' s "' (\. 

, 

4ft,>-
, 

l'roh. 7-63 

' 7...(,4. Determine the normal force. shear force . and 
moment in the curvcd rod liS a fuoction of O. 

__ ~L; _ UL-

I'rnl~ 7....fI.J 
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In orller toll"" i,n the beam u..,11 to . uppon 
the.., [>Ower lines. il is imJ>oflanl 10 finl 
draw the shea. and moment diagrami for 
the beam. 

,., 

, , 
: k(J.. ) 

• 

"'( I' 0 I 'f "'" 
~ .V + .lV ,. 
'" 

~ig. 1- 13 

*7.3 Relations between Distributed 
Load, Shear, and Moment 

If a beam is SUbjected 10 several concentrrt led forces. couple moments. 
and distribuled loads. Ihe melhod of conSlrucling Ihe shc3T and bending. 
mOme1l1 di3grams discussed in Sec. 7- 2 may become quite IOOious.ln this 
scclion a simpler melhod foreonslTucting these di3grams is discussed - a 
mr.:1hod hascd on differential rdalions thai exist belween the load. she3T. 
and bending moment. 

Distributed Load . Consider the beam AD shown in Fig.7- 131r. 
which is subjected to .tIl arbitrary load", = w( x ) ami II series of 
concenlTllled forces and couple 1II0mcnts. [n the followi ng discussion.lhe 
diJr,iburtd lQ(ltl will be considered PQsilil'1! when the IOlldillg acts 'lI'w{rffl 
as shown. A free-body diagram for a s1IIali segment of the beam having a 
length .:l. .r is chosen al a point x 310ng the beam which is lIot SUbjected to 
a concl'ntrated forc<: or couple mOmem. Fig. 7- J3b. Hencc an)' resul1s 
obtained will nOI apply at these points of concentrated looding. The 
internal shear force and bending moment shown on Ihe free-body 
diagram arc assumo::d 10 aCI in the IX'Jilil 'e Sl!llSt according to the 
established sign convcntion. NOle thaI both the shear force and momenl 
acting on the righi-hand facc must be increased h)' a small. finite anmunl 
in o rder 10 keep the segment in equilibrium. The distributed I(lading has 
been replaccd b)' a resultant force tlF = ... (x) .:l. .( that acts at a 
fract ional distanc<: k ( .:l.x) from Ihe right end. where 0 < k < I Ifor 

example. if ",(x) is IIIli/llml. k :0 ~ , 

Relation Between tne Distributed load and Snear. IFwc 
apply Iho:: force equation of equiJibriumto the scgment.thcn 

+ '~F,.= O; v + w(.r).:l. .r - (V + tlV) = 0 
.lV :. wC.t).:l.x 

Dividing by ':u. and lelling tlx -- O. w~ get 

,(. 
- = ",(x) 
,Ix 

slope of distributed load 

shear diagram intensit), 

(7- 1) 
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If we rewrite the above equation in the form <IV = w(x)ilx lind pcrfoml 
an intcgnuion bctwcl,;n any two points 8 and Con the beam. we sce that 

.!lV = jW(x) lIX 

Change in 
shear 

Area under 
loading curve 

(7-2) 

Relation Between the Shear and Moment. If we apply the 
moment equation of equilibrium abQut point 0 on the free-body 
diagram in Fig. 7- 131.>. wc get 

(+:£Mo= O: ("'+.!lM) - [ ... (x)J.xJk.!lx - V.!l .t - M = 0 

.!lM = V.!lx + k w(x) .!l.r 

Dividing both sides of this .::quation by .!l x. and leuing.h - O. yields 

11M 

dx 
v 

Slope of 
moment diagram 

(7-3) 
= Shear 

In pankular. notice that Ihe absolute lI1a~ill1um bending moment 
IMlm .. occurs at the point where the slope (IM/ I/x = O. since this is 
where the shear is equal to zero. 

If Eq. 7- 3 is fewrinen in (he fonn (1M = J V (Ix and integraled 
b.:!(ween any IWO points Band C on the beam. we have 

.!lM = j V dx 

Change in 
momCllI 

Arc;1 under 
shear diagram 

(7-4) 

As staled previously. Ihe above equations do not apply al points where 
a cOIIUm'(lf.'ll force or couple momenl acts. 11lCSC twO special cases 
tTeatc lfiscmrfilluifies in lhe shear and moment diagrams.. and as a result. 
each dcscrvcs separate Irealmcn!. 

Force . A frec-body diagram of a small scgl11Clll of thc beam in 
Fig. 7- 13a. taken from under one of the forces. is shown in Fig. 7- 1411. 
Here force equilibrium requires 

.!lV = F (7- 5) 

Since the chulIgr ;11 sll1'lI' ;s pO.fif; .. r. the shear diagram "ill ··jump·· 
IIpw(lrIl ... hen t-' ilL"Il" IIpII"/I,d on the beam. Likewise. the jump in shear 
( .1 V ) is dowllward whcn F aelS downward. 

I' ) 

..·il:.7- 14 
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V + .W 

~ l"~ 
(b) 

~' ~. 7- 14 

l 'bis roncrete beam is uKd to suppan the 
dccl:. lis sile and the placement of steel 
reinforcement " i thin;! nn be dc tcrmirn:d 
(!(It'<: the shc~r and mc.ment diagrams h:lvc 
been established. 

Couple Moment. If we remo\'e a segment of the beam in Fig. 
7- 131/ Ih;lt is located at the couple moment MOo the free-bod), diagram 
shown in Fig. 7- 14b result s. In this case klling d.r-O. momelll 
equilibrium r<: quires 

(+ ~M = 0; (7-6) 

Thu:-;. th<: d,/mgt ill //lOI/It.-. 1I is pusiriltt, or the 11Ioment diagram will 
"jump" 1I1"t"lm/ if 1\10 is dock ... iu. Likewise. the jump .1M is downward 
when 1\10 is counterclockwise. 

The examples which follow illumat <: application of the ahcm,' 
equations when used to oonstruetthe shear and moment diagr:lnls. Afler 
working through these example s.. it is recommended that )·ou soh'e 
Examples 7.6and 7.7 using this method. 

Important Po ints 

• The slope of the shear diagram at a point is equal to the intensit), 
of the distributed loading, where positi\'e distributed loading is 
upward.i.e .. dV/ tlx '" w(x). 

• If a concentralcd force acts upward on the bc3m. the shear will 
jump upward by the same amount. 

• The change in the shear dV bet ween two points is equal to lilt' 
("t'll under the distributed-loading curve between the points. 

• lbe slope of the moment diagram at a point is equal to the shear. 
i.e .. tlM/ I/x -:0 V. 

• The changc in the moment tJ.M between two points is equal to 
the I/rl!'u under the shear diagram betwcen the two points. 

• If a c;/ock ... ist' couple mom<:nt acts on the bellm. the shear will not 
be affccted; howcver.the moment diagram will jump upward hy 
the amoUn! of the moment. 

• Points of u ro sl,ellr represent points of /III/.fimum OT millimllm 
mome", since IIM/ lix = O. 

• Because twO integrations of w '" w(x) arc involved to first 
determine the change in shear . .1V = J ",(.1) 11.1. then to 
determine the change in moment. i1M = J V (Ix. then if the 
loading curve w = w(x) is a polynomial of degree II. V = V(.r ) 
",ill be a CUf\'C of degree II + 1. and At ""- M (.r) will be a curve of 
degree" + 2, 
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EXAMPLE 7.8 

Draw the shear and moment diagrams for the cantile"er beam in 
Fig.7- 15u. 

--'m --~Z.m ------, 

(.j 

Fi~ . 7- 15 

SOLUTION 

'Ibe suppon reactions at the fixed suppon 8 arc shown in 
Fig. 7- ISh. 

Shear Diagram. The shear at end A is - 2 kN. This value is ploued 
al .1" " O. Fig. 7- 15c. Notice how the shear diagram is const ructed by 
following the slopes defined by the loading w. The shear at .r '" 4 m is 
- 5 kN. the reaction on the beam. This value can be verified by finding 
the area under the distributed loading: i.e .. 

V I. _ ~ m = vl._l m + ~I' = -2 kN - (1.5 kN/ m)(2m) = -5 kN 

Moment Diagram. lbe moment of zero at x '" 0 is plolted in 
Fig. 7- 15(1. Construction of the moment diagram is based on knowing 
its slope which is equal co Ihe shear al each poin!. lbe change of 
Illoment from x = 0 to .r '" 2 m is determined from the area under Ihe 
shear diagram. lienee. the moment at x '" 2 m is 

MI ... _2m = MI .. _o + ~M -= 0 + [- 2 kN(2 m)[ ~ - 4 kN· m 

This same "alue can be dClcrmincd from Ihe nlclhod of sections. 
Fig.7-15r. 

HN 

j 
~ 

M~ " llkN · m 

lSkN/m \ 

logml) 
2m W 2m ~8, - 5 kt" 

(b) 

~ . .. 0 ... .. I1<'&3(;"C con~(anl 

.lvpr: '" 0 ,tope " ncg. I;'·C OOD,Unl 

V (kN) 

(01 

V .. neg:II;"c con~13m 
'1oP" " ncg"(;"~ n>ns~anl / 

\ V .. ncgalh'c IIlCfca.<mg 

M("~'. ml \ "",,: _ ~""'O:""""'" 
o \ . . .. (m) -. 

-" (' I 
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EXAMPLE 7 .9 

.- - ~~-

"J .. , 
slope _ 0 

... - ncg'''''C c("""~'" 
slope - ncK"""c conslaOI 

V(kN) 

• 

' ~:JI=~::::~'~~6"-lm) -, I 
(rl I 

V _ posil lVC <kCfc;u;n~ 

stope .. POS"""c deerc",,;n! 

V .. IICga''''C conslant 

slope - ncp,iw cOOSlam 
M (~N'm) , 

I 
I 

, c' ""=-T"---';';~~ " (m) • 
-. ''I 

Draw the shear and mo ment Ji;\grams for the overhang beam in 
Fig.7- 1&,. 

filii] 
:ill! I!P. 
l=f--' m- '-,-- , m~ ,.j 

till' 7_16 

SOLUTION 
The support reactions arc shown in Fig. 7- 16b. 

Shear Diagram. The shear of - 2 kN 3t end A of thl! beam is plotted 
at .r "" O. Fig. 7- ]fie. The slopes arc determined from the loading and 
from th is the shear diagram is constructcd. as indicated in thc figurc . 
In particular. notice the positi,'c jump of 10 kN at x=- 4 m due to the 
fOfet;: 8 ,.. as indicated in the figure. 

Moment Diagram. The moment of lCro at X : 0 is plotted. 
Fig. 7-ltHl. then following the behavior of thc slope found from the 
shear diagram. the moment diagram is construct<.'U. The moment at 
x = 4 m is found from the area under thc shear diagram. 

M I..-• • m "" M I. _o + Jl ,\.f = 0 + 1- 2 kN(4 m)J -<: - 8 kN ' m 

We can also obtain this value by using the method of sections. as 
shown in Fig. 7-16e. 

'ZkN 

(,' 
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EXAMPLE 7.10 

The shaft in Fig. 7-17a is supported bY:l thrust bearing at A and a 
journ31 bearing al B. Draw Ihe shear and moment diagrams. 

! nIl 0 rrr'[' 
12 It r ,., 

Hg. 7- 17 

SOLUTION 

The support reactions ar.:: shown in Fig.7- 17b. 

Shear Diagram. As shown in Fig. 7- 17c.thc shear at x '" 0 is +240. 
Following the slope dtfined by the loading. the shear di:"lgram is 
conSlructed. where at 11 its value is - 480 lb. Sine-;: the shear changes 
sign. the point where V = 0 musl be locllled. To do this we will usc the 
method o f sect ions. The (rce-body diagram of the Itft segment of the 
shaft. sectioned al an arbitrary poSition.r within Ihe region 0 S :r < 
9 fl. i~ shown in Fig. 7- 171'. No!ice !hatlhe intensity of the distribuwd 
load at .t is II' = 10.1". which has hten found by propor!ional triangles. 
i.e .. 120/12 = wJ.t. 

ThUs. for V = O. 

24U Ib -~( Io.t).r = 0 
.r = 6.93 fl 

Moment DIagram. The moment di<lgram s t~rts at 0 sine-;: Ihere is 
no moment at iI. lhen it is const ructed based on the slope as 
dclermined from lhe shl;1!T dhtgram.l1H.: maximum momenl lx:curs at 
x = 6.93 fl. where the shear is ellunl to zero. sin!:e tfMlt/x = I-' = O. 
Fig. 7- 17t'. 

C +'i.M = 0: M n .. , + ? [(10)(6.93») 6.93 (l (6.93»)-240(6.93) = 0 

M n, .. = 1109Jb · fl 

Finally. notice how inlcgralion. fi rst of lhe lo~ding '" which is linear. 
produces a shear diagram which is parabolic. and then a moment 
diagram which is cubic. 

t20lbjfl 

1l,_ -II«ltb 

... _ negath.., incrcasing 

51op<: - "",~ti"c increasing 

V(lb) J 
parabolic 

"""~:&!:::"""~Ir-t--6.'13 12 
) (II) 

J 

/ 
posili"c 
.... 'Crca~inf, 
M{lb' ft) 

"'I I -.., 
V _ ne",lh'c iO(fI;3<ing 

slop" _ nc",m'e in<T .. ~ing 

'""' .... :c\--,,'" 

0«=---:7:-- -=>;-' ttl) 
6.93 12 

"l 

,,' 
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• FUNDAMENTAL PROBLEMS 

t1- L\ Draw lhe 5hear alld mome111 diagrams for lhe beam. F7- 16. Draw ll1e sheaT and mornenl diagrams for lhe beam. 

3 kN 

HN 6 kN 
6kNl m I . 6kNJm 

I 

-- lm --I- lm-llm~ I A " 
~ISm--- 'm---Um~ 

fi- 16 

t1- I4. Draw the shear and moment diagrams for the beam. F7- 17. Draw the shear and moment diagrams for the beam. 

6 kN m 6 kN/m 

I loS m---f-- LS m---. 'm ---- -- , m---

t'7_14 t"7- 17 

ti- IS. Draw lhe shear alld moment diagrams for the beam. fi- Ili. Draw the sllear and moment diagrams for the beam. 

l!bJ> 

A , A 

" >--, m--- --' m ---
L ''' - -. '''- - - , "- -. 

t1- 15 F7_14 
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• PROBLEMS 

· 7-65. Thl.' shaft issupportcd by a smooth thrust bearing 
at A and a smooth journal bearing at 8. Dmw the shellr and 
momenl diagrams for the shaft 

Ti" r ,,,S 
l' rob.7-4JS 

2ft -

7-66. Draw the shear and moment diagrams for the 
double O"erhnng beam. 

LOkN 

HN 

I 
, 

,. + - 2m ,. .l ,. 
"rob. 7-66 

7-4J7. Draw the shear lind momenl diagrams for tbe 
owrhang beam. 

ISkN 
6tN 

I ) 
A 

.J. 
IJ I M .. IO kN · • 

2. ,. 2m - , 

Prob. 7-67 

· 7-{iS. Draw the shear and moment diagrams for the 
simply supponcd ncam. 

,lj .. 2kN · m T 
" , 

2. T 2. T ,. 

· 7-69. Draw the shear and moment diagrams for the 
simply supported beam. 

I'rob. 7-69 

7- 7U. Draw the sheJr and momcnt diagrams for the beam. 
The support at II offers no resistance to \"erticallo.1d. 

, , 

" !I~::::::::::::::::::::::::~~n,-

t 

" '010. 7- 10 
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7_71. Draw the shear and moment diagra ms for the lathe 
shaft if il iS5ubjected to the loadssho"·n. The bearing al;\ is 
a journal bearing, and 8 is a thrust bearing. 

"" ! 
,'O"J, +,-JA 

SOmm !Omm 
", ~ "' .. 

200mm 1 ZOOmm.j.. - -I 
HlOmm !Omm 

!'rob. 7- 71 

· 7- 7l.. Drawthe shear and mornent dlagmms {or tbe beam. 

!'rob.7- 72 

· 7- 73. Draw the shear and moment diagrams for the 
shafl. The support at .II is D thrust bearing and Dt 8 it fs a 
journal bearing. 

!'rob.7- 73 

7_74. Draw the shear and moment diagrams for the beam. 

,. --0.15 m­
O.25m 

Pmb. 7- 74 

,. ,. 

7- 75. The sha{t is supported by a smooth thrust bearing a! 

;\ and 3 smooth journal bearing Dt 8. Draw the shear and 
moment diagrams for the shaft. 

>00" 

Illin l llll n 
" 

15m Um 

!'rob.7- 75 

· 7- 76. Dmw Ihe shear nod moment diagrams {or the beam. 

IOkN 

,. ·,-- 3m - 2ml 

Pmb. 7- 76 
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07_n , Draw lhe shear and moment diagrams for lhe 
~ha fl. The supporl al , I is a journal bearing and a1 B il is a 
Ihrusl bearing. 

. - Ifl '" -tft • 

l'rob. 7- n 

7-78. The beam ronsislsof IWO scgmen1s pin ronneeled:u 
/;I. Draw Ihe shear and moment diagrams for the beam. 

""" .> 

. ! C 

' " ." j 

f'rob. 7-7~ 

7-79. Draw the shcar and moment diagrams; for the 
eanti lc\'cr beam. 

Prall. 7- 'N 

"7-80. Draw thc shear and moment diagrams for the 
simply supported beam. 

IOkN 

IQkNjm 

Iflf jill 
B 

,. 1 ,. 
l' rob. 7-lW 

.'-81. Draw Ihe sheaf and moment diapalllS for Ihe 
beam. 

lOOOlb 

,jT1rrJ II j Ill --------------------------- . 
~ 

l ' " '" 
f' rob.7-8 1 

7-t1Z. Draw tbe shear and momcnt diagrams for the beam. 

l--L L 

Prall. 7-82 



1-4U. Dra .... the shear :md nloment diagrams for the beam. 

8 kNj m r ,IIIII ([[! ,. J 
] ,. 1l0lffl ' 

8lr.N'm 

"rob. 7-40 

· 7-11-1. Draw the shcurand moment diagrnm§ for the beam. 

" rob. 7-11-l 

· 7-S5. The beam "'ill fail whcn the maximum momCIl1 
is ,\1_. ,. 30 kip' ft or the muimum shear is V_, .. 8 kip. 
Detcrm;ne the largest intensity ,,·ofthc distributed load the 
beam will suppon . 

.. , 
Proh.7-85 

7-86. Draw thc shear and momCIl1 diagrams ror lIM: 
compound beam. 

HN 

,.- - '. - -\.Sm-l.5m· 

ProO. 7-86 

7-37. Draw the shear and moment diugranls for the shafl. 
The supports at II and H ure journal bearings. 

'::!k. 
• -llIXImm- --4SOmm "".m 

"rob. 7-87 

"7-!11l. Orn .... thc shear and momcnt diagrnms for lhe beam. 

l' rob.7-88 



*7.4 Cables 

flesiblc cables and chains combine strength wilh ligh tness and orten arc 
used in structures for support 3nd \0 transmit loads from onc member [0 
another. When uSed \0 suppon suspension bridges and Irollcy wheels. 
cables (onn lhe main load-.carrying dement of the structure. In the (orce 
analysis of such systems. Ihe weight of the cable itself may be ncglcch::d 
because i1 is orrcn small compa red \0 the load i1 carries. On Ihe Olher 
hand. when c:lbles arc used as transmission lines and guys for radio 
anlcllmlS and derricks. the cable weight may become important and must 
be included in Ihe Structural :lI1alysis, 

Three cases will be considered in the analysis 1h:11 follows. In each case 
we will make Ihe assumption 1ha1 the ,,",Jbl<:: is per/«Ify J1l!xible and 
illeXIi'llsibll'. Due 10 ils flexibilily. Ihe , abll! offers no resislan,e 10 

bending. and therefore. the lensile force acting in the cable is always 
tallgent to Ihe cable al points alollg its II!ngth. Being inextensible. the 
,able has a ,onslanl length bolh before lind after the load is applied. As a 
result. once the lood is applied. the geometry of tho: cable remains 
unchanged. and the cable or a scgment of it can be treated ,IS a rigid body. 

Cable Subjected to Concentrated loads. Whcl1 a cable of 
negligibll! weight supports se\'erul concentrated loads. the cable lakes 
the form of sc\'eral slraighl.l ine scgments. e3ch of which is sUbjecled to a 
OOllSlant tensile fon:e. Consider. for example. Ihe e3ble shown in 
fig. 7-18. where the distances h. Ll. Lz. and LJ and Ihe lo.1ds I' , and "1 
arc known. The. problem here is 10 detcmline the lIille IlI/kIlOlI'IIS 

ronsisting of the Itnsion in cach of Ihe I/r' .... scgmt.' nts. Ihe ftm, 
components of reac tion at II and /J. and the /n"Q sags)"c and )'1) at poinls 
C and D. For the solution we can write 111"(,1 equalions of for" 
equil ibrium at each of poinls II. B, C. and D. This results in a lot31 of f'iglrl 
~(fllflliUlIS.· To complete the solution. we need to know something ,lbout 
the geomelry of the cable in order to oblain the necessary ninlh 
equation. r-or example. if the ,able's total/ellSIIr L is specified. then the 
PYlh3gorCiUl theorem can Dc used to relate each of the threc scgmental 
lengths. wrillen in terms of h. Ye. YI). L I • 1.2• and LJ• to Ihe total length L 
Unfort unately. this type of problem cannOI be soll'cd easily by hand. 
Another possibil it y. howe\'er. is \0 specify one of the sags.. either )'C or 
YD. instead of the c:lble length. By doing Ihis. the equilibrium equations 
are then sufficient for oblaining the:: unknown forces ,md the remaining 
s..1g. Once the sag at each point of looding is obtained. lhe length of the 
cable can then be detemlined by trigonometry. The following example 
illustrates a procedure fur performing Ihe equilibrium annlysis for a 
probltm or lhis lype::. 

"AS ''lll be sl\o"'n in lite follo,,';"& CMlI\pk.lhe e.gh, equilibrium e'l""1I005 also can Ix 
"'riucn for 11K: en, ire cable. or any p3rt IMr""'. RUI If{) m"rt" IIt~n r~hI e'lu~'iof\S a.e 
a,~ibbk. 

7.4 CAlII£S 365 

E""h of Ihe c~ble ""gmenlS remains 
al'l)<<I~irn31cly 'l'nigh ' as Iher sup",," 
'he "'cigltt of the$<: tram" light .. 

A 

'. 

'., I.: 

D 

" j 
" 

til:- " - I M 
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EXA MPLE 7 .11 

". 

A. 

4 kN 

1 l5kN 
- ~ m-+-!fm 3 ,n I ,b, 

I2kN 

,,' 
. l g. 7- 19 

'. 
~ 
I E, 

Detcnnine the tension in e~lch segment of the cable shown in Fig. 7-1911. 

,., 
SOLUTION 
By inspection. there arc four unknown cxternal reactions (A , . A)"" E •. 
and E , ) and four unknown cable Icnsions. one in each cable segment. 
Th<:sc eight unknowns along wi th the Iwo unknown sags Ya and YI) 
can be de tennincd from lell available eqUilibrium equations. Onc 
method is to apply Ihc forcc equalions of equilibriulil (2F~ = o. 
:iF, = 0) 10 each of Ihe five points A through E. Here. however. we 
v.il1 take a more direct approach. 

Consider the free·body diagram for the enli r(: cable. Fig. 7- 19/J. ThUs. 

..±. 'iF, = 0; 
C+:iMF.= O: 

- A. +£, = O 

- AJ (18m ) + 4 kN ( 15 m) + 15 kN ( 10m) + 3 kN (2 m) = 0 

IIJ"' 12kN 

+ lLF~= O; 12kN - 4kN - 15kN - 3kN + E, = 0 

E,. = 10 kN 

Since the sag Yc = 12 m is known. wc will now consider the leftmost 
section. which cuts cable Be. Rg. 7- 19{". 

C+:£Mc = 0; A..{ 12 m) - 12kN (8m) + 4kN (Sm) = 0 

II ., = E, '" 6.33 kN 

.±. "f.F, = 0; TI/C cos OHC - 6.33kN = 0 

+ tr.FJ"" O: IlkN - 4kN - "(8("sinOsc= O 

Th" 
01fC = 51.6" 

"(sc '" IO.2kN Aus. 



to.2 kN T rt) 

'y 
t5 1;.," ,,) 

LOkN 

f- '3HN 
9 f: w 

Proceeding now to analyle the equilibrium or points A. C. and E in 
sequence. we have 

Point A (Fig. 7- 19d) . 

.±, Y.F. = 0; 

+ tY.F)" = 0: 

T.tJIcos O,IB - 6.33 kN = 0 

- TAB sin flAB + 12 kN = 0 

0/iB = 62.2" 

T/l1J = 13.6 kN A,IS. 

Point C (Fig. 7- 191'). 

~ Y.F. = 0: TCf) cos OCt) - 10.2 cos 51.60 kN = 0 

+ t 'iF, = 0: Tc t)sin OCf) + 10.2 sin 51.60 kN - 15 kN = 0 

Point E (Fig. 7- 19D . 

..±. '.iF, = 0: 

+ \'£. F,= O: 

OeD = 47.9° 

Tco = 9.44 kN 

6.33kN - T£DcosOt.·o = 0 

IOkN - TwsinO£f) = O 

OE.t) = 57.7° 

Tw = I 1.8 kN 

AIJ.~ 

Alli . 

NOTE: By comparison. the maximum cable tension is in segment A8 
since this segment has the greatest slope (0 ) and it is required that ror 
any (able segment the hori:wmal componcllt T cos 0 = A. = Elf 
(li constant).Also. since the slope ~ I ngles tbat the cable segments make 
with the horil.Ontal h8\'e now been determined. it is possible to 
determine the sags)'/1 and )'t). Fig. 7- 19u, using trigonometry. 
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Thc cahle and su<pendcl'$ atc u.cd 10 
~uppotl Ihe uniforn! load of a /la. pipe 
which truSSCS lhe rh'et . 

, 

, ...... ~ .. ) 

"J 
tig. 1- l0 

Cable Subjected to a Distributed Load. Let us now 
consider the weight less cable shown in Fig. 7-200. which is subjected to a 
distributed loading Ii' = !I"{.l ) that is IIIl'umrl'll ;" Iltl' .1 II;r l"-I;OII. The 
free-body diagram of a slOall scgml-nt or the cable having a length ~ ... is 
shown in Fig. 7-20b. Si nce the tensile force changes in both magnitude 
and direction along the cable's length, we ,",'ill denote [his change on the 
free-body diagram by !J. T . Fintllly. Ihe distributed load is rI:pre~l'ntcd by 
its resu ltant rorce II' (.I )( !J.X). which acts at a rractional distance k( ~x ) 
from point O. where 0 < k < I. Applying [he equations o f e(lu ilibrium. 
we have 

..±.'l.F. = 0; - T ("os 0 + (T + !J.T)eos(O + ~O) = 0 

+ 1 H~ = 0; - TsinO - lI" (x)( ~x) + (1" + !J.T )sin{O + ~O) = 0 

C + 'l. Mo = 0; II'( x )( !J. x)k( ~x) - T cos 0 ~y + T sin 0 ~x = 0 

Di\'iding each or these equations by !J.x and taking the limit as !J. x -0. 
and therefore !J. )' -- 0_ !J.Q -- 0_ and !J.T ..... O. we obl;l;n 

~"(,,T-'.':::~::O:!.) - = 0 
fi x 

l/(T sin 0) 
- ... (x) = 0 ,h 

<ly 
- = tan (J 
d .l 

(7-7) 

(1-8) 

(7-9) 



"'(.<)(..1., ) 
k (..I.. ) . 

--; , 
-- , 

---
, T .. ..I. T , , , , , , , , 0' ~ ~ ..I.6 , , 
1\ r , , 

:1)" 

T • 
---,, ---1 

'" 

[ntegnuing Eq. 7_7, we h(Ll'e 

T cos 0 = constant = Fu (7- 10) 

where FI/ represents the horiwntal component of tensile force ~t (III)' 
poim along the cable. 

Integrating Eq. 7- 8 givcs 

Tsin O= /W(.l )dX (7- 11) 

Dividing Eq. 7- 11 by Eq. 7- 10 eliminates T. Then. using Eq. 7- 9. we 
can obtain the slope of the cable. 

lIy I J Ian I) = - = - "·(.l ) d.l 
(Ix FI/ 

Performing a second integration yields 

(7- 12) 

This equation is used to determine the curve for thecablc. y = I (x). The 
horizontal force component Fu and the fH.lditionaltwo conStants. say C t 

lmd Cz• resulting from the integral ion arc detemlined by llpplying Ihe 
boundary conditions for the curve. 
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, 

The cables of the suspension !"idg<: e~cn 
ve ry large forc~"S on the tower ~ nd the 
foundJtinn block which ha"c to be 
accounted lor in thcitdcsign. 
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EXAMPLE 7 .12 

The cable of a suspension bridge supports half of the uniform road 
surfacc bctwccn the two towers at A and 8, Fig, 7- 2111. tr this 
distributcd loading is " '0. delf,~rllline the ma.~illlulII force developed in 
thc cable and the cable's rCtjuired Jength, 'lbe sp:m length L and sag II 
arc known, 

L 

(.) 

~j ~, 7- 21 

SOLUTION 
We can detemline the unknowns in the problem by first finding thc 
etjuation of Ihe eurve Ihat dcfin(."S the shape or,he cable using Etj. 7- 12, 
r'Or reasons of S)lllnlelry, Ihe origin of roordinnlcs has Ix'<:n pJaced at 
the eablc's center, Noting that "'(,I ) = "'0. we havc 

Pcrfomling the t"'O integrations gh'cs 

)' = ...!... (IO'1)l"~ + C\x + C~) 
FIJ 2 

( I ) 

The constants of imcgration may be determined using the boundary 
conditions )' = 0 at X = 0 and d)'/tI.r = 0 at ,r = O. Substi tuting inlo 
Etj.1 and its dcriv;uh'e yields CI m C: = 0, The equalion oflhe cur\'e 
then becomes 

" '0 , 
)' = --r 

2FI/ 
(2) 



 

This is the equation of a pl/rl/bola. The constant F '/ may be obtained 
using the boundary condi tion y = Jr al.f = L/ 2. Thus, 

Therefore, Eq. 2 becomes 

~h , 
y = L l r 

(3) 

(4) 

Since FI/ is known. the tension in the cable may now be determined 
using Eq. 7- 10. wrillen as T = FII/ cosO. For 0 s /) < ""/ 2. the 
maximum tension will otcu r when 8 is III/iximllm. i.e .. a t poim B. 
Fig. 7- 2Ia. From Eq. 2.lhe slope allhis point is 

lIyl = t(ln 0","" = ~.f l 
dx x- LIZ FI/ ~~Lf2 

_,(w,L) 
0"". : tan 2FI/ (5) 

TIlcreforc. 
_--,F~' '"'-c-T = 

"'"' cos(O,,,,,,) 
(6) 

Using the triangula r relationship shown in Fig. 7- 2Ib. which is based 
on Eq. 5. Eq. 6 may be wrillen as 

Substi tuting Eq. 3 into the above equation yields 

".,LJ (L)' T = - 1 + -
""" 2 411 

For a diffcrential segmenl of cable length 11$. we can wri te 

d~' =- V(dx)~ + (dd = J I + e~y IIx 

Hence. the total length of the cable can be deh:mlined by integration. 
Using Eq. 4. we have 

J £'"' J (81')' !£= d$ = 2
0 

1 + L l x dx (7) 

Int egrating yields 

L[J (41,)' L (''')] !£ = "2 1 + L + 411 sinh-
1 L An.\: 
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/ 
8 

,. 
~' - " '(I) 

) 

.. ,.) 
..... g.7- 22 

Cable Subjected to Its Own Weight. Whcn the weight of a 
c:lblc becomes important in the force an~lysis.. the tooding function ;llong 
the cable willlx: ~ function of the ~re length s mther than the projected 
length x. To anal}"!.c this problem. we will considcr ~ generalized looding 
function '" ~ w{s ) acting along the cable as shown in Fig. 7- 22t1. The free· 
body diagram fo r a small segment ~s of the cable is shown in 
Fig. 7- 22b. Applying Ihe equilibrium equations 10 the force system on this 
diagram. one obtains rct:d ionships identical to those given by 
Eqs.. 7- 7 through 7...Jl. but with lis replacing IIx. Therefore. we can show that 

T cos 0 '" PI! 

TsinO '" JW($} Ill' 

lIy I f - "" - ... {.f) lis 
,Ix Fif 

(7- 13) 

(7- 14) 

To perform a direct integration of Eq. 7- 14. it is nec.::ssary to replace 
dy/ (Ix by (Is/ d.l . Since 

then 

dy ~ /("' )'_ 
dol \ d.l 



-T • 

Therefore. 

M'(s)(l.r) 

/ ............ -
, , , , , , , , 

-' 

I.: (l.r) • 

...... ---1 , , , , , , 
o 

l __ ,, __ , 

''l 

T " J.T . .,. 

,I, [ I (f )']'" - = 1 +-:1 "'(.1') II.!' 
11:0: FI/ 

Scp:lrating the variables and integrat ing we obt;lin 

f d, 

x = [ I (f )']'" 1 + Fj, w(s ) (I.!' 
(7- 15) 

The IWO conSI;lnlS of integ rat ion. say C1 anu Cl • a rc found using the 
boundary conditions for the curve. 
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Ek..:uical tr.m<m,~,on tOl>.'ers must be 
dt5igned to support Ibe .... "'gbl$ of Ibe 
su;;pcndc:d llOwtr Ijno:s.lhc: wtjglll aod ~nglh 
of Ihe tables tan be dtttrmined since Ihey 
each form a ('Mcnary con·c. 
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EXAMPLE 7 .13 

Fig. 7- 2j 

Dderminc the dcnection curve. the length. and the maximum tension 
in the uniform cablcshown in Fig. 7- 23.The cable hasa weight per unit 
length of Wu = 5 N/m. 

SOLUTION 
6_ For reasons of symmetry. the origin of coordinates is locatcd :It the r- center of the cable. The dence tion eurvc isexprcsscd liS Y = [ (x ). We 

/, . 6", can determine it by first applying Eq. 7- 15. where w(s) = " '0. 

Integrating the term under the integral sign in the denominator. 
we ha,'e 

Substit uting II = (I / FI/ )( w1)5 + Cl) so that till = (" 'oIFII )ds. a 
second integration yields 

0 ' 

;r = F~I{Sinh-l[....!... (II'()l' + CI )] + C,} 
" 0 FI/ 

To evaluate the constants note lhal. from Eq. 7- 14. 

/ly I J dy I - = - h"u tls or - = -(W1)5 + C1) 
i/;r F/I dx F/I 

Since lIy/ (/x = 0 ~l .~ = O. then CI = O. ThUs. 

II)' = W()$ 

d:r FI/ 

(I) 

(2) 

The constanl C 1 lIlay be evaluated by using lhc condition s = 0 al 
.r = 0 in Eq. I. in which casc C~ = O. To obtain Ihe dcflection curve. 
solve for J in £<1. 1. which yields 

s = - sinh - ;r F" ( ... , ) 
"'0 FII 

(3) 

Now substitute into Eq.2. in which C3l1C 

dy . ( ... , ) -, = smh f-=-.r 
(X II 



Hence. 

F" ("."0 ) Y = - cosh - x + C, 
"'0 F" 

IT the boundar~' condition y = 0 at .1 = 0 is applied. the constant 
CJ = - F /I/ wo. and therefore the denL-<: tion curve becomes 

y: F"[=h(~X) - 1] (4) 
"'0 FIf 

This equation dcfincs the shapc of II Ctl/l:l!flry e!m'l:. The constant FI/ 
is obl~lined by using the boundary condition tb"t )' = II '11 .~ "" L/ 2. in 
which case 

II '" F~I [COSh("'oL) - 1] 
" 0 2FI/ 

(5) 

Since " '0 = 5 N/ m, " = 6 m. and L = 20 m. Eqs. 4 and 5 become 

(6) 

6 m =-- cosh -- - 1 F" [ (50N) ] 
5N/ m Fu 

(7) 

Equation 7 can be solved for F /I by using a trial ·and-error procedure. 
The result is 

FIf = 45.9 N 

and therefore the deneclion curve. Eq. 6. becomes 

y = 9.19[c05h(0.109.1) - I] m 

Using Eq.J. with x = 10 m. the half-length of the cllble is 

!£ 459N [5N/ m ] "2 = 5N/ msinh 45.9N ( lOm) = 12.1 m 

1·lence. 
!£ = 24.2 III AII.1. 

Since T = FII/ C:05 O. thc maximum !ension occurs when 0 is 
maximum. i.e .. at l" '" ~/2 = 12.1 m. Using Eq. 2 yields 

And so. 

<lyl = 1anO = 5N/ m( 12.1 m) = 1.32 
dx •• 12.1 m !IWI 4S.9N 

0"",. = 52.8° 

T =~ 
m.. cosl/mu; 

45.9N = 7S9N 
co;; 52.8° . , 
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• PROBLEMS 

Ncgk-.:t the weight of the cable in the following problems, 

unless specified. 

• 7-81'. Dete rmine the t en~ion in each segment of the 
("lIble and the cable's total length. Sct I' ... SO lb. 

7-9'0. If ellCh cable segment ("lin support a maximum temion 
of75Ib.<lctermillC the Jargcstload P that can be applied. 

" 
A 

'( 
---~ 

\..--1" 
c .". 

r-3 1l--:-~ Ii - - I_",- I'robs. 7-8'11911 

7-!H. The cable segments support the looding shown. 
Dctemtinc the hOTll.onlal distance .tb from the force at B to 
point A- Set I' - 40 lb. 

· 7- 92. l1te cable segments suppon the loading shown. 
Dctemtine the magnitude of the horizontal force P so that 
xw - 6ft. 

.r-. 
'" 
·1 
I 

--""J",8 _ _ ~ , 

'" I _ _ .;c..".. ___ • "''' 
HI j " -~IY.: 

~~f' 
Prohs. 7- 91192 

· 7- \13. Determine the force P needed to hold the cable 
in the position shown. i.e .• so segment He remains 
horizoll1al. Also. compute the sag ."8 and the maximum 
tension in the cable . 

" , c 

6kN 

4 kN , r I 
~m-- 6m--T - J m- -2m 

Prob.7-93 

7- \14. Cable ~l tJCD supports the lO·kg lamp E and the 
IS·kg lamp f: Determine the maximum tension in the cable 
and the sag }'B of point B. 

" 

'm-,,---'m--- -
U •. ~ m 

Prub.7- 94 



1-95. 1be cable supporU Ihe thrtc ioaduhov'n.1)clcrmine 
1M sap y, and )'0 of points» and O. Take 1', - 400 lb. 
I': • 2!iO lb. 

'"1-'.16. The cable supports the Lhrcc loads sOOY.'lL 
Dctcrmme Ihe magnnude of 1", if P: .. 300 Ib and y, .. 8 fl. 
Also find the s.:Ig),o-

J ,. 
A ", 

tHI ,"" 
8 D 

C 

l " " " 
llh - - 20f. I ,H'- --,H'1 T 

I'robs. 1- '1f./% 

· 7-91. TIM: cable suppons the Ioadmg s.ho'A'n. IXlcrmlllc 
1M horko.lIl1l distance x, the force al pom. H acts from A. 
SciI' .. J() lb. 

1-98. TIM: (able suppons the loading shown. Determine 
the magnitude of the horiwntal fortt " so Ihal l. '"' 6 fl . 

r ,',-

Sf, 

H • .. 
~ 

C 

2,n 

-H. - "''" 
"robs. 7-97I9S 
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7-99. DclcmuM the maximum umform distributed 
Ioad"'g"" Nlm .luil 'he cable can suppa •• if it IS capable of 
sustaimng a maxImum Icnsion 0160 kN. 

t~ ___ .. m 

~ /~ , 
'm 

III llll!.! 1111!'! .1 I 

I'rob.7-!W 

· 7-100. Thc: cable supports Ihe uniform dlSmbuu:d load 
of '" .. 6()() Ib/ It. Delerminc .he u:rwon In Ihe ('able PI 
earn support A and 8 . 

07- 101. Delunllne .he maximum uniform dlslnbulcd 
load " '0 the cablc can suppon if lhe: ma~imum ICnsion Ihe 
cable",n susuin IS 4000 lb. 

• 
A 

LSI. 

1011 

1" lIb. 1- 101 
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7- 102. The table is subjected to the Hiangular looding. If 
the slore of lhe c.,ble at poim 0 is zeTO. determine the 
equalion of the eu,",'c y - ! (x ) "hich defines the ,able 
shape OB.and the maximum tensIOn developed in the cable. 

r IS h 

Prob. 7- 1112 

7- 1t13. If cylinders C and D each we igh 900 lb. determine 
Ihe ma~imum sagh. and lh.: lenglh oflh e (able b;: lwecn Ihe 
smOOlh pulleys at .4 and 11. The b;:am has a wdghl per un il 
length of 100 Ihl fl. 

o-----Izrl-----' 

c 

"'rub. 7- IOJ 

*7- 104. 'llIe bridge deck bas a weight per unit length of 
80 kN/ m.1! is supponed on elKh side by a cable. Determine 
lhe tension in e3eh cable al the piers A and H. 

07- 105. If each of the IWO side cables thai support the 
bridge deck can SUSlaUl a ma~imum lenSlon of 50 MN. 
determine theallowable unifonn distributed load ""/I tauscd 
by the weight of the bridge de(k. 

---101.(101---

rrob~. 7- 1I.W105 

7- 106. If the slope of the cable at support A is 10". 
determine the deflection eu,","e y .. f(.r) of the cable and Ihe 
n13Ximum tension del'eloped in the cable. 

, 
f----'" " 

5OO1b/ft 

I"roll. 7- 1116 



7- 107. If II .. 5 m. delcrnllne 11K: mllXlmum tens,on 
de.'eloped 10 11K: chain and us knglh. The ~hain has a mass 
per uni t lenglh of81:&lm. 

"'. 
---, 

11 _ 51'11 

l'roh. 7- 107 

· 7- 10&. A cable ha.ing a .... eighl per 11011 Icngth of 5 1b/ ft 
IS suspended bet .... een suppom It and 8. IXtcnninc tlK: 
equation of 11K: ca tenary cun'e of the cable and tlK: cablc's 
k ngth. 

t.so II 

Prob.1-108 

· 7_109. If tlK: 45-m·long cable has a mass per UOil lenglh 
of' tum. determine tlK: cquation of Ihe Ca ICna!)' cun"c of 
the eable and Ihe ma~imum Icnsion dc\'cloped In the cable. 

l 

Prob. l - 109 

1_110. Silo", lhal !hcdc:flcalOOcun", of till- cable disctas<ld 
on Example 7- 13 rcdlK'l.:S to Eq. 4 in Example 1- 12 .... hen 11K: 
1I1"J'(', ho/1(" CQlinr fimctiOlI is c!q)3ndcd In terms of .. ~ries 
and only the fint 1"'0 tCTlllS arc retalllcd. (Illc answer 
mdicates Ihat the ("II/nUl'" may be rcpl.xcd by a par.tbola. 
in tIK: IInal)'Sis of problems in "hieh the sag Is small. In this 
ca'IC.thc cable .... eighl is assumed to be uniformly dimihuled 
along llie horIl0nlal.) 
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7- 11 1. Th.e cablc has a nta§S per UOII lenglh of 10 k&lm. 
DetermIne the shoncsl 100ailenglh L of the cable that can 
be SllSpended 10 eqUIlibrium. 

'm 

Prob.l- 111 

· ' - Ill. Th.e power Ir.tnsrnission cable has a ","(',ght per 
unit knglh of IS Ib/ fl . If Ihe Io .... cst po,nt of Ihe cable mllSl 
be al leasl 90 fl 3OOI'C Ihe ground. dCle rmme Ihe m:mmum 
tension dc"eloped 10 the c"ble and the eable '5 lenglh 
between It and 6 . 

1110 f. 

---"" ,,--­
A 

" " 

Proo.l- lIl 

B 

120ft 

·7_11J.. If the horizonlal tG...-mgforce is T .. 20 kNand Ihe 
cham has a mass per UnIt lenglh of IS t llm. determlne the 
m"~lmum Jag h. Neglcct the buopncy effect of 11K: .... :ItU 
on 11K: chaln.1lIc boats arc stauonary. 

Proh.7- IIJ 
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CHAPTER REVIEW 

Internal LOlldings 

If a coplanar fora: s)'Slem 3C\son a member. 
then in general a resull:ln1 internal no,mm 
fore( N. shear fon.., V . and beni/ing nlOlUflrl 

1\1 ",ill act at any cross s«1ion along the 
memher, the positi\'e dircctiOlls of tllcse 
loadings au shown in the figure. 

The resultant internal nomlal fllfce. shear 
fora:. and bending moment arc dctennined 
using the method of !iCClions. To find them. 
lhe member i$ 5Cl1ioncd at lhe point C 
where the inte rnal loadings arc to be 
determined. A frce·body diagram of OIle of 
lhe ~tioned pans IS then dralll1 and the 
internal loadings arc shown in their positive 
directions. 

The resultan t normal (orce is determined 
by summing forces normal to the cross 
seelion, The resultant shear force is found 
by summing forces tangent to the cross 
section. and the resultant bending moment 
LS found by summing momenlS about the 
geomet ric center or cenlroid of the cross­
sectional un,'a. 

If the member is subjected to a thrce­
dimensional looding. then . in geneml. a 
torsional IllOm"", lIiU also acl on the cross 
~tion. It am be determined by summing 
moments aboot an axis Ihat is perpendicular 
to the cross seclion and passes through ilS 
centroid. 

Y-F • .. 0 

":iF," 0 
"£Mc .. 0 

~
N-::m.'''~ 

C 7- N 
" Shear 10""'" --"v I 

8~ndjng morn~nL 

(. j 

'. ~', 

"' ~ 
I l. 

C 

A, 

" 

18 

t 
«. 

Iknding moment I 

componeNts r ~I , 
, NormallOfCC 

-\-___ ~.\', ( , Tonlonalmnmem 
'1 I I'i,(~r_v ':J . 



 

ShCllr and Mom~nt Oiagn nlS 

To construct the shear and momem 
diagrams for a member. il is necessary to 
section the member at an arbitrary point. 
located a distance x from the left cnd. 

If the c~tcrnal Iooding consists of changes 
in the distributed Io.w. or 3 senes of 
concc11lmted fOKes and couple moments act 

on the member. then different e~s 
for V and M must be detcnnincd within 
regions octween any load d=tinuiuC$. 

The unknown shear and moment are 
indicated on the erosssection in tbe positive 
direction according to the established sign 
cOfiwntion. and then the internal shear and 
moment arc detemlined as functions ofx. 

Each of the functions of the shear and 
moment is then plolled to create the sbear 
and moment diagrams. 

~"- ' 
&II1T r 
~,,-j 
1-- ,,-----< 

i" " 
"1 

F'o$;li,·~ shear 

" " ')( 
" ( 

rosil"'c """""01 
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Iblytions bet .. t t n Shcar and MQmtnl 

It is possible to plotthc shear and moment 
diagrams quickly by using diffcremial 
relationships that exist he"\'een the 
distributed lo.1ding ... and V and M. 

The slope of the shear diagram is equal to 
the dimibutcd looding at any poin t. 1hc 
slope is positive if the distributed load acts 
upward. and vicc-versa. 

'Ihe slope of the moment diagram is equal 
to the shear at any point 1he slope is 
posit'\·" if tlte shear is positive. or ,;ce,\·ersa. 

The ~hange ;n shear between any two 
points is equal to the area under the 
distributed loading between the points. 

'Ihe change in the moment is equal to the 
area unde r the shear diagram hetween the 
poinlS. 

Ca blCll 

When 3 nel(ible and incxttnsihle cable is 
subJeetcd to a series of concentrated 
forces. then the analysis of the cableean be 
performed by using the equations of 
equilibrium applied to rrec-bod~' diagrarm 
of either segments or points of application 
of the loading. 

If external distributed lo.,ds or the weight 
of the cable arc to be considered. then the 
shape of the cable must be determined by 
first analydng the forces on a diffe rential 
segment of the cable and then integrating 
this result. Thc two constants. say C1 and 
C:. resulting from the integralion arc 
determined by applying the boundary 
conditions for the cahle. 

III' 
(Ix 

dM 

rI.T 

'" 

v 

AV = JWd.r 

I:J. M : J V dX 

Dislrihuted load 

Cable weight 

" 



• REVIEW PROBLEMS 

7- 114. A lQO.lb cable is auachcd octween t"'o points at a 
distance 50 flaparl having equal eic"ations. l flhe maximum 
tension de"eloped in the cable is 7Slb.delcml;nc Ihe lenglh 
of the cable and the sag. 

7_1 15. Draw the socaT ~nd moment diagrams for beam CD. 

r 
3n-t !ftl 

lUk,p 

, .\k,,, . II 
.D 

~ '" 1 ,Co L,.-j 

" rob. 7- IIS 

· 7- 116. Dc!Cmlinc the imernal normal force. shear force. 
and moment at poims 8 and C of the Ocam. 

'm 

I'roil. 7- 116 

383 

' 7- 11 7. Determine the imernal normal force. shear force 
and moment al poims 0 :md £ of tile fmme. 

O.25m 

r--""m-j 
c 0 

J 'm 

• J 

I'rob. 7- 117 

7- 11 11. Delcmlinc the distance" between llie suppons in 
terms of the beam's length L so that the moment in the 
)f"uIJeIri<; beam is zero at the bcanfs cenler . 

. ' 

l .-f ,. 

"rob. 7- 1111 
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7- 11 '.1. J\ dla;n is suspended between points 311he same 
elevation and sp~ccd a dismnce of 60 (I apart. If il has a 
weight pcr unit length. of 0.51b/ fl and Ihe sag is 3 ft . 
dClcrnllnc Ihe mninlllnt lension in the chain. 

· 7- 120. Draw Ihe shear and mOl1lenl diagrams for Illc beam. 

5(JI<N - m 

c 

f 

1' . "b.7_1211 

• 7_l !!. ~Icrminc Ihe inl ernal shear and moment in 
member AHCasa funC1ion ofx. where Ihcorigin for .r isa! A. 

A 8 C , 
Um 

J L 

~'m ---l ..s m ·· 

6kN 

Prob. 7- 121 

7_1ll. "l'he ' ral'cling crane consists of 11 5-m-)ong beam 
IIlIl'ing a uniform mass per unillcnglh of 20 k.g/m.The chain 
hoist nnd il s supported load cxcr! n force of 8 kN on Ihe 
beam when x = 2 m. Draw Ille shear and moment 
diagmms for Ihe beam.The guide ,,"heels 31 Ihe ends A and 
8 exert only Iwtica] reactions on lhe beam. Ncglccl lhc siu 
of the troLley:l.t C. 

I'roll. 7- I H 

°7- 123. Determine the internal normal force. shear force • 
and the moment as a function of 0" S /J S ISO" and 
o S y S 2 ft for the member loaded 35 sho"'n. 

8 C 
200ib , 

~ 

lSOlb 
HI 

" 

" rob. 7- 123 



· 7- 124. The yacht is anchored "ith a chain thaI has a IOtal 
length of 40 m arK! a mass per unillcnglh of 18 kg/m. and Ihe 
lensiOll in tbe chain al A is 7 kN. Determine the Icngth of 
chain /J "hleh is lying al the bollom of the sea. What is the 
distance d? Assume thaI buoyancy effects of Ibe waler on 
the chain afC oegligibl~. /fi",: Establish the origin of the 
coordinate system at B as 5ho"11 in order to find the chain 
length BA. 

Proh. 7- 1!4 

07- 125. Delermim.> the internal normal force. shear force. 
and moment at points D and £ oflhe frame. 

l!>Olb 

f'rob. 7- 125 
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7- 126. The uniform beam weighs 500 Ib and is held in the 
horizontal posilion by means of cable AB, " 'hich has a 
weight of 5 Iblll. If the slope of the cable at A is 30' , 
detcrnlJne Ihe length of the cable. 

" 

Proh,7- 126 

7- 127. l ltc balloon is held in place using a 400-ft cord that 
weighsO.!llb/ft and makes a 60' angle wilh Ihe horizontal. l f 
the tension in the cord at point" is 150 lb. determine the 
length of the cord. I. thaI is lying on the ground and Ihe 
height 1[. Him: Estahlish the coordinate s)'stem at 8 as 
shown. 

r 
, 

Prob.7- 127 



The effective design of is briSke system, such as the one for th,s blcyde, requ,res <1fl 

efficient ca~Clty for the mech<llnl$lll to res,st fnctJonal forces. In thiS ch<llpter. we 1",11 
study the nature ollo<:l lon <lind show how these fOf'Ces are Considered Ul 81'l91neenl'l9 
analysis and design. 



Friction 

CHAPTER OBJECTIVES 

• To introduce the concept of dry friction Clnd show how 10 analyze 
the equilibrium of rigid bodies subjected to this force. 

• To present specific applications of frictional force analysis on wedges, 
screws, belts, and bearings. 

• To investigate the concept of rolling resistance. 

8.1 Characteristics of Dry Friction 
Fr;c/;o/1 is a force Ihal resists thc movement of 1'01'0 contacting surfaces 
Iha\ slide relative to one anolher. This force al\\':1)'$ aels IIlIIgl!/If \0 [he 
5urfa!;C at the points of COnlac! and is directed.so as to oppose Ihc possible 
o r exis ting motion between the surfaces. 

In this chapler. we will stud), the crfects of IIry [ricliol/. which is 
sometimes c;!lled COlllomb [,iclioll since ils characteristics were sllld icd 
t'xtcnsi\'cly by C. A. Coulomb in 1781. Dry friction occu~ between the 
contacting surfaces of botIics when there is no lubricating fluid. -

1l>c heat g~ncr3lcd by the ahmsiv" 
3cI;on of friction can"" nOI;"e<.l 
"hen usiog Ihisgrindcr to~h3r""n 
a melal bl3<.1e. 

"AnotlH:r I)·pc: of rrictlon. e>lk<.l nuMJ friction. is $1udi«lln nuid It\C<'hanic<. 
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Reg~,,'less of the weighl o(the rake Or 
sho,'clthal is suspended. lhe dc'-icc has 
b«n designed so that the small roller 
holds the handle in e</uihhrium due 10 
friclional rorcu that dc'-clop at the 
points of conl~t . A. 8 . C. 

,<, 

", ", 

Theory of Dry Friction . The IheoTY of dry friction can be 
explained by considering [he effecl S c<lused by pulling horizOntally On a 
block of uniform weight W which is resling On a rough hori7.ontal surfa~ 
[hal is /lonrigid 0' f/r[omrabk Fig. S- Ia. The IIpper port ion of [he block. 
howe\·er. can be considered rigid. As shown on thl' free·bQdy diagram of 
[he block . Fig. 8-lb. Ihe Ooor CXCflS all unC\'ell tlis/ribf.lirm of both 
IIOflllttl /orce .lNn and [ ' ;'Iimllli [orce .I t'w along Ihe cOlltacling surface . 
For equilibrium. the nomlal forces must acl upwa,d 10 balance the 
block's weight W, and the frictional forces actIo the tcftlO prevenl Ihe 
applied for~ P from mO\'ing the block to the right. Close examination of 
the cOntading surfa~s between the Ooor and block reveals how these 
frictiOnal and normal forces devctop, Fig. S- k . l[ can be scen Iha t many 
microscopic irrcgularities exisl between Ihe IWO sur(<lces and, as a result . 
reactive forces .l Rn arc de\'clopcd al each point of COnlac t.- As shOWn. 
each reactive force contributes both a frictional component & t'n and a 
normal component &Nn• 

Equilibrium . The effect of Ihe di;!'/,iblllct/ nomlal and frictional 
loadings is indicated by their reslIll/ln/s N and F On the fre e'body diagram. 
Fig. S- Id. Notice that N acts:l distance x to the right of the line of ;cdion 
of \\'. Fig. S-I li. This local ion, which coincides ,,; Ih the centroid or 
geometric center of the normal force distribution in Fig. 8-111, is necess;lry 
in order to balance thi! ' ·tipping crfect" caused by P. For example. if P is 
applied at a height II from the surface. Fig. S- Id. then moment cquilibrium 
about point Ois sa tisfied if II'x '" Ph or x = Ph/ IV. 

·Bcsid~s mechan ical lnl~rac"ons as uplained her", ,"'h;"'h IS 'c(CJ'Tcd • ., as ,cl3ssical 
app.Q;lch. a delailc.J trulltlcm of lhe nalu.t of ftiatOllal forcccs musl also Include I"" 
dfttlS of IcmpualUtC. dcnsi, y, d(~Qtincs::s. and a,.,mic Or molttular amaclioo ho:t ... c~n lhe 
1'I)fI1octinl su.r~c$, St'c J. Knm. Scklll'fic Am"icll".lXIo!><: •. t996. 
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Impending Motion . In cases where the surfaces of contact arc 
ralher "slippery:' the frictional force F may IrOI be great enough to 
balance p . and consequently the block will lend to slip. In Olher words.. as 
P is slowly incrcas.::d. F correspondingly increases unlil it attains a certain 
III/IXilllll1ll millt' F •. called the limifillS slIlIie [ricIIOIIII! force. Fig. 8-1",. 
When this value is reached. Ihe block is in ,mslttbl" equilibri/lm since 
any further increase in P will cause the block \0 mo\'c. Experimentally. 
il h~s Ix:cn dclcrmim::d Ihal Ihis limiting Sialic frictional fo rce F, 
is iliftC/ly proportional to the resu!!anl normal rorc~' N . Expressed 
mathematically. 

I F, - J.l.N I (8-1) 

where the constant of proportionality. /.', (mu "sub" $). is called the 
coefficiem of l'W/it: f riclill'" 

ThUs. when the block is on the I'ergt· of s!ifling. the nomlal force N and 
frictional force F, combine to create a resultant R,. Fig. S-1 ... l1le angle 
4>, (phi "sub" 5) that R, makes with N is tailed the mrgf .. of :rlalic fric/imt. 
From the figure. 

Typical values for~; arc gh'cn in Table S-1. Note that these lIalues can 
vary since c)[perimt;ntal testing was done undcr variable conditions of 
roughness and cleanliness of the cOn\;\cling surf~\ccs. For applications. 
therefore. it is important that both caution and judgment be exercised 
when selecting a coefficicnt of frktion for a gi,'cn sct of conditions. Whcn 
a more accurate calculation of F, is required. the coefficient of friction 
should be determined directly by an experiment Ihat in"ol \'es the two 
materials to be used. 

389 

Table 8-1 
Typical Values for ~ . 

Contact Coefficient of 
Materials SIalic Friction (,....) 

Mela l on icc O.03-(}.OS 

Wood on wood 0.30-0.70 

Lealher on wood O.2Q...{).SO 

Lealher on metal 0.30-0.60 

Aluminum on 
aluminum \.10-1.70 
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Fig.8-Z 

Motion . If the magnitude of P acting on the block is increased $(I that 
it becomes slightly greater than F •• the frictional force at the contacting 
surface will drop to a smaller value F k . called the kim'lie frieliO/wl foret . 
The block will begin to slide with increasing speed. Fig. S-2a. As this 
occurs.. the block will"ridc" on lOp of these peaks at the points of COlllat1. 
as shown in Fig. &-2b. The t"Ontinued breakdown of the surface is the 
dominnntmechanisrn creating kinetic friction. 

Experiments wi th ~Iiding blocks indicldl' that th.., magnitudc of the kinetic 
friction force is dirt"Ctly proportional 10 the magnitude of the resultant 
normal force. expressed mathemat ically as 

(8-2) 

Here the constant of proponionality. I-'-k' is called the cot'ffkit llf of 
h ntlie /ric/ioll. Typical values for I-'- t arc appro.~imatcly 25 percent 
slIIlIlIer than those listed in Table 8-1 for 1-'-, . 

As shown in Fig. &-211. in this casco the resultant force at the surface of 
t"On lact. Rk. has a line of action defined by <bl . lllis llngle is referred 10 as 
the /lIIgl .. of kill/Hie frictioll. where 

By comparison. <Ps O!:: ,pt. 



 

The above effects regarding friction can be summarized by referring \0 

the graph in Fig. 8-3. which shows the v:lriation of the friction .. ] forC(' F 
versus the applied load P. li ere the frictional force is categorized in th ree 
diffe relll ways: 

F is a SlIIlic / ricliOlIllI/orce if equilibrium is maintained. 

F is a limiling SIalic [ricliolllli [Offl.' F; when it reaches a maximum 
v;,luc needed to m .. intain equilibrium. 

F is termed <I kintlic friciiollill force Fk when sliding occurs al the 
cont<lcting surface. 

Notie<: also from the graph that for very large values of P or for high 
speeds. aerodynamic effects will cause Fk and likewise Il" to begin to 
d<."1:rease. 

Characteristics of Dry Friction. As <I result of e.l/fl'riml.'lIIs lhat 
pert<lin to the foregoing discussion. we can stale Ihe following rules 
which apply 10 bodies subjected to dry frielion. 

• The frictional force acts Ilmgelll to the contacting surfaces in a 
direction op/JOull \0 the mOlio/1 or tendency for mOlion of (lIIC 

surface relati,'c to another. 

• The maximum static frictional force F. thai can be developed is 
independent of the area of conl.tet, provided the normal pressure is 
not very low nor great enough 10 severely deform or crush the 
conlacting surfaces of the Dodies.. 

• The maximum slatic frictional force is generally greater Ihan the 
kinetic frictional force for any IWO surfaces of contact. Howe\'er. 
if one of the bodies is mnving with a I 'a)' low vl!/ocily over 
the surface of another. Fk becomes approximately equal 10 F.. 
i.e .. Il-, "" Il-k' 

When $/ippiIlS a1 Ihe surfa~c of conta~t is uhf/til ,,, Qccur. the 
ma.~imum st,t1ic frictional force is proporti0l1<l1 tl) the norm,t) force, 
such th.,t f; = Il~N. 

• When slipping al the surface of contaci is occllrrif'g. the kinelic 
fri~tional force is proportional to the nomlal forcc-. such that 
f), = Il kN. 

F 
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Fig. 8-3 
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8.2 Problems Involving Dry Friction 

If a rigid bod)' is in equilibrium when it is subjccted to a s)'stem of forces 
Ihal includcs the dfett of fritlion.the force syStem mUSI satisfy not only 
thc equations of equilibrium butlliso thc 1,[w5 that govern thc frictional 
forces. 

Types of Friction Problems. In general, there arc three I)'pCS of 
mcehanics problems involving dry friction , They can easily be classified 
once free-body diagrams arc drawn and the tOlal number of unknowns 
arc idcnlified and compared wi lh [he tOlal numbcr of a\'ailablc 
equilibriom equations. 

No Apparent Impending Motion , Problems in this category are 
strictly equilibrium problems. which require the number of unknowns to 
be flllWI to the number of available e<luilibrium equations. Once the 
frictional forces arc determined from the solution, however, their 
numerical vatues must be checked to be sure they satisfy the ineq uality 
F S p.,N ; otherwise, stipping \\ill occur :lIId the body will nOt TCm:iin in 
equilibrium. A problem of this type is shown in Fig. &-411. li ere we musl 
determine Ihe fritlional forces at A and C to theck if the equi librium 
positioll of the two·member frame can be maintained. If the ban; arc 
uniform and have known weights of 100 N eacb. then the free -bod), 
diagrams arc as shown in Fig. &-4b. There .. re six unknown force 
componcnts whith can be determincd slricl/y from the six equi librium 
equations (three for each member). Once f;l_ N,I' Fe. and Ne arc 
determined. then the bars will remain in eqUilibrium provided 
FA s O.JNA and Fe S O.SNe arc s3tisficd . 

Impend ing Motion at All Points of Contact. In this case Ihe 
tOlal number o{ unknowns will I'quII/ the tOlal number of 3\'3ilable 
equilibrium equations plus tbe totnl number of available frictional 
equations. F = p.N. When mmiol/ is impf'l/ding at tbe poims of comact. 
then F, .. Jl.sN : whereas if the bod)' is slipping. then Ft ::: JI., N . For 
example. oonsider Ihe problem of finding Ihe smallest angle 0 at wbich 
the 1000N bar in Fig.8-Sn can be plated against the wall without slipping. 
The free-body diagr.lm is shown in Fig. 8-Sb. Here the fiJ'r unknowns arc 
determined from tbe 111,1'( equilibrium equations and ''''0 static frictional 
equations which apply at /)0111 poilllS of COlitaCl. so that FA = O.3N" and 
F8 ::: O.4N/I. 



Impe nding Motion a t Some Points of Contact, Here the number 
of unknowns will be las than the numb.: r of available equilibrium 
equations plus the number of ay~ilablc frictional equations or 
conditional equations (or tipping. As a result. se\'eral possibilities (or 
motion or impending motion will exis t 3nd the problem will in" ol\'e a 
determination of the kind of 1I10 lion whkh actually occurs. For example. 
consider the Iwo·member frame in Fig. 8-OO, In this problem we wish 10 
determine Ihe horizontal force" needed \0 cause mo,'emelll. If each 
mcmb.: r has a weight of 100 N, then the free -body diagrams arc as shown 
in Fig. 8--6b. There :tre SeTt'1I unknowns. For a unique solution we must 
satisfy the l·i.T elluilibrium equations (three for each member) and only 
O/l /! of 110.'0 possible stalic frict ional equations. l bis means Ihal as ,. 
increases it will either cause slipping al A Hnd no slipping at C. so that 
FA. = O.3,vA. lind Fe :S O.5,ve: or slipping occurs at C and no slipping at 
A. in which case Fe = O.5Ncand FA. :S O.3N,1 ' The actual situation can be 
delermined by calculaling" for each case and then choosing the case for 
which,. is s lIlIIlIl'r. If in both cases the SIIIIIf! I'IIllle for" is c:llculatcd. 
which in practice would be highly improbable. then slipping at both 
poims ()C(:urs simull;ulcQusly: i.e .. the set'f!" I",kIlOW/IS WQuid salisfy eight 
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Consider pushing on 'he unifonn crate ,ha, has a "~ilh' lV ~nd si,s on ,1Ie rough surface. As sbO"TI on,IIe firs, frce·body diagram, if 
the nWlnilude of P is ~mall. the craie " 'ill rcm~'n in equilibrium. A~ I'inerea.<cs Ihe crate ",11 eilller be on the vc rge of slippmg"" III.: 
surface ( F - " ,,v), 01 if lhe surface is "cl")' rough (Iarlle " ,J IlI.:n Ihe resullant nmmal forcc .. iII,hift 10 Ihc corner • .f - b/2. assbown 
O<I,he 5COOnd fI«·bod)' diagrnm,,\I this point thcerntc "ill begin to tipt)\"cr.Thccrnle alsoh:u allfeatcrdl;mccof tippinllif P isapplicd 
at a "e>lcr hd,h' I, aoo.'c the su,fi>CC.ur if ,' s ,,;dth b is smalle r. 
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The applicd ,'crueal force I' On th is roll 
lI1u11 be large enough 10 ,WerConlC: Ihe 
r<:siMancc of friclion al Ihe com3cling 
1u, facCS ..t and 8 in order to eau~ 
rolal ion. 

Equilibrium Versus Frictional Equations. Wheneverwc solvc 
problems where the friction force Fis to be an '"eq uilibriunl force·· and 
satisfies the inequality F < 1i"'1. Ihe n we can assume the sense o f 
direction of F 0 11 the free-body diilgnlm. 111e correct scnse is made 
known afle' solving the eq uations of equilibrium for F. If F is a 
negative scalar the sc nse o f F is th~· reverse of thai which was assumed. 
This com'enicnce of /l.~SIllI1;'lg the sense o f F is possible because the 
equilibrium equations equate to zero the ("OlllflIJllt'lI/S of 1't'("/lHS acting 
in the mille direcliOlI. lolowever. in cases where the fric tio nal equation 
F = liN is used in the solution o f II problem. the convenience of 
assllming the sense of F is /OSI. since the frictional equation relates 
only the IIIl1gllilill/t'.f of two papt'lIdiCII/ar vectors. Consequently. F 
mllsf alwa)'s be shown acting with its ("""t'e/ st'llse on the free-body 
diagram . It'Jrt"r~u the frictional equation is used for the solut ion of a 
problem. 

Procedure for Analysis 

Equilibrium problems involving dry friction can be solved using the 
following procedure. 

Free-Body Diagrams. 

• Draw the necessary fl"t!c-body diagrams. and unless it is staled in 
the problem that impending motion or slipping occurs.IIII1.'Il)'S show 
(he frictional forces as Wlknowns (i.e .• do 1101 (IS)'IlIIIt' F = liN) . 

• Determine the number of unknov.ns and comparc this with Ihc 
number of available equilibrium equations. 

• If there arc more unknowns Ihan cqu:t tionsof equilibrium, il will 
be necessarr to apply the frictional equation al some. if not aiL 
points of contact to obtain the extra cquations needed for a 
fX)mplete solution. 

• If Ihe equation F = j.tN is to be used. it will be neccs,~ary to show 
F acting in the correct sense of direction on the. free-body diagram. 

Equations of Equilibrium and Friction. 

• Apply Ihi! equations of equilibrium and the necessary frictional 
'-'<Iuations (or conditional equations if tipping is possible) and 
solve for the unknowns. 

• If the problem involves a three-dimensional force system such 
tha t it becomes difficult 10 obtain the force components or the 
necessary moment arms. apply the equations of equilibrium using 
Cartesian vectors. 
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EXAMPLE 8 .1 

The uniform crate shown in Fig. 8-7/1 has a mass of 20 kg. If a force 
P = 80 N is applied 10 Ihe crate. determine if it remains in equilibrium. 
The I;ocfficicm of static friction is /-ls = 0.3. 

SOLUTION 

/' .. SO N 

", ' , 
O.2m 

L 1I.8m 

"J 
.'1!. 8-7 

Free-Body Diiilgriilm. As shown in Fig. 8-7b. the us,,/tmll normal 
force Nc must act a distance .r: from the crdtc's center line in order to 
counteract the tipping cffel;t caused by P . Thcre arc Ilm'c 111111.110"'"5-
F, Nc. and .T. which can be determincd strictly from thc 111rt':'" 
equations of equilibriuzl1. 

Equations of EqUilibrium. 

"±'~F. = O; 8Ocos3O" N - F = 0 

+r~F, = 0; -80sin3O~ N + ,'lie - 196.2N = 0 

C +'iMo =- 0; 8Osio 30" N(O.4 ml - 80 cos 30" N(O.2 ml + Nc(x ) = 0 

Soll'ing. 

F : 69.3N 

Nc = 236N 

.1' = - 0.00908 m = - 9.08 mm 

Since.r: is negative it indicates the rc!mlwm normal force acts (slightly) 
to the left of the crate's center line. No tipping ",ill occur since 
x < 0.4 Ill. Also. the maximulII frictional force which can be del'c10p0:.'<.1 
at thi: surface of contact is f-~ = /-lINe = 0.3(236 N) = 70.8 N. 
Since F = 69.3 N < 70.8 N. the uate will 1101 $/i". although it is I'ery 
close 10 doing so. 

") 
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EXAMPLE 8.2 

• 

(0' 

It is observed that when the bed of th.:: dump truck is r:lis.::d to an 
angle of IJ = 25" th.:: vending mnchines will bi:gin to slide off the bcd. 
Fig. 8-&,. Determine the stalic coefficient of friction between a 
I'ending machine and th.:: surfac.:: of the truckbcd. 

SOLUTION 
An idcali7.cd model of a vending machine resting on the lruckbcd is 
shown in Fig. 8-8b. The dimensions have been measured and the 
rente r of gravity has Dcen located. We will assum.:: Ihal the vending 
machine weighs IV. 

Free-Body Diagram. As shown in Fig. 8-&. the dimension.r is used 
to locate the posi liun of the resultant normal force N. There an: four 
unkno"'ns. N. F. /ls. and.1". 

Equat ions of Equilibrium. 

+\;~f. = 0: IVsin25°- F = O 

+/~Fy = U: N - II' coo25" '" 0 

C + ~Mu = U: - IV sin 25"(2.5 ft ) + W cos 25 Q (.l ) '" 0 

Since slipping impends at (J = 25". using Eqs.1 ,lnd 2. we have 

W sin 2S~ '" /l ,(W cos 2S~) 

jl. , = lall 25~ = 0.466 

(I) 

(2) 

(3) 

AII5-

The angle of 0 = 25" is referred to as the flllgi/' of r/'pose. and by 
comparison. it is equal to the angle of static friction. (} = <p,. Notice 
from the calculation that (} is independent of the weight of the vending 
machine. and so knowing 0 provides a con"enienl method for 
determining the codficient of sIalic friction. 

NOTE: From Eq. 3. wc find of = 1.17 fl. Since 1.17 It < 1.5 ft . indeed 
lhc \lending machine will slip before il ClIO tip as observed ill Fig. 8-&1. 
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EXAMPLE 8 .3 

The uniform IU-kg Inuuer in Fig. 8~911 rests agi1inst the smooth Willi :11 
B. :lnd the end A rests on the rough horizont:ll plane for which the 
coefficient of statk friction is IJ. . = 0.3. Odemline the angl<.: of 
inclination 0 (If the laudcr and the normal reaction at IJ if the I:luder is 
on the "erge of slipping. ,.,./t 

(~m) Sln8 

,", 
")_ .L I 

N" (Z m)roI8 (2 m)roJ6 

'>J 
(.) 

SOLUTION 
Free-Body Diagram. As shown on the free-body diagram. Fig. 8-9b. 
the friclional force FA must actio the right sinccimpcnding motion at II 
is to the left. 

Equations of Equilibrium and Friction. Since the ladder is on the 
verge of slipping, then FA = Jl.JN" = 0.3N". By inspection. NA can be 
obtained directly. 

+ r 'i.Fy = U: Nil ~ 10(9.81) N = 0 NA = 98.1 N 

Using this reSUlt. FA = 0.3(98.1 N) = 29.43 N. Now Nl1 can be found. 

29.43 N ~ N8 = 0 

Nn = 29.43 N = 29.4 N AIlS, 

Finally. the angle 0 can b<.! detcrmined by summing moments about 
pointt! . 

(29.43 N)(4 m) sin 0 ~ [10(9.81) N](2 m) cos 0 = 0 
sin 0 -- = tan 0 = \.6667 
cos f! 

o = 59.04° = 59.0° AIlS. 



• 

398 C",APTER 8 FR ICTION 

EXAMPLE 8.4 

A1TnTITnTI~N/m 

Beam A B is subjected to a uniforn} IO<ld of 21X) N/ m and is supported 
at B by post BC. Fig. 8--10a. If the cocrficients of static friction at B 
and C arc JAB = 0.2 and p<: = 0.5. determine the force P needed to 
pull the post out from under the beam. Neglect lhe weight of lhe 
members lUid the thickness of the beam. 

'm 

(., 

"';)' - 2m 
", 

1 

(" 

1" 

Fi~. II- I O 

'" IO.75m 
, , 
)0.25", 

SOLUTION 
Free.Body Diagrams. The free·bod y diagram of the beam is shown 
in Fig. 8-lOb. Applying '£M A = O. we obtain Ns = 4OON. This result 
is shown on the free.body diagram of the post. Fig. 8--IOc. Referring to 
this member. the fi",r unknowns F 8. P. Fe. and Ne arc determined 
from the (llret cqU<lt ions of equilibrium and 0111' frictional equation 
applied either at 8 or C. 

Equations of Equilibrium and Friction . 

.±. 'i.F.= O: 
+l'i.F,.= o; 

(+ '£Mc = 0: 

r - Fs - Fe = 0 

N e -400N = 0 

- J'{0.25 m ) + F8( 1 m) = 0 

( 1) 

(2) 

(3) 

(Post Slips at 8 and Rotates about C.) This re{luires Fe S JJ.cNc and 

F8 = 0.2(400N) = SON 

C f 'lI Using this resul t ami solving Eqs. 1 through 3. we ohtain 
2m - ' 

N. - -IOON p :o 320N 

Fc = 240N 

Nc"' 400N 

Since Fe = 240 N > JAcNe = 0.5(400 N) = 200 N. slipping ilt C 
occurs. Thus the other case of mOI'enll:nt llIUst be investigated. 

(Post Slips at C and Rotates about 8.) Here F8 :SO JJ.SN8 ;Uld 

Fe = O.SNe 

Solving Eqs. I through 4 yields 

P =267N 

Nc= 400N 

Fe = 200N 

l-iJ = 66.7N 

(4) 

Am. 

Obviously. this case occurs !irs\ since it requires 3 slIlI/lft'r value for P. 



8.2 PR08L£M$ INVO\lIING DIN f~crl(»j 399 

EXAMPLE 8 .5 

Blocks A and B hllll<: a mass of 3 kg and 9 kg. r<:spcclill<:ly. and arc 
eonnecled 10 Ihe wdghlkss links shown in Fig. S-lla. Oclemlinc the 
largest vertical forcc V thai call be applicd at Ihc pin C without 
causing any mOllement . Thc coefficient of Slli lie frielion between Ihe 
blocks and the contacling surfaces is IA-, = 0.3. 

SOLUTIO N 
free-Body Diagram. l11C links arc tw()-force memhers and so the 
free-body diagrams of pin C 8nd blocks II and B arc shown in 
Fig. S-Jlh. Since the hori:wn[8i component (If FAC tends 10 mOllC 
block II to the left. F" must act 10 the right. Similarly, F/:I must act to 
the 1cfl to oppose the lemlenl)' of motion of block 8 to [he righl. 
caused by FHC• Thcr..: arc sCI·cn unknowns and six available forcc 
equilibrium cqu;IIions,lwo for the pin and two fOT..:ach block. so that 
only onl! frictional equation is needed. 

Equations of Equilibrium and Friction. The forc..: in links IIC lmd 
Be can be relal..:d 10 I' by conSidering Ihe cquilibrium of pin C. 

+ i~F .. = O: 

..±. 'i F, =- 0: 

FACCOS 30" - " = 0: 

1.1551' sin 30· - Fsc = 0: 

Using thc result for FAC• for block II , 

F" c = 1.1551' 

FHC = 0.57741' 

"±'~F~= O: fA- l.155I'sin.30·= 0: FA = 0.577<lP ( I ) 

+ t 'iFy = 0: 1\;, - 1.1551' cos 300 - 3(9.81 N) = 0: 

N., = 1' + 29.43N 

Using the result for Foc. for block B • 

.±.. ~ FA = 0: (0.57741' ) - F/:I = 0: 

+ 1'2.1'). = 0: ,vI! - 9(9.81 ) N = 0: 

f6 = 0.57741' 

NI/ = 88.29N 

(2) 

(3) 

Movcment of th..: system may be caused by the initial slipping of either 
block 1\ or block B. lf we assume Ihat block II slips first. then 

FA = Il-,N ... = 0.3 NA 

Substi tuting Eqs. l and 2 into Eq.4. 

U.57741' = 0.3(P + 29.43) 

P = 3J.8 N 

(4) 

SUbstituting this result into Eq. 3. we obtain F8 = 18.4 N. 
Since the maximum static frictional force a t B is 
(f8)n\U = Il-, Ns = 0.3(88.29 N) = 26.5 N > Fs. block B will not 
s lip. ThUs. the above assumption is COrrec!. NOlie..: that jf the 
inequality w..:r..: not satisfi..:d. we ,,·ould have 10 assume slipping of 
block 8 and th":l1 solve for P. 

, 

,., 

3\'1.8I}N 
3(1' F",c- 1.I SS /' 

N" 

9('1.81)1'1 
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• FUNDAMENTAL PROBLEMS 

rll- I. If P - 200 N. delermine lhe fricli<ln developed 
between lhe 5Q.-kg crate and the ground. l be coefficient of 
static friction between the crate and the ground is 1', - 0.3. 

"H 

t~l. Determine the minimum force /' to pre"ent the 
3O. ~ g rod AB from sliding. The contact surface m Ii is 
smooth. whereas the coefficient of ~tatic friclion between 
the rod and the wall at A is 1', .. 0.2. 

l 

flI-l. Determine the maximum force P that can be applied 
without causing the two 5(). ~g crates 10 move. l be 
coefficient of statk fricl ion between each crate and the 
ground is 1', - 0.25. 

" 

t1l-4. If the coefficient of Sialic friction at contact poin ts A 
and 8 is 1', .. O.3.dctennine the maximum forre /' Ihal can 
be applied without causing the l00. ~ g spool 10 movc. 

" 

~11-5 . Determine the minimum forC{: P Ihat can be applied 
without causing movement of the 25Q.lb crate which has a 
center of gravity at G. The coefficient of stalic friction at the 
noor is 1' , .. 004 . 

rn 
~, 

p~ 2.sfl 

I -I 
4.s fl I 



 

• PROBLEMS 

.8-1. Determine the mi ll imum hori1.Ontai force f' 
required 10 hold ,he CTau.' from sliding dO\\l1 Ihe planc. 1hc 
craIe has a mass of 50 kg and the coefficient of SIalic friction 
Oc,wccn lhc CT~le and the plane is /I., .. 0.25. 

8-!. Dt:lcrminc lhe minimum force P requi red 10 push 
Ihe crale up Ihe plane.The Crall' has a mau of SO kg and the 
coefficient of sIa lic friction between Ihe craIe and the plane 
is 1', .. 0.25. 

"-3. A horizontal force of I' .. 100 N is JUSl sufficient 10 
hold the crall' from sliding down the plnne. and a horizontal 
force of P .. 350 N is required to just push the craIe up ,he 
plane. Determine the coeffkient of SIalic friction between 
the plane and the craie. and find the moss of Ihe Crall'. 

I' robs. 11-11213 

. 11-4. If the cO<'fficicnl of SIDlic friclion al A is /A , .. 0.4 
and the collar 31 B is smooth so il only exerts :I horizontal 
force on the pipe. determine the minimum distance .t so 
that the brackct can support the cylinder of any mass 
wi,hout slipping. Neglectlhe mass of the bracket. 

r 
200mm 

Pro"'. 8-4 

' II-So ' Ille 180-lb man climbs up tile ladda and stops at the 
position m()\Ill after he senses that the ladder is on the vcrge 
of slippillg. Determine the inctinauon 0 of the 1a00er if the 
coefficient of static friction betwccn tlk! friclioo pad A and th~ 
ground is~ . ... O.4.Assul11c Ihc wall at H is !>mooth.lhe Ct: ntcr 
ofgF.l\"ity fill" the nlan isat G. Ncglcc\the weight of the ladder. 

401 

11-6. lhc l80-lb man climbs up tile ladder and stops 3t Ihe 
position shOl'l1 after he scnSo.'S that the laddcr is on lhe l"e rge 
of slipping. Determine the coefficient of slatic friction bclWe1!n 
the friction p.1d 3t A and ground if tile inclinat ion of the ladder 
isO ... 6()' and the wall at 8 is sm ooth. ·ll1e centerof gra"ity for 
the man is at G. Neglect lhe ,,-eight orthe ladder. 

I'robs. S-516 
11-7. The uniform thin po lc has a weight of 30 Ib and a 
length of 2() fl . If il is placed against thc smooth wall and on 
the rough floor in the position d .. 10 fl. will il remain in 
Ihis position when it is released? 111c coefficient of slatic 
friction is /-4 , - 0.3. 

' 8-8. 111e uniform pole has a weight of 30 Ib and a length 
of26 fl. DClemline Ihe maximunl distane<: tlit can be pla<:ed 
from the smoolh wall and not slip. The coefficient of slatic 
frictio n between the floor and Ihe pole is ~, ... 0.3. 

., 
C;~J:··" 

Prohs. 1I-71l1 
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08-9. If th" oocfficient of static friction at all contacting 
surfaces is 1' ,. deICrmine the inclination 0 at wllich tile 
identical blocks. eacll of weigllt LV. hcgin to slide. 

Prob.8-9 

8-10. The uniform 2()"'lb ladder rests on Ihe TOugh floor 
for which Ihe coefficient of slntic friction is 1', - 0.8 and 
against the smooth wall at 8. Dctennine the horizontal 
force f' the man must cxeTl on the ladder in order to cause 
il lomo,"e. 

8-11. The uniform 2()...lb ladder rests on the TOugh floor 
for which the coefficiem of static friction is 1'< ., 0.4 and 
againsl the smooth wall at 8. De!enninc Ihe horizontal 
force P the man must cxert on the ladder in order to cause 
il lO mo,·c . 

"" 

l~ ... ........ A .'. .'. .':; :' : ; .. ' 
>-~ ' '' ---1 

Prnbs. 11-1011 I 

' 11-11. The coefficients of static and kinetic friclion 
between the drum and brake bar arc 1' • .. 0.4 and I' l '"' 0.3. 
n.'spcCli,·cly. If M - SO N· m and /' .. 85 N de lennine the 
hori7.Q1ltai and ,"ertical components of reaction 8t the pill O. 
Neglect Ihe weight and Ihickness of Ihe brake. The drum has 
nmnss of25kg. 

011-13. The coefficient of stalic friction between the drum 
and brake bar is 1' , ., 004. If the moment M - 35 N' m. 
dClCnninc the smallest fon.'c /' that needs to he applied to 
the brake bar in order 10 pre\'ent the drum from rotating. 
Also delcrnune the corresponding horizontal and wrtical 
components of reaction at pin O. Neglect the weight and 
Ihickness or , llc brake bar. The drum has a mass of 25 kg. 

I J«lmm ; 7OUmm--j 

125 mm 1 
SOO mnl 

,. 

Probs.8-I2f1J 

II-I·t Determine the mi nimum rocfficicnl of sIalic 
friclion between the uniform 5()...kg spool and the wall so 
Ihat the spool does not stip. 

" 

0.6 m 

O.l m 

Prob. S- 14 



11-15. lbe spool bas a mass of200 kg and rests against the 
wall and on the floor. If the coefficient of static friction al 8 
is (~')N - 0.3. the coefficient of kinctic friction is 
(J.!.)II " 0.2. Dnd the wall is smooth. determine the fnction 
force de"eloped at 8 "hen the "ertical force applied to the 
cable is f' .. 8(Xl N. 

, 

I' rub. 11--15 

· 11- 16. The 8O-Ib boy stands on the beam and pulls on the 
cord with a force large enough to jusl cause him to slip. If 
the coefficient of static friction between his shoes and Ihe 
!>cam is (}.c ,),," 0.4. determine the reactions al A and 8. 
The beam is uniform and has a weight of 100 lb. Ncglecllhe 
size of Ihe pulleys and Ihe Ihickncss oflhe beam. 

· 8-17. lbe so.-Ib boy $Iands on thc beam and pulls with a 
force of 40 lb. If (J.! ,)II - 0.4. delermine the frictional force 
between his shocs and Ihe beam and the reactions at A and 
8. n,e bean! is uniform and has a weighl of 100 lb. Neglect 
the size of the pulleys and the thid.:ncss orthe beam. 

A 

I'rob~. II- I 6f 17 

403 

8- 18. The tongs arc used to lift the l5().kg craIe. " 'hose 
center of mass is at C. Determine the least coefficicnt of 
static friction al the pi"ot blocks so that the CTale can be 
liftcd. 

, 
ns""" 

I'rob. il- l iI 

il-19. Two blocks A and 8 ha"e a "'eighl of 10 Ib and 6 lb. 
respectively. They arc resting on the incline for which the 
coefficient, of "atit friclion arc J.!Jt .. 0.15 and J.! B .. 0.25. 
Determine the incline angle 0 for which both blocks begin 
lo slide. Also find the required strclcll or compressiorl in tile 
oorlneclirlg spring for Ihis to occur.The spring has a sti ffness 
of k - 2 Ib/ fl . 

-11-10. 1'\\'0 blocks A and IJ ha"e a weight of 10 Ib and 61b. 
respcclI\'cly.lbey are resting on the incline for which the 
coefficients of static friction arc J.!Jt - 0.15 arld /AB -- 0.25. 
Determine the anglc 0 " 'hich will cause motion of one of 
Ihe blocks. What is Ihe friction force under each of the 
bloch when Ihis OCCUI'!l? The spring has a sliffness of 
k .. 2lb/ fl and is originally unstrclched. 

k _ 2lbjfl 

Proh. ... IHWlO 
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08-21. CrlItcs A and H wcigh 200 Ib and 150 lb. 
respecti'·cl),. Thc), arc connccted together wilh a cable and 
plaC<!d on the indined plane. If the angle II is gradually 
increased. determine IJ when the Cf'dh!S begin 10 slide. 111c 
coefficiems of static friction belween the crates and the 
plane arc p." - 0.25 and P.B .. 0.35. 

1' rob.8-2 1 

8-22. A man mtempts to support a stack of books 
horilonl311y by applying a compressi,·c force of F - IW N 
10 Ihe ends of Ihe stack wilh hi~ hands. If each book has a 
mass of 0.95 kg. delermine the greatest number of books 
Ihat can be supporwd in Ihc slack. The coefficient of Sialic 
friction between Ihe man·s hands and 3 book is (I',)h '" 0.6 
and bel",een aoy IWO books (I',)b • 0.4. 

-I: · t.!ON 

Proh. lI-22 

-F - l.!ON 

11-2.'- Thc paper Iov.·cl dispenser carries lWO rolll; of paper. 
The onc in usc is called Ihe stub roll A and the other is the 
fresh roll H. 111ey weigh 2 Ib and 5 lb. respectively. If the 
eodfldents of static friction at Ihe points of contact C and 0 
are (I',k - 0.2 and (1'.)1.1 '" 0.5. determine the initial 
"'-'<tical forC<! /' Ihat mUSI he applkd 10 the p.1per on Ihe siub 
roll in order 10 pull dO"l1 a shcel .1l1c Slub roU is pinned in Ihe 
center. "ocrcas the fresh roll IS nOi . Neglect friction 31the pin. 

(' rob. 1I-!3 

· 8-24. The drum has a weight of 100 Ib and rests on the 
noor for which the coefficient of stallc fridion isl', '" 0.6. If 
/J '" 2 fl and b '" J fl. dctennine the smallest magnitude of 
Ihe forC<! I' 1hal will cause impending mOlioll of the drum. 

011-25. 111e drum has a weight of 100 Ib and rests on Ihe 
noor for which the coefficient of static rriction is 1', - 0.5. If 
/J '" 3 ft and b - 4 fl. detcnnine the smallest magnitude of 
the forC<! P lhal will cauS/: impcndillg mOl ion of Ihe drum. 

1'rob~ II-Ul25 



&-26. The refrigerator has a weight of 180 Iband rests on a 
tile n{)(}r for " 'hith 1', " 0.25. If the man pll$hC$ 
horizontally on the rdrigerator in the direction sho"TI. 
determine the smallest magnitude of horizontal force 
needed to mo,'e it. Also. if the man has a weight of ISO Ib. 
determine the smallest coefficient of friction bell',ecn his 
shoes and the noorso that he does not slip. 

8-27. The rdrigerator has II weight of 180 Ib and reslS on a 
lile n{)(}r for which /J., .. 0.25. AI50.the man has a weight of 
ISO lb and the coefficient of slatic friction be tween Ihe floor 
and his shoes is 1' , .. 0.6. I f he pushes horizon tally on the 
re frige rator. determine if he can move it. If so. does the 
rdrige rator slip or tip? 

q 
• 1.5 II 

I'r~ 11-2(.121 

"11-211. Determine the minimum force P needed to push 
the twO 75·kg cylinders up the incline. The fo~e acts 
parallel 10 the plane and Ihe coefficients of stalie friclion of 
the conlaeting surfaces arc 1',, '" 0.3. jJ.s " 0.25. and 
~ .. 0..1. Each cylinder has a radiUS of ISO mm. 

" rob. 8-28 

405 

011-29. If the cenlerof gravil)' of Ihe Slacked tables is al G. 
and the stack weighs 100 Ib. determine tile smallest force I' 
the boy must push on the stack in orde r to cause mo'·ernen\. 
The coefficient of stalk friction at A and 8 is 1', .. 0.3. 111e 
tables arc locked together. 

' " 
2h 

I'rob. 1I-29 

8-JO. The traclor has a weighl of SOOO lb " 'ilh cen ter 01 
gravi ty lit G. Determinc if it can push the SS()..lb log up Ibe 
incline.The coefficient ofslat;c frietion between the log and 
the ground is 1', .. 0.5. and oc tween the rear "'heels of the 
lractor and Ihe ground 1': .. 0.8. 111e frOIll wheels are free 
to roll. Assume Ihe engine can de'-clop enough torque to 
C3USC Ihe rcaT wheds to slip. 

11-31. The traclor has a weight of 8<XXllb " 'ith renter of 
gravity at G. Determine Ihe greatest weight of the log tha t 
can be pushed up tbe incline. llle oocrricicnt of Slatic 
friction bet"'een the log and the ground i5 1', .. 0.5. and 
between the rear .... heels of the tractor and the ground 
1'; - 0.7. The front .... heels arc free to roll. Assume the 
engine ean de\'elop enough torque 10 cause the Tear .... heel5 
10 slip. 

Probs. II-JO/3 1 
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°ll-JZ. The so.l.:g lUIifonn pole IS on Ihe .'crge of slipping 
HI A .... hen fI .. 45~. DClennine lhe rodfiClenl of SialiC 
fnellon al , I. C 

I'rob. 8-JZ 

08-JJ. A fortt of /' .. 2Q Ib IS apphed perpendicular to 
lhe handle of lhe gOOSl.'ne.:1.: .... reckmg bar as sho .. 'n. If lhe 
coeff~l('nl of s'~' ic friction bet .... een lhe bar and Ihe wood is 
1' • .. 0.5. determine the normal force of the lines 31 A on 
Ihe uppe r bo.1Td.Assume the surface 31 C is smooth. 

____ ~?c' 

I'roo. 11-33 

8-34. 1'hc lhin rod has a .... eighl IV and rests 3ltmnsl lhe 
noor and wall for which 'he coefficients of SialiC (nction arc 
I'll and 1' 1/' rcspccti,·ely. Determine Ihe smallesl \'Blue of fI 
for which the rod .. ill not mo\'C. 

/ 
, 

/ 
, 

Proh.lI-J.I 

11-35. A roll of papcr has a unifonn " 'eight 0(0.75 Ib and 
is suspended from the wire hanger so Ihat 11 reslS against 
Ihe ,,·all. If lhe hanger has a neghgible " 'e ighl and lhe 
beanng a1 0 mn be conSidered frictionless. determine 11K: 
force P needed 10 sian turning the roll if 8 " 30". The 
coefficienl of slatK fricl ion bet ...... en l l1e waU and the paller 
151' . .. 0.25. 

°11-36. ,\ roll of paper has a uniform weighl of 0.75111 and 
is suspended from 'he wi re hanger so ll1at il rem againsl 
Ihe wall. If the hanger has a negligible \\'eight and the 
beanng at 0 can be considered frictionless.. de lnmitM: tlK: 
minimum force /' and the aS50cialed angle fI needed to stan 
turning lhe roII.11lC coeffICient of Stalle frictlOll bel"'"Cen 
the .... 1111 and the paper is 1', .. 0.25. 

, 
I'robs. 11-35136 

08-.\7. If the coefficienl of static (riclion hl.:t .... cen the 
chain and the inclined planc is 1' ... tan O. dele rmine Ihe 
o\'Crhong length b 50 that the ~hain is on the ,'ergc o( 
slipping up tile plane. The cham \\'Cighs '" per unit lcnglh. 

• 

I'rub. 8-37 



II-JS. Detennine the ma.~imum height h in met"rs to 
,,'hich the girl ('li n " 'all; up the slide without $upponing 
herself by the rails or by her left leg. The (oefficien t of static 
friction beN'cen the girl's shoes and thc slide is,.. . ... 0.8. 

" rob, 8-J.8 

11-39. If the coefficient of sHl1ic friclion al I;J is,.. , .. 0.3. 
determine the largest angle II and the minimum coefficient 
of slatic friclion at JI so that the roUer remains se lf·locking. 
regardless of the magnitudo:- of force P applied to the bell. 
Neglect the weight of the roller and neglect friction 
be tween the belt and the \'enical surface. 

*8-W, If 8 " y, determine the minimum coefficient of 
static friction lit II and I;J so th~t Ihe roller remains se lf· 
locking, regardless of the magnitude of force P appl ied to 
the bell. Neglectlhe weight of the roll er and negic(t friction 
be tween the belt and lhe wrtical surface. 

, 

Proo,;, 1I-39f.ul 

407 

011-4 1, llte clamp is used 10 tighten the connection 
between t"'o concrete drain pipes.. Determine the least 
coefficient of stalic friclion at II or H so Ihat lhe damp does 
not slip regardless of the force in the shaft CD, 

,OO~ 

r 
,~ :-rirU"". ='i""" 1=='11 

I 

I'roh,11-41 

11-42. lbe coefficient of stalic friction between the l50-kg 
crate and the ground is p, .. 0.3, "hile the coefficient of 
~t atic friction between the 8O-kg man'$ shOl.'$ and the 
ground is ,..; - 0..1. Determine if the man can 0101'1' the 
cmte, 

11-4J. If the coefficient of static friction between [he crate 
and [h" ground is p , " 0,3, detcrmine the minimum 
coefficient of slacic friction be tween the man's shoc$ and 
the ground so that the man can mOl'C th" craIe. 

Probs.II-4!143 
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. K-4-a. 1'he J·Mg rcar-wh ... eI-dril"e sldd loader has a center 
of m:us m G. Determine the largcst numocr of crn tes that 
(;In be pushed by the loader if each crate has a m:us of 
:'iOO kg. 1'he coefficient of static friction bet""ecn 3 crnte and 
the ground is}i ... 0.3. and the coefficient of sta tk friction 
between the rear wheds of the loader and the ground is 
Ji : .. 0.5. The front ""heels arc free to rolLAssumc that the 
engine of the loader is powerful enough to generme a 
torque that witt cause the rear wheels to slip, 

l'rob. 8-W 

' 8-45. 1'he 4S·kg disk rests on the surface for which the 
wcffkicO\ of static friction is lolA .. 0.2. Detcmline the 
largest couple moment M that can be appl ied to the bar 
without causing motion. 

S-46. The 4j_kg disk rests on the surface for which the 
coefficient of stalk friction is JiA .. 0.15. If M .. 50 N· m. 
determine the frktion force at II. 

.lOO mm .! 

• 

8-47. BI04:k C has a mass of SO kg and is confined octween 
two ,",'ails by smooth rollers.. I f the block rests on top of the 
';(}'kg spool , delermine the minimum cable force I' needed 
to mo\"e the spool. The cable is ""rapped around the spoors 
inner core. ·I'he coefficients of slmic friclion at II and » arc 
",0 .. 0.3 and,. ... 0.6. 

*8-48. BI04:k: C has a mass of 50 kg and is confined 
between t"'·o walls by smooth rolters..lf the block rem on 
top of the 4Q.kg spool. detcmline the required coefficients 
of static frktion at I I and B 50 thm the spool slips at " and 
8 wh ... n the magnitude of Ih ... applied force is incr ... ased to 
f' .. JOON. 

c 

f-- ., 
H 

Prubs, 11--17148 

011-49. The J-Mg four-whed-dr;" e truck (SUV) has a 
ccnter of mass al G. Determine the maximum mass of the 
log that can be towed b)' the truck. Thc coefficient of static 
friction oct"'"Cen the log 3nd the ground is Ji , .. 0.8. and the 
c04:fficient of static friction oclw~en Ih~ wh~cls of th~ truck 
and the ground is Ji: .. 0.4. Assume that the engine of the 
lruck is powerful cnough 10 gencrme 3 torque thai will 
cause Dllthe wheels \0 slip. 

11-50. A j-Mg fron t-whcel·dri,·e truck (SUV) h.u a cenler 
of mass at G. Detcrmine the nl.1:<imum mass of the log 1hat 
can oc towed by the truck . The coefficienl of stalic friction 
between the log and the ground is Ji • .. 0.8. and the 
coefficien1 of S1stK; friction octween the front wheels of the 
truck and the ground is 1': .. 0.4. The rea r ""heels are free to 
rolL Assume tha1th~ engin ... of the truck is pow~rful enough 
to generate a torque that will eauS(: the front wheels to slip. 

Probs, 11--1\1130 



11-5 1. If Ihe coefficienls of SIalic friction al contact points 
II and lJ are Ii, a 0.3 and Ii; - 0.4 n:sp«ti\'ely. dete rmine 
the smallest force P lhat will caUS<.' Ihe 15Q.-kg spool to have 
impending motion. 

oS-52. If Ihe coefficients of stalic friction al contacl pomls 
II and 8 arc Ii • .. 0.4 and 1'; ,. 0.2: respectiwly. determine 
the smallest force I' that will cause the 15Q.-kg spool to have 
intpending motion. 

, 

" ------''=o-~~~ tSOmm 
( 

" 
" rolK. 8-5 1/52 

08-53. The carpente r ~lov.ly pushes the uniform board 
horizontally O\'c r the top of the saw horse. The board has a 
uniform weight of 3 Ib/ ft. and Ihe saw horse has a weight of 
15 lb and a cenle r of gravity at G. IXtennine if the saw 
horse will stay in position. slip. or tip if the board is pushed 
forward when d .. 10 fl . The coefficients of slatic friction 
are shown in the figure. 

S-54. The carpemer slowly pushes the uniform board 
hori;wntaUy o\"cr the top of the saw horse. The board has a 
uniform weight of 3Ib/ ft. and the S':I"' horse has a weight of 
IS Ib and a cemer of gravit)" at G. Determine if the saw 
horse v.·ill stay in position. slip. or lip if the board is pushed 
forv.·ard when d .. 14 fl. The oocfficiems of static friction 
arc shown in the figure. 

., 18fl -----~ 

'" 
1" .. n.3 ", 

1 
,, - 0.5 

1" _ OJ 

- .. I f I 
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!!-55. If (he 7~·lb girl is at posi tion t/ "' '' fl. determine the 
minimulil coefficient of stmic frictionI', at contact points A 
and B so that Ihe plank docs not slip. Neglect Ihe weight of 
the plank. 

· 8-56. If the coemcient of sta tic friction al the contact 
points A and 8 is 1', - 004 . dcl~nnine the minimum distance 
<I v.'hen: a 75·10 girl can stand on the plank v.ithout causing it 
(0 slip. Ncglcrt the weight of the plank. 

"rnbs. 8-35156 

03-57. If each box lO.'eighs ISO lb. determine the Icast 
horizontal force Pthalthe mnn must cxert on the top box in 
order to cause motion. The coeffiCIent of static friction 
between the boxes is,.., '" 0.5. and th~ coefficient of static 
friction belwcen the box and the floor is,..; - 0.2. 

8-S8. If eaeh box weighs ISO lb. determine the least 
horizontal force I'thatthe ma n must excn on the top box in 
order to cause mOl ion. Thc coefficient of static friction 
between the bo.~cs is 1'. - 0.65. and the rocm~icnt of Slatic 
friction be l .... een the box and the noor is,..; .. 0.35. 

'" 

ProlK. 8-5715!1 
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&-59. If the coefficient of static friction betw~cn the collars 
A and B and the rod is ,.., .. 0.6. determine the maximum 
angle 0 for the system to remain in equilibrium. regardless of 
the weight of cylinder D . links AC and Be hD''\:: negligible 
weight and arc connected togethe r at Cby a pin. 

01l-eO. If 0 " 15°. detemline the minimum coefficient of 
static friction between the collars A and 8 and the rod 
requi red for the system 10 remain in equilibn um. regardless 
of the weight of cylinder D. links AC and Be have 
negligible weight and arc connected toge ther at C by a pin. 

Probs. 8-59160 

08-{; 1. E.1eh of Ihe cylinders has a mass of 50 kg. If the 
coefficients of static friction at Ihe points of contact arc 
,.. .. .. 0.5.1'8 .. 0.5.l<c .. 0.5. and I'/) .. 0.6. determine the 
smallest couple IlIOment 1\1 needed to rOWle cylinder E.. 

Prnh. 8-{; l 

~2. Blocks A. B. and C hD,'e weights of 50 lb. 25 lb. and 
15 lb. rcspecth·cly. Delermine Ihe smallest horizontal force /' 
Ihal will cause impending motioo. The coefficienl of stalic 
friction between A and 11 is 1< . .. 0.3. between Band 
C. I'~ .. 0.4. and belween block C and the ground. 
1" ; .. 0.35. 

" 

I'rob. 1Hi2 

8-63. Dete rmine the smallest force ,. thai will cause 
impending motion. The cra ie and wheel ha,·c a m:JSS of 
50 kg and 25 kg. respectivel~'. The coefficienl of Sialic 
friction between Ihe crate and Ihe ground is IA," 0.2. and 
between the wheel and the ground 1-<; .. 0.5. 

08-64, De termine Ihe smallest force ,. Ihal will cause 
impending motion, The emil' and wheel ha .. e a m:JSS of 
50 kg and 25 kg, respeClivcl)'. ' Ille coefficie ll l of slatic 
friction between Ihe craie lind Ihe ground is /A., .. 05. and 
between the wheel and Ihe ground IA; .. 0.3. 

300 nun 

A 



 

• CONCEPTUAL PROBLEMS 

,.il- I. Is it more effect;ve 10 mo'"c tl'le load forward 31 
COnS13n! \'eL(Kily with the boom fuUy eXI~ndcd as sho"TI.or 
should Ihe boom be fully retracted? I'ower is supplied 10 
the rear wheels. The fronl ...-hccls arc free 10 roll. Do an 
equilibrium analysis 10 explain your answer. 

' 0-1 

MI-!. The lug nul on the frec-lU ming .. "hcel is 10 be 
rcmc)I'cd using lite wrenI'll. Which is tile most effective way 
10 apply force 10 the .... rench? Also. "'-11)' is illlc~ll0 keep the 
c:ar lire on Ihe ground mlher than first jacking it up? 
Explain ),our answers "~lh an equilibrium analysis. 

411 

I'il-J. The rope is used 10 tow the rcfrigerntor. [s i1 bcSllO 
pull slightly up on Ihe rope 3S shown. pull horilonlally, or 
pull somC,,"hal do,,"nwards? Also. is it ocst 10 attach tile 
rope a1 a high position lIS 5110"-0,01' 31 a lower position? Do 
an equilibrium anal)'si~ to e~plain your answer. 

1'8-4. The: rope is used to lOW the rcfrigeralOr. l n order 10 
prevent yourself fr(>lll slipping while to",;ng.,s ,I best to pull 
up :1$ shown. pull horizonlall)·. or pull do\o.·nwards on the 
rope? Do an equilibrium analysis to explain )'our aMwer. 

l'K-.5. Is il easier to lOll' the lo~d by lIpplying II force along 
the tow bar when it is in an almost hori~onlal position as 
sho"·n.or is it bener 10 pull on the oor II'hen;1 has a steeper 
slope '! I)Q an equilibrium anal)'sis to (':tpla;n your answer. 
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W~d3CS are or,cn u~d 10 adjust the 
dc"atian of structural Or m«hanical 
part s. Also. Ihc)' provide Mabilil)' for 
objects such as lhis pipe. 

8.3 Wedges 

A ",,,rig/, is a s imple machine thai is often used to transform an applied 
force into much larger forces. directed at approximately right angles to 
Ihe applied force. Wedges also can be used \0 slightly moye or adj ust 
hc~ .... y loads. 

Consider. for example. the wedge shown in Fig. 8-12n, which is used to 
lifl Ihe block by applying a force to the wedge. Free-body diagrams of 
the block and wedge arc shown in Fig. 8-12b. Here we have excluded 
the weight of the wedge since it is usually ~111(/ff compared to the weight 
W of [he block . Also. note thai Ihe friclionai fo rces .' , and f<,! must 
oppose the motion of the wedge. Likewise. the frictional force tJ of the 
wall on the block must act downward so as to oppose the block's 
upward motion. The locations of Ihe resulllmt normal forces arc nOt 
important in the force anal)'sis since nei ther the block nor wedge will 
··tip.·· Hence the moment equil ibrium equations will not be considered. 
There arc sc"en unknowns, consisting of the applied fon;e P. needed to 
caust: mOl ion of the wedge, lmd six normat and frictional forces. The 
se\'en available equations consist of fou r force equilibrium equations. 
!F, = O. Y.F, = 0 applied to the wedge and block. and three frictional 
equat ions. F '" p.N. applied at the surfaCfJ of ronmet. 

If the block is to be lo,," .. ,cll. then the frictiOlml forces will all act in :I 

sense oppesiee 10 thm shown in Fig. 8-1211. Provided the cocfficient of 
(riCliotl is vcry 511111/1 or Ihe wedge unglc 0 is 1(lre .... thell the applied force 
P must aCl 10 the righ t to hold the block. Otherwise. P may haw a 
reverse sense of direction in order lopl/flon the wedge to remove i!.lf I' 
is 1101 opplie(1 and frk lion forces hold the block in place. then the wedge 
is referred 10 as J·di·locking. 

N, 

,--r:::t=. ::d 
~', --

Impend'ng --- -
c·, C'l 



EXAMPLE 8 .6 

The uniform stone in Fig. 8-13" has a mass of 500 kg and is held in Ihe 
horizontal position using a wedge al B. I f Ihe cocflicient of sla tic 
friction is p.. = 0.3 at the surfaces of eontae\. delermine the minimum 
force P nceded 10 remove Ihe wedge. Assume Ihal Ihe slOne docs not 
slip at A. 

4905 N 

i °.5m t (I.5m I 

, 

(.) 
( . ) 

t1g. !l-IJ 

SOLUTION 
The minimum force P requires F = J.I, N at the surfaces of contac t 
with the wedge. The free-body diagnmls of the stone lind wedge arc 
shown in Fig. 8-l3b. On the wedge the friction force opposes the 
impending motion. and on the stonc at A. FA S JJ. ,N A. since slipping 
docs not occur there. There arc five unknowns. Three equilibrium 
(:quations for the stone and two for th(." wedge arc available for 
solution. From the free-body diagram of the stone, 

(. + ::: ,l1A ,. 0; - 4905 N(O.5 m) + (Ns cos 7" N)(I m ) 

+ (O.3Ns sin 7" N)( l m) = 0 

NIJ = 2383.1 N 

Using th is rcsult for the wedge. we have 

Nc - 2383.1 cos 7" N - U.3(2383.1 sin 7" N) '" 0 

Nc = 2452.5 N 

2383.1 sin 7° N - 0.3(2383.1 cos 7° N) + 
P - 0.3(2452.5 N) = 0 

" = 11 54.9N = L15kN Ails. 

NOTE: Since P is positive.indecd Ihe wedge must b<! pulled oULlf P 
were zero. the wedge would remain in place (self-locking) and the 
fri ctional forces dc\·clop..!d al H and C would satisfy F8 < p.,Ns and 
Fe < jJ.,Nc· 

8.3 WEDGES 41 3 
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Square·threadcd ~Iews 
find 3Jl111icl111onsoo '":lIves.. 
j~e~s.. and '·;scs.. WhCfC 
panicula.I)· large forc« 
muOi b<;, de"cioped along 
lite HiJ of the ..,rew, 

~ , -

r ' ., 

• 

8.4 Frictional Forces on Screws 

[n II1 0SI cascs screws llTC used as fas leners: howe\'er, in lI1any types of 
machines Ihey arc incorporaled 10 transmil power or mOlion from one 
pllrt of the machine to another, A $1/1II11'i! ·/hreatietl Jere l\' is cOOImonly USl.'<I 

(or the laller purpose, especially when large (orces arc applied along its 
axis.. [n Ihis section we will ana[y.:e the forcc::s acting on square-threaded 
screws. 1'1Ie antl[y:;is of other types of scrc\\~such as Ihe V-thread. is based 
on these same principles. 

For analysis.. a square-threaded screw. as in Fig. 8---14. can be considered 
a cylinder having an inclined square ridge or Ihri'm/ \\'r3ppcd :lroulld il. If 
we unwind the thread b)' one revolution. as shown in Fig. 8---14b.lhe slope 
or Ihe /ellil ailS//' 0 is deh!rmined From 0 = lan- I(I/21Tr). Here f and 21Tr 
arc the vertical and hori7.onlal distancf,.'S between A and B. where r is the 
mean radius of the thread. The distance I is callcd the lellt! of the screw 
and it is equivalent to the disI3ncc the screw ad\'3nccs when ilturns one 
revolution, 

Upwa rd Impe nding Motion . Let us now consider the case ofa 
square- threaded screw that is subjected to upward impending motion 
caused by the applied torsional mOmelll M. Fig. 8---15.· A free-body 
di:lgram of the i'1I/;re Imr(I\'ell'(lrhri'll(i can be represcnled:ls a block as 
shown in Fig. 8- 1411. The force \'V is the vertical force acting on Ihe 
thread or the axia l force applied to [he shaft. Fig. 8---15. and MI' is 
the resultalll horizontal force produced by the couple moment M about 
the axis o( the shaft, The reaction R o f the groove on the thread. has 
bolh fric tional and nomm[ components, where F = /,-, N, The a ngle of 
static fric tion is I/Js 0:: t:.m · '(FIN) = tan- I/,-s' Applying the force 
equat ions of equilibrium along the horizont al and vcrtical axes.. we h3"e 

.±. ~J:; = 0: MI' - H sin (l/J, + 9) ;; 0 

+f~ F.=O: R cos(th.+ O) - W = O 

Eliminating R from these equations. we obtain 

1M - ,W tan (4), + 0) I 

• -
2." -, 

,» 

(8--3) 

' For appllClIIOJlS. ,\[ IS dc"ck>pctl b~' appl)';ng a honwmat fOfl'C J' al a ng)1! angle 10 Ihe 
cnd of a Ie,'c f lMI "'ouJd be ti~cd 10 the 5<'r"",. 
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tlf;:. II- IS 

I, 
I 

Self-locking Screw. A screw is said to be SI'II-Iockillg if it remains 
in place under any axi31103d W when the momenl i\I is removed. For Ihis 
10 OC(:ur. lhe direction of the frictional force must be re\'e rscd so tha t R 

aCls on the other side of N. Here the angle o f slatic fric tion 4-. becomes 
grealer than or equal 10 O. Fig. 8-1&1. If 4>. = O. Fig. 8-16b. lhen R will ac t 
\'ertically \0 balance W. and the screw will be on the verge o f winding 
downward. 

Downward Impending Motion . (4), > 0). If a screw is self­
locking. a couple moment 1\1 ' must be applied to the screw in the 
o pposite direction [0 wind Ihe screw downward (0/), > 0). This C:luses a 
rcvcrs.: horizontal force M'I' thaI pushes the Ihread down as indicated 
in Fig.8-16c. Using the same procedure as before. we obtai l1 

~ - rlV tan (9~ (8-4) 

Downward Impending Motion . (0/), < 0 ). If [he screw is not 
se lf-locking. il is nc<:essary [0 apply a moment 1\1" to pre\'ent the screw 
from \\i ndinS downward (ob. < 0 ). liere. a horizontal force /II "/ r is 
required [ 0 push against the thread [0 pn:vent it from sliding down the 
plane. Fig. 8-16d. Thus. the magnitude of the mOmen! 1\1 . requi red to 
pre\'entthis unwinding is 

IIW - Wr tan (tP, - 0) I (8-5) 

If mOfioll of III I' serl'''' occurs. Eqs. 8-3. 8-4. and 8-5 can be applied b)' 
simply replacing 4>, with ob~ . 

Up ... ·ard K.c"· mOlion 
(.J 

$tlf· lorklnl.Krc ... · (' - .... ) 
(on lhe "erl e of IOlall", oo· ... n .... 'lfd) 

(' J 

- / "J 
• ", 

" 
Do"'lI.u.d SC.c .. ' mollon (' > "s) 

«J 

DQ .. ·n ... .,.rd 5<"f~"" molloo (It <: . J) 

'" 1-11;. 11-16 
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EXAMPLE 8 .7 

The turnbuckle shown in Fig. 8-11 has a square threlld with a mean 
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction 
between the :)(:rew and the turnbuckle is IJ., "" 0.25. deternlinc the 
moment 1\1 that musl be applied 10 draw Ihe end screws closer 
together. 

HN 

HN 

Fi~. 11-17 

SOLUTION 
The moment can be obta ined by :lppJying Eq. 8-3, Since friction al 
IlI'O J'C,ews must be overcome. this requires 

M "" 2[lVrtan (O + ~) I (I) 

Here IV = 2000 N. , = 5 111m, th, = IlIn- 1 IJ., = 11In- '(0,25) = 14.04°, 
and 0 = IlIn- '(1/ 2'ITr) " lan- '(2 mm/ l2>r(5 mm)J) = 3,64°, Subslilliling 
these values into Eq, I ;lIld solving gives 

= 6314.1N'mm = 6.31N·m 

NOTE: When Ihe moment is ,t'lIwl,t'iI. th.:! turnbuckle will be selr­
locking: i . .:! .. il will not unser.:!w since cP, > O. 



• PROBLEMS 

011-65. Determine the smallest horizontal force /' required 
\0 pull oul wedge A, 'lnc crate has a weight of 300 Jb and Ihe 
coefrlCicnI of static friction a1 all camaeling surfaces is 
1', - 0.3. Ncglccl1hc weight oflhc wedge. 

"'ruh. S-6..~ 

8-66. Determine Ihe smallest horiwmal force P required 
\0 lift the 200·kg crate. The coefficient of Sialic frktion al 
all contacting surfaces is /1 , ~ 0.3. Neglect the mass of 
the wedge. 

I'rub. 8-6fi 

8-61. Deiermine the sm~llcsl horizon tal force P required 
10 llfllhc lQO..-kg cyhnder. The codficicnts of Malic friction 
31 llie oon13C1 points II and 8 arc (I', )A ~ 0.6 and 
(}1,h - 0.2. rcspcclj,'cly: and the coefficient of stalic 
friction belween Ille wedge and the ground is 1', ... 0.3. 

I'roll.1I-67 

8.4 FRIClIONA~ FORCES ON SCREWS 417 

*8-68. The ,,"clJge has a negligible weight and a coeffkient 
of Sialic friction jI. , .. 0.35 witll all COluacting surfaces. 
Determinc the largest angle 6 so tllat it is "sclf-Iod:ing.·· 
'Illis rcquires 110 slipping for any magnitude of Illc force P 

applied to Illc joint. 

Proll.8-6lI 

. 8-6\1. Determine tllc smalieSI Ilorizontal forcc I' 
required \0 Just move bJQl:k A 10 Illc nght ifille spnng force 
is 600 Nand thc coefficient of slatic friction at all eonlaCiing 
surfaces on A is jI., - O.J.Thc slcc"c at Cis smootll. NcgleCi 
Ihe mass of A and 8 . 

, 

I'roll.8-6\1 

8-70. The three stone blocks have weights of 
IVA - tiOOlb. 11'8 " lSOlb. and lie " 500 lb. Determine 
the smallest horizon tal forcc P thai must be applicd 10 
blQl:k Cin order 10 mo\"e this block.The coefficient of sIalic 
friction oct"'cen the blQl:ks is jI., - 0.3. and between the 
floor and each block jI.; - 0.5. 

I'roh.8-70 
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11-71. Determine the smalieSI hori~ontal foree I'r<'quired 
10 mo"" Ihe wedge 10 Ihe right. The coefficienl of slatic 
friction at ~II ront3(ting surf~ees is p., - 03. Sct 0 - 15· 
and F .., 400 N. Ncglecllhe weight of Ihe wedge. 

· S-12. Iflhe hori1.ontal force f' is rcmo'·cd. delc rmine Ihe 
largest angle 0 Ihal will cause Ihe wedge 10 be self·locking 
rega rdlCS$ of the magnitude of forC'!: t' applied 10 Ihe 
handle. The coeffi(icnl of SIaliC friction al all contacting 
surfaccsLs /" .., 0.3. 

f'r<lbs. S-71n2 

' 11-73. D~lcmlinc Ihe smallC51 "crlkal force P required 10 
hold the wedge between the t,,·o idenlical cylinders. .. a(h 
having a weighl of IV. The coefficient of stalic fnction 3t aU 
contacting surfaces is /" - 0.1. 

8-74. Delemllne the smallest "ertical foree f' required 10 
push the wedge Dclween the two identical C)·lindel'S. each 
ha"ing a " 'eighl of IV. The coefficient of stalic friction at aU 
contacting surfaces is Il , - 0.3. 

Probs. 8-7.1174 

8-75. If the uniform concrete bloc!.: has a mass of 500 kg. 
determine Ihe smallest hori~onlal foree P needed 10 mo"c 
the wedge 10 the left. lbe coefficient of stalic friction 
between Ihe " 'edge and Ihe-roncrcle and the wedge and the 
floor is Il, .., 0.3. The coeffidcnt of stMic friction bet"'cen 
the roner"le and noor is Il: .., 0.5. 

3m 

'~mj 
" ,,. 

f'rob. 1I-7S 

' 11-76. The wedge blocks are used to hold the specimen 
in D lension tesling machine. Determine the largest design 
angle 8 of the "'edges $0 Ihal the specimen will nol sli p 
regardless of Ihe applied load. The rocffidenls of stalic 
fr!tlion arc /' 11 .., 0.1 al A and IlB - 0.6:\1 8. Neglect Ihe 
wcighl of Ihe blocks.. 

A • 

, 
Prob. 1I-76 



' 11-77. The square threaded sae ... of the clamp lias a 
mean diameter of 14 mm and a lead of 6 mm. lf~ , _ 0.2 for 
the threads. and tile tOfllUC: applied 10 Ihe handle IS 

1.5 N· m. delcnmne the rompr<'SSl .'e force ,.. on Ihe block. 

• 
• oSN· m 

. , 

o , 
1" 00. 11-77 

1I-7tL l'he dnicc is I15Cd 10 pull the ballcry (';lIble termina l 
C from the post of a ballery. lfthe required pulling forre i$ 
SS tb. determi ne Ihe torque Mihal musl be applied 10 the 
handle on the scn: ... 10 IIghtcn II. 1M K re .. · has square 
Ihread.§, a mean diameler of 0.2 In .. a lead of 0.08 m .• and the 
codfklenl of slatlC friction IS 1' , .. 0.5. 

Prob. 3-~ 

8.4 FIlICTIONAt. FORCES ON SCRt'NS 419 

8-19. 1'h.e Ixklng mechanism rortSlSIS of a Itnk thai has a 
$quare·threaded sac ... ";Ih a mean diameter of 0.5 In. and a 
lead of 0.20 In •• and the rocffiCtenl of stalle fnctlQll is 
p., - 004 . Determine Ihe lorque Mihal should be applied to 
the $C:rc\\' 10 Sl.:I rt bftlng the 6000-lb load aclingat Ihe cnd of 
member A He. 

... " 

:!o in. IS ill. - - - 10 ill. 

I'rob. 1I-7!I 

?'sin. 

10ili . 

" I 

011-841. Determine the magnitude of Ihe horilonlal force I' 
Ihal mUSI be appbe d 10 Ihe n..ndJe of lhe bell(h \tSC in order 
\0 prodlK'C a clamping f~ of 600 N on the block. "The 
SIngle square-threaded K rev,' has a mean dillmeler of 
2S mm and a l<"ad of 7.5 mill. The coeffICient of stallC 
fnCtlon IS 1', .. 0.25. 

' 8411. Detcrmlnc Ihe clamping force exerted on Ihe 
block if • force of I' '" 30 N is applied 10 Ihe leve r of Ihe 
bt:n~h "154.'. The single square· threaded Kr~ ... has ft mean 
diamele r of 25 mm and a lead of 7.5 mm. The roc fficicnl of 
SialiC (nclion is 1' , • 0.25. 

'i~ 

Probs. 8-8OIII t 
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l1-li2. Delcnnine Ihe required hon~onlal force Ihal mUSI 
be applied perpendicular 10 Ihe handle in orde r 10 de"elop 
a 900-N damping force on the pipe. The single square· 
threaded screw has a mean diamNerof25 mm and a lead of 
5 mm. The coefficienl of Sialic friclion is ,"" - 0.'1. NV/f': 1"he 
screw is a Iwo·force member since il is conlained wilhin 
pinned collan alA and B. 

!HI3. If Ihe clamping force un Ihe pipe is !lOCI N. 
determine Ihe horizontal force Ihal m USI be applied 
perpendicular 10 Ihe hand le in orde r 10 loosen Ihe screw. 
The single squarc-Ihreaded screw ha~ 3 mean diameler of 
25 mm and a lead of 5 mm. The coefficienl of Sialic frielion 
is 1'. - 0.'1. No/I': The screw is a two-force memher since it 
is contained wilhin pinned eolian 31 A and 8. 

E 

IT .... 
200. ~ 

I ". mm , 
A 8 

"" mm 

0 1 -- I " 
I>robs. ~l/'lI3 

.~ The clamp pro,ides pressure from se"cral direclions 
on Ihe edges of Ihe board. If the square-Ihreaded screw has a 
lead of 3 mm. mean radius of JO mm. and the coefficient of 
slatic friction is ,"" _ 0.4. dClcmlinc Ihe horizonlal force 
developed on Ihe board at A and Ihe venical forces 
del"elopedatBandCifa lorqueofM "' l .SN · misapplied 
10 the handle 10 lighlen il {unher."The blocks 31 Band Care 
pin conncC1ed 10 the board, 

Prob. 1!-84 

oS-35, If the jack supports Ihe 20(H::g craie. determine the 
horilonlal force Ihal must be applied perpendicula r 10 Ihe 
handle al Ii 10 lower the cralC. Each single square·tbreaded 
screw has a mean diameter of 25 mm and a lead of 75 mm. 
Tbe coefficien t of static friction is 1' • .. O.2..~. 

1I-tI6. If Ihe jack i5 required to lift Ihe 200-kg crate. 
delermine the horizontal force Ihat mUSI be appl ied 
perpendicular 10 tbe handle al E. Each singlc square­
threaded screw has a mean diameter of25 mm and a lcad of 
7.5 mm. The coefficient of Sia lic friclion is 1'. - 0.25. 

Probs. S-85"186 

8-87. 'l1tc machine pa ri is held In place using tbe 
douhle-cnd clamp. Thc bolt al B has square Ihreads wilh a 
mean radius nf 4 mm and a lead of 2 mm. and Ihe 
coefficient of Sialic friction with Ihe nut is I'~ " 0.5. If a 
lorque of AI .. 0.4 N· m is applied 10 Ihc nUllO l ighten il. 
delermine the normal foree of Ihe clamp HI the smooth 
contacts I I and C. 

... : 17 " 
r.I ~ 

~ fc 
b 

Prob. l1-li7 
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8.5 Frictional Forces on Flat Belts 

Whenever be lt drives or band brakes arc designed. it is neccssary to 
determine the fri ctional forccs developed between the belt and its 
contacting surface. In th is section we will analY-lc the frictional forces 
llctingon a flat belt. although the analysis of other types of belts. such as 
the V-belt. is based on similar principles. 

Consider the flat belt shown in Fig. 8-1&1. which passes on~r a fixcd 
curved surface. The total angle of belt \0 surface conllict in radians is fj. 
and the coefficient of friction between the two surfaces is II. We wish to 
dct..:rmine the tension T z in the bel t. which is m.:eded to pull the bel! 
counterclockwise o,'er the surfacc. and thereby O'·..:rcome boLh the 
frictional forces at the surfllce of oontact Hnd th..: tension T I in the oth..: r 
end orthe bclI.Ob\'iously. T~ > T I. 

Frictional Analysis. A fr..:..:-body diagmm of the belt segment in 
contact with the surfacc is shown in Fig. 8-18l,.As shown. the normal and 
frictional forces. acting at different points along the bell. will vllTy bolh in 
magnitude and di rection. Due to this Imkllmnl distribu tion. the analysis 
of the problem will first require a study of Ih..: forces acting on a 
diffcr":!IIial demcnt of the bell. 

A free-body diagram of:m elem..:nt having a length (Is is sho\\'n in 
Fig. 8-1&. Assuming either impending motion or motion of the belt. 
the magnitudc of the frictional force (IF = ,., tiN. This force o pposes 
Lhe sl iding motion of the belt. lind so it will increase the magnitude 
of the tensile force acting in the belt by (fT. Applying the t\\'o force 
equations of equilibrium. \\'e have 

(dO) . ("0) Tcos"2 + 1l(IN -( r + dT)cos "2 = 0 

+ /'i.F . = 0: ("0) ("0) (IN - (T + dT) sin 2 - T sin "2 : 0 

Since llO is of illjillill'simlll si<.l'. sin((fll/2) = dol l and cos(,ffJ/2) = I. 
Also. the pTm/lf("/ of the t\\"o infinitcsimllis (/Tand dOl 2 may be neglected 
\\"hen compared to infinitesimals of the first order. As .. result. Lhese two 
eq uations become 

and 

Eliminating liN yields 

Il dN = tlT 

rlN = Trill 

tiT 
- = lidO 
T 

MOI;OII Of ;mpendlng 
mollon ()rbdl ,cia!; .. " 

"~ 

t.) 

t" 

to> 

~lg. S-IK 
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FI.:oI or V·bo,:lIs 3r~ o'"!en Il!i<:d 10 mllum'l 
Ihc lor'l"c dC"eloped by 3 nlO1m 10 a 
... hcd ~lIarh<.-d 10 a JIIl"'p. fan or blower. 

" 

lillegnuing Ihis I:quation between aU the points of rontactlhat the bo.:h 
makes with Ihe drum. and noting thai T '" T I at 0 "" 0 and T "" Tl at 
o = {j. yields 

Solving for T z. we obtain 

where 

( .... ) 

T2. T I '" bdl tensions: T I opposes the din!,tion of motion (or 
impending motion) of the belt measured rel;lli\'e 10 Ihe 
surface, while T! aCls in Ihe direction of Ihe rdative bell 
motion (or impending motion): Ix:causc of friction. 
Tl > TI 

/L = coefficienl of stal ic or kinelic friction belween Ihe belt 
and the surface of contact 

{j "" angle of belt 10 surface contaCI. mcasured in T1ldians 
t' = 2.718 . . .. bascofthe nalurallogarithm 

Note thai T! is illtil,pt'lItfml of the mrlills of the drum. and inslcad it is 
a fun clion of the angle of belt 10 surfaC\: contact. {j . As a result. Ihis 
equation is v:llid for nat belts p;lssing over any eun'ed conlaeting surbee. 
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The ma.~imum tcnsion thm C'1O be developed in thc <.-"{lrd shown in 
Fig.8-l9t1 is 500 N. If the pulley at 11 is free to rotate and the coefficient 
of sialic friClion at the fixed drums B and Cis p. , = 0.25. d~tcmlinc the 
13rg~-:; t mass of the cylindcr that can be lifted by Ih.:: cord. 

T 

(0, 

SOLUTION 
Lifting the C)'linder. which h~s a weight IV = mg. causcs the L"{lrd to 
mo"c counterclockwise O\'er the drums at Band C; hencc. the 
maximum tension T2 in the cord OCCUTll al D.l1lUs. F "" T2 = 500 N. 
A S<.'Clion of thc cord passing over the drum at B is shown in 
Fig. 8-l9h. Sincc 180° = 17" rad the angle of contact between the drum 
and the cord is {J = (135°/180°) .".. = 31r/ 4 Tad. Using Eq.s-6. we have 

I ·lcnc~. 

T = SOON = SOON = 217.4N 
I ~(Jf4 )" 1 1.80 

Since the pulley at 11 is frec to rotate, equilibrium rcqui res that the 
tension in the cord remains the .wllle on both sides orthe pulley. 

The section of the cord passing over the drum at C is shown in 
Fig.8-l9c.Thc wcight lV < 277.4 N. Why? Applying Eq. S-6, " 'c obtain 

so thai 

277.4 N = 1V .. IillIP;4) .. 1 

II' = l53.9N 

IV 153.9 N 
III = - = 

g 9.81 mIst 

= l5.7kg AIlS. 

Impending 
molioq. __ _ , 

'"~ 

(,) 

Fi):. II-I 'I 
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• PROBLEMS 

0!!-8S. Bloch A and 8 weigh 50 Ib and 30 lb. respectivcly. 
Using the cocfficients of sta tic friction indicate<.l. <.Ieterminc 
the greatest "'eight of block 0 without causing motion. 

· 8-8'.t Blocks A and H weigh 75 Ib each. an<.l 0 weighs 
30 Ih. Using the coefficients of static friction indicated. 
determine the friction.1.1 force betwo.'en blocks II and IJ and 
between block A and the noor c. 

p _ O~ 

I'rnbs. 8-SI!ilI'1 

8-'.J{J. A cylinder having a mass of 2SO kg is to be 
supponed b)' the cord which wraps over the pipe. 
Determine thc smallest vertical force F needed to support 
the load if thc cord passes (3) once o,'cr the pipe. p - ISO· . 
and (b) tWO times o,'cr the pipe. fJ - 540". Takc 1' . - 0.2. 

'" 

Proh. 11-90 

8-9 1. A cylinder ha"ing a mass of 250 kg is to be 
supported by the cord which wTaps O,'cr the pipe. 
Dcternllnc thc largcst vcnical force F that can be applicd 
to the cord without mO"ing the cylinder. The cord passes 
(a)onec O\'CT tile pipe. fj - 180". and (b) IWO times o"er the 
pipe. fJ • 540· . Take 1'. - 0.2. 

, 

t'rob. II-Y I 

°ll-n . The boat lias a weight of 500 Ib and is held in 
position off the side of a ship by the Sp.1.TS at II and B. A man 
/tnvlllg a " 'eight of 130 Ib gets in the boa t. "Taps a rope 
around an o\'crhead boom at C. and tics it to the en<.l of the 
boat as sllown. [f the boat is disconnected fronl the spars. 
determine the millimum IIwuber ""wl[mms the rope must 
make around the boom so that the bo.~t can be safely 
lowered into the water at constant ,·clocity. Also. what is the 
normal force between the boat and Ille man?The coefficient 
of kinetic friction between Ibe rope and thc boom is 
1'-, - O.15. lIim:1lIe problem requires that the nonnal fora: 
oc lween the man's feet and the bo.1i be:lS small as ~iblc. 

Prob. S-92 



oS-9J. The lOO-lb boy at A is suspended from the table 
Ihal passes o\"er the quaner ciKular clirr rock. Determine if 
it is poossible for the 185·Jb woman 10 hoist him up: and if 
this is pos~,ble. whM smallest force must she exert on the 
horizontal cable? Thc coefficient of static friction bet""cen 
the cable and the rock is 1', .. OL and between the shoes of 
the woman and thc ground I'~ - O.I!. 

11-94. The 1000Ib boy at A is suspended from Iht cabJe 
lhal passes ovcr thc quartcr circular cliff rock. What 
horizontal force must thc woman at I I excrt on the cable in 
order to Itl the boy descend at ronstan! velocity? The 
coefficients of slatic and kinelic friction between the cable 
and tile rock arc 1', .. 0.-1 and I't .. 0.35. respccti,·cly. 

"rolL~. 1I-9.\.,o'\j4 

11-95. A lo.kg o;ylind~ r D. which is 8t1aclled 10 11 small 
pulley B. is placed on the rord as sllown. Determine the 
smallest angle /}so thaI the oord docs not slip o'·cr Ihe pellat 
C. The cylinder at 1;.. has a mass or ]0 kg. and the coefficient 
of stalic friction between the cord and Ihe peg is ,"" .. 0.1. 

oS-%. A lo-kg cylinder D. which is all3ched to a small 
pulley B. is placed on the cord as shown. Determine the 
largest angle 9 so Ihat lhe cord does not slip o,·c r the peg al 
C. The cylinder at Ehas a mass of lO kg. and Ihe coefficicnt 
or stalic friction between the cord and Ihe peg is JJ.. .. 0.1. 

8 

, 
" 
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o!!-97. Determine the smallest lever force /' needed to 
prc"ellllhe wheel from rotating if it is subjected 10 a torque 
of M .. 250 N· m. The coefficient of SIalic friction betWeen 
the belt and the wheel is 1'. - 0.3. The whee] is pin 
connecled at its cenler. 8 . 

~mm 

~­

lOO mm 
--1-

7SO mm 

rrob. lI-97 

11-98. ]f a force of /' - 200 N i5 applied to the handle or 
the bel! crank, determine the maximum torque M that can 
b~ resisted so that the flywheel is nOI on the \·ergc of 
rOlating clockwisc.llle cocfficient of static friction between 
the brake band and Ihe rim of the wheel is 1', .. 0.3. 

j' rnb. lI-98 
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II-I)'j. Show [hal [he fric[iol\al relationship between the 
bell tension$. Ihe coefflCicnl of friction 1'. and Ihe angula r 
contacts nand fJ for Ihe V-bell is T: - T,,.,-P ".~I. 

I m~n~d'ny-;;;:. 
mO"i/ , " 

• 

T, 

}',o b. 1I-1)'j 

°11-100. Dcteflnine thc forC(" ck>"eloped in spring AB in 
order 10 1I0id Ille wllee! from rOialing wllen;1 is subjected 
10 ~ couple moment of M '" 200 N· m. The coefficienl of 
SIalic friClion belween the belt and tile rim of Ih .. wlleel is 
1' , '" 0.2. and belwccn Ihc bell and peg C. 1' ; '" 0.4. The 
1'1,1111.')' al 8 ,s free 10 rOtatc. 

' 11-101. If Ihe lension in Ille spring is F"," '" 2.5 tN. 
determine the largest couple momenl that can be applicd to 
Ihe wiled wilhoUI causing il 10 rolale, The coefficienl of 
SIalic frie!ion bel"'Cen Ihe ocll and Ihe whcel is 1'. '" 0,2, 
and OCIWeen the belt Ihe peg 1'; '" O .... ... he pullc)' 8 frec to 
rOl31C, 

}'robl;, II- IOOI IllI 

11-102. The simple hand brakc is construelcd 50 that the 
ends of Ille friction slr~p arc oonnccled to Ille pin aI A and 
lhe Ie>"er arm al H, If the wllcel is subjected to a torque of 
'" .. 80 lb' fl. determine the smallest fora;' P applied to Ihe 
Ie"er Ihal is required 10 hold Ihe "'lIcel slall0n31')'. The 
coefficient of SIalic friction between Ihe st rap and wllce! is 
1' , '" 0.5. 

1 1.5 ft 1_ 
'" 

}'rnl~ 11-102 

11-11)3. A Il!O-lb farmer tries to reslrain the cow fron' 
escaping by "npping Ihe rope IW'O turns around Ihe trce 
!runk as shown, If the CO"' c.\cns a force of 250 lb on the 
tope. determine if the farmer can successfull)' reslrain Ihe 
cow, The coefficient of slatic friction be tween Ihe rope ~nd 
'he tree Irunk is It, - 0.15. and oc,wecn 'he farme , 's shoes 
and the ground 1' ; '" 03. 

}'ro h. 1I-1113 



' 11- 104. "l'he uniform SO·lb beam is supported b)' tile rope 
whicll is auached to the end of the beam. wraps o'·cr thc 
rougll peg. ond is then connectcd to the 100-111 block. If 
the ,oefficient of static friction bel"·een the beam and the 
block. and belween the rope and lhe peg. is 1'. - 0.4. 
delermlnc the maximum distance Ihal tile block can be 
placcd from A and still remam in equilibrium. Assume lhe 
block will nOI tip. 

r " 'T 
A;\~""",,",~::::lo ........ ji~1 
f-----UlII-------{ 

· 8-105. 1'he 8O-kg man tries to lower the 150-kg crole 
using a rope Ihal passes o'·cr thc rough peg. Delermine the 
least number of full tu rns in addition to the basic wrap 
(165") around lhe peg to do Ihe joh. 1111' coefficients of 
static friction between the rope and the p!!g and belween 
Ihe m:m·s shoes and the ground arc 1', • 0.1 and 1'; _ 0.4. 
respect;'·el),. 

11- 106. If the rope wraps three full lurns plus the basic 
WT3p (165") around the peg.delermine if lhe IJO.kg man can 
keep the 300-kg crall' Irom moving. 111c cocfficients of 
stalic friction between IIII' rope and Ihe p!!g and belween 
thc man's shoes and Ihe ground arc 1' , .. 0.1 and 1'; - 0.4. 
rcspecth·ely. 

I'r(llls. II- I05{I06 
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11- 107. ·l1tc drive pulley 8 in a video lape recorder is on 
Ihe vcrge of slipping when it is subjeelcd 10 a torque 01 
M .. 0.005 N· m. lf the coefficient of stalic frictiOl1 bet .... een 
the tape and the dri,'c wheel and between the tape and the 
fixed shalts A and C is 1' . .. 0.1. determine Ihe tensions TI 
and 1'1 developed in the lape for equilibrium. 

T, 

Proh. 1I- 107 

°11-108. Deleonine the maximum numberof SO-Ib p.1ckages 
Ihat can be placed on lhe bell Wll hout causing the bel t to 
stip at the drive " 'heel A " 'hich is rotming " 'ilh a ronsmnl 
angular velocity. Wheel H ;s free to rolate. Also. find the 
corresponding 10r$ional momcnt M that must be supplied 
to wheel A. 1'hc conveyor belt is pre·tensioned with the 
J(N).lb hori~On!al force. The coefficient of kinClic friction 
betwcen the belt and platform I' is I'~ - 0.1. and the 
coefficient of static friction between the belt and Ihe rim of 
each wheel is 1'. - 0.35. 

0.5 [I m .. ' __ . 
~ P _ JOOtb 

Prob. 8- I08 
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· g.. I09. Blocks ~l and Jj have a mass of 7 kg and 10 kg.. 
respceli,·el)·. Using Ihe eoefficienls of stalic friCiion 
indicatcd. delcmlinc thc largest "crtical force I' which can 
be applied 10 the cord withou t causing mOlion. 

~ ""mm /,,, .. 0.1 -I r D .: • ""mm 
,. . .. 0.4 I , 

.... -, A 

A 
C ,. , 

,. ... .. O.l 

"rob. g.. HI9 

IS- IIO. 810cks I I and IJ ha"c a mass of 100 kg arid 150 kg. 
rcspeCli\·el)·. If the codfidenl of Sialic friction bclween A 
lind H and between Hand C is J.I , .. 0.25. and belwecn the 
ropes and Ihe pegs D and r: "'; .. O.S. determine the 
smallest force F needed 10 cause motion of block B If 
,' .. JON. 

, 

l' rob. 8- 1111 

g..11 1. Block A has a weight of 100 Ib and rests on a 
surface for which J.I . " 0.25. If the coefficient of ~tatk 
friclion belween Ihc cord and llIe fixed peg &1 C is J.I , .. 0.3. 
dctc rmi rlc the greatest \\'eight of the SU$pcnded cylinder B 
\\ilhmll cau~ing motion. 

• 
f' roll. g..111 

- g.. I Il. Bloo:k" has a mass of SO kg and rests on surfacc 
B for which J.I . .. 0.25. If thc coefficicnl of static friction 
OCI\\'cen the cord and Ille fixcd peg at C is ,.: .. 0.3, 
dctcmline the greatest mass of the suspendcd cylinder D 
withoul causing motion. 

· g.. II J. Block A has a mass of SO kg and rests on surface 
B for which J.I, .. 0.25. If thc mass of the suspended cylinder 
() is ~ kg. dClcrminc Ihc frictional force acting on II and 
check if motion OCC:Uf$. The coefficient of Slatic friction 
oct\\'een the cord and Ihe fixed peg 31 Cis,.; .. 0.3. 

" rob,. , 8- 111I11J 
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Frictional Forces on Collar Bearings, 
Pivot Bearings, and Disks 

Pil'o/ and c:oll(lr bl'llrillgs !Ire commonly used in machines 10 supporl an 
(I.r:illiiollti on a rotaling shafl. Typical examples arc shown in Fig. 8-20. 
l>ro\'idcd Ihese bearings arc nOllubricaled.or arc only partially lubricaled. 
Ihe laws of dry friel ion may be applied 10 dClem1ine Ihe momenl necded 
10 lum Ihe shaft when il supports an axial force. 

, 
d;. .. 

j 

r~ 

I 

CoIb, burin, 

(') 

H I:. !l-20 

Frictio na l Ana lysis . The collar bear ing on the shafl shown in 
Fig. 8-21 is subjected to an .1xial force P and has" tot"l bearing or rontaet 
area 1T(Ri - Rfl . Pro\·ided the bearing is nc\\' and e\'enl)' supported. 
then the nonnal prcssure p on the be"ring will be IIl1iform/y tii.flrihllll'(i 
o\'er Ihis area. Since 'iF: = O. Ihcn 1'. mcasurcd as a force per unit area. 
is II = / ' / 1T( R! - Ri). 

The moment needed to cause impending rotation of the shaft c:ln be 
determined from moment equilibrium about thc ~ axis.. A differen tial 
arca clement (ill = (r dO)«(I, ). shown in Fig. 8-21. is subjecled 10 both a 
normal force (IN '" I' (IA and an associated frictional force. 
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l'bc 111010< III~\ tUrns IIIe dis!; of this 
sanding l'lllK'hinc dC"clops a torque Ih~1 
must overeOntc Ihe friC\ional forces 
acling onlhf disk, 

Hg. M-2 1 ( kepe~t .. d ) 

The Ilomial force docs 1101 crcale a 1II0l11cnt aboul the z axis of thc 
shaft; howcvcr. the frictional force drxs: lIalllely.dAl '" ,II F. Integration 
is needed locompule the applied momenl l'i l needed too"ercome all the 
friClional fon::es. Therefore. for impending rOlalional m01ioll . 

::i. AI , = 0: M-l r ,IF = O 

SUbstit ut ing for dF and dA and intcgrat ing ovcr the cn.i rc bearing ltreU 
yields 

f.'f." [ I' 1 I' f." 1" AI '" r ( ~. ' ) (r dOdr ) "" ~. 2) ?d, dO 
II, 0 11' R! Ri 1T(R2 R\ II, 0 

2 (Rl - lit) AI :z-uP -'--
3"-' Ri - Ri (8-7) 

The moment developed lit the end of the shah. whell it is roltlli" K at 
cons. ani speed. can be found by subslitu. ing /A ~ for /A, in Eq. 8-7. 

In the case of a piVot bearing. Fig. 8-2tNl. lhen R! = Rand R , = O. and 
Eq.8-7 rcduces 10 

2 
M = - .. I'R 

3"' (&-0) 

Relllember Ihal Eqs. 8-7 and 8-S apply o nly for bcaring surfact."S 
subjected to C(}1/5/(mll'r~SSllrt. 1f the pressure is not uniform. a va riation 
o f the pressure as a function of the bearing area must be determined 
before integrating to obtain the 1II01llenl . The following example 
ilIustra les Ih is concept. 
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EXAMPLE 8 .9 

The uniform bar shvwn in Fig. 8-22u Ims a weight of 4 lb. If it is 
assumed that the normal pressure acting at the contacting surface 
varies linearly along the length of th.., bar as shown. determine the 
couplt: momenl i\I required to rolate Ihe bar. Assume that the bar·s 
..... idth is negligible in oompHison 10 its length. l1le coefficient of stalie 
friction is eqUlII to Il- s = 0.3. 

SOLUTION 
A frce-body diagram of the bar is shown ill Fig. S-22b. The itucnsity 
11'0 of the dist ributed load ;\t the center (x = 0) is dctcffi1ined from 
,·crtieal for!;C equilibrium. Fig. 8-22a. 

".(1 = 2lb/ ft 

Since", = 0 at x = 2 ft. the distributed load exprcss.::d as a fUnclion 
of x is 

'" = (2Ib/ fI)(1 - 2~J = 2 - x 

The magnitude of the normal force ac ting on a differential segment of 
area having a length dx is Iherefore 

tiN = II'tl.r = (2 - x)tI.r 

The magniHidc of the frictional force acting 011 the same clement ()f 
area is 

(IF = J.l. tiN = 0.3(2 - .r)tlx 

li enee.lhe moment created by this force about the z axis is 

liM = x elF = O.3(2.\" - xl)(fx 

The summation of moments about the z axis of the bar is determined 
by integration. which yiclds 

:iM~= O: M - 2i~ (O.3)(2X - X2)dX = U 

.If = 06(" - ~) I: 
M = 0.8Ib·n 

(, ) 

, 
(') 

Fig. 8-22 
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Un",nding Ille chic from I h l spool 
.equires o" erooming friction f.om Illc 
suppon ing sllafl. 

,.j 

8.7 Frictional Forces on Journal Bearings 

Whcn a shafl o r axle is subjecled to lalcral 10:Ids. a jOltrlwf bl'tlri,,/; is 
commonly used fo r support. Provided the bc3Ting is not lubric<l ted. or is 
only panially lubricated . a reasonable analysis of the frictional rexislall!X 
on the bearing can be based on the laws o f dry friction. 

Frictional Analysis. A typieal journal·bearing suppOrt is shown in 
Fig. 8-23a.As the shaft rotates. the contact point mO\'es up the wall of the 
bearing 10 some point A where slipping occurs. If Ihe "erticallo<ld acting 
at the elld of lhe shari is V, the n Ihe bearing reaelh'c force R acting at It 
will be equal lind opposile 10 P. Fig. 8-2311. The moment needed to 
maintain constanl rOlat ion of Ihe shaft can be found by summing 
mom('nls aboul lhe z axis of lhe shan : i.e .. 

:i!. M , = 0: !If - ( R sin IPk)r = 0 

0 ' 

M = Rr sin ,p. (8-9) 

: wbere <bl is the angle of kinetic friction ddincd by Ian IPk = 
FI N = IJ.kNIN = IJ. k. In Fig. 8-23c. il is St.'Cn tha t r sin<bt = ' I. The 
dashed circle with radius rf is called the frictiOIl ci, cle. and as the shan 
rota tes. the reaction R will always be 1<l lIgenlto il. If Ihe bearing is pan i:dly 
luhrica tc:.'(j .l-! t is small . and therefore sin IPt "" tan <h. "" IJ.k. Under thL"SC 
condi tions. a reasonable tlpp,ox;mlllioll 10 the moment l1I:eded to 
o"e n..'ome the fri Cliona l resistance lx.'COIl1('S 

!If "" RrjJ.k (8- 10) 

In prdelice, this type of journ:11 bc:f1 ring is not suitable for long scrvi!X 
sinec fric lion between the shaft and bearing will wcar do wn Ihe surfaces. 
inslead, designers will incorpomle "b<l ll bearings" or "rollers" in journal 
bearings to minimi7.c fricl iOO1lllosses. 

, , 

" 
'OJ ,,' 
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EXAMPLE 8 .10 

The 100·mm·dinmcter pulley shown in Fig. 8-2411 fits loosely on 11 
IO-mm-diameter shaft for which the cOt!ffieient of static friction is 

}J.J = 0.4. Ddermine the minimum tension T in Ihe bell needed to 
(a) rai:>c the lOO-kg block and (b) lower the block. A!!Sumc that no 
slipping occurs belween the belt and pulley and neglect Ihe weight of 
the pulley. 

lOOk, T (.) 

SOLUTION 
Part (a). A free-body diagram of the pulley is shown in Fig. 8--2-1/1. 
When the pulley is subjected to bel! tensions of981 N each. it makes 
contact with the shaft al point!'l' As the tcnsion Tis increllsed. the 
contact poinl will move around Ihe shaft \0 point !'2 before motion 
impends. From tho:: figure. the frielion circle has a radius 
rf = ~ sin "'so Using Ihe simplification that sin 4>. "'" Ian IP. '" J.I~ then 
' f "'" rJ.lj = (5 ml1\ )(O.4) '"" 2 mm. so thllt summing moments ~lbOUI 
!'z gives 

C+ :!:Mp , = 0: 981 N(52 mm) - T(48 mm) = 0 
T = 1063N = l.06kN 11.11.1'. 

[fa more CX(I( I analysis is used, then <P~ = tan- I 0.4 '" 21.8°. 11Iu5. lhe 
nldius of lhe friction circle would be ' f = 'sin <fJ, = 5 sin 21.8° = 
1.86 mm. Therefore. 

(+ ~Mp, = 0: 

981 N(5U mm + 1.86 mm) - T(50 mm - 1.86 mm) = 0 

T = JOS7 N = 1.06 kN AilS 

Part (b). When the bind; is lowered. the rcsultant force R act ing 
on the shaft passes through point as shown in Fig. 8-24c. Summing 
moments about this point yields 

(. + ~Mr) = 0: 981 N(48 mm) - T(52 mm) = 0 

T = 906N Am!. 

NOTE: The dirrcn::ncc between raising and lowering lhe block is 
thus 157 N. 

, 
.,/ 

..;...,,.',,,, ~, tm""ntJing 

• 98 t N 

4Smm 52 mm 

(,) 

J 

, tn<It",n , 
t 

T 
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*8.8 Rolling Resistance 

Whe::n a rigid cylinder rolls at constant velocity along:l rigitl surfacc.the 
normal force exerted by the surface on the cylinder acts perpendicular to 
the tangel\l at the:: point of contact, a.~ shown in Fig. 8-2511. Actually, 
however. no materi;lls ;Ire perfectly rigid. and Iherefore the reaction oflhe 
surface on the cylinder consists of II distribution of normal pressure. For 
examplc.consider the cylinder 10 be made of a vcry hard maICrial.and the 
surf .. cc on which it rolls to be relatively soft. Due 10 ils weight. the cylinder 
comprCSSl!s Ihe surface underneath it. fig. 8-2..'ib.As Ihe cylinder rolls. lhc 
surface mrtlt"rial in fronl of Ihe cyl inder r.'wnls Iht" 1II0lioil since it is being 
Iit/umltil. whereas the material in the rear is TtslOn:(1 from the defomle::d 
state and therefore tends to pI/sir the cylinder forward. The normal 
pressures actingon the cylinder in this manne::r arc represented in fig. 8-2Sb 
b)' their resul tant forces Nd and N,. Because the magnitude of the:: force of 
dtfrmlllilioli. Nd• and its horizontal component is 11/1I"1r)'J grl'llf'" than that 
of rl'slOrlllirm. N,. and consequently a horizont:11 driving force V must be 
applied to the cylinder \0 mainl"in the motion. Fig. 8-2Sb.· 

Rolling resistance is caused primaril )' by this effe::ct. although it is also. 
to a lesser degree. the result of surface adhesion and relalivc micro­
sliding between the surfaccs of contact. Because the actual foree j ' 

needed 10 overcome these eHects is difficult to de termine. a simplified 
method will be developed here to explain onc way e:: ngineers have 
analYl.ed Ihis phenomenon. To do this. we will consider Ihe resullant of 
the I'IU;rl' nomlal pressure. N '" Nd + N,. acting on the cyl inder. 
fig. 8-25c. As shown in fig. 8-2511. this force acts at an angle 0 with the 
vcrlica!. To keep Ihe cylinder in equilibrium. i.c .. rolling at a constanl 
rate. it is necessary Ihal N be c:rmCllrrml with the driving force P and the 
weight \Y. Summing moments about point II givcs Wa = P (rcos O). 
Since the deformations ~re generally very small in relation 10 Ihe 
eylinder·s radius. cos 0 "" I; hence. 

IVa "" Pr 

I p "" ~~a I (S-I I) 

The distance a is lermed the COl'fficif'1/I of rollil/g rl's;stal1u. which 
has Ihe dimension of length. For instance. u "" 0.5 mm for ;\ wheel 
rolling on a rail. bolh of which arc made o f mild sicei. For hardcned 

·ACluall)·. Ihe dcfOfm~1lon fore.: 1'014 Quses ~"r'lO' 10 be SIOIed ,n Ihe malenat as US 
....,,,,,1Ude Is Increased. ,,-hereas the rcsior-liion force N,.. as liS mar,nlwoc is decreased. 
3110"~ S<>n'I<: of IMs ene.&)' 10 be: released. "The remaining enerSy is los' si,,«, i1 is used 10 

1Ic~1 up the sulfate. and if 1he .,·tindcl·S wclZhl is ,·cry !.:Irz"- il a«ounlS rm ]l<',mancnl 
ddormari"" of 1he SUlf"",. Wm\; mIlS! hc done by 1he lIofu.onlal fOlu P ro IIUIte up for 
rhis Io<s, 



steel ball bearings on Sleel. u "" O.lmm. Experinu::ntall y. though. this 
factor is difficul! to measure, since it depends on sllch par:Ullcters :1$ 
the rate of rotation of the cylinder. the elastic properties of the 
contacting surfaces. and the surface finish. For this reason. linle 
rcliance is placed on the data for dctcrmining II . The analysis presented 
here docs.. however. indicate why a heal'Y load (II') offers greater 
resis tant.:: to motion (P) than a light load under th.:: S3me conditions' 
Furthermore. since Wu/ r is gener:.lly I'ery small compared to I-'k lV , the 
force needed 10 rolf a cylinder over th.:: surface will be much I.::ss Ihan 
Ihal n.::eded 10 slid .. it across Ihe surface. I I is for Ihis reason thaI a 
roller or ball bcarillgs arc often used to minimize the frictional 
resistance between moving parts. 

8 . 11 

A IO-kg steel wheel shown in Fig. 8-2&, has a radius of 100 111111 and 
rests on an inclined plane madc ofsofl wood. If 0 is increMed so that 
the wheel begins to roll down the incline with constant velocity when 
o = I.Z· . dclcmline the coefficient of rolling resistance. 

100mm 

• 
,.) 

SOLUTION 
As shown on the free·body diagram. Fig. 8-Z6b. when the wheel has 
impending motion. Ihe nonnal reaclion N actS at point A defined by (he 
dimension o. Resol\ing the weight into components parallel and 
perpendicular to the incliltC.and summing moments about point A, yields 

C+ ~M" = 0; 

- (98. 1 cos 1.2" N)(I/ ) + (98.1 sin 1.2~ N)( IOO oos I.Z" mm) = 0 

Solving. we obtain 

a = 2.09mm AIlS. 

8.8 ROllING RE$lSTANCl: 435 

RoIlin$ resiSI .. "", or r:oilroad ,.,heck 0II1ho 
rails i. sm~lI .illCC "cd is ,,,ry s,if( Uy 
oon.p~ri ... n. the rollins rcs'~tancc of lhe 
.. -h"dsof a llXtor in a ""1 field is '''1)' br~. 

91UN 

''l 
Fig. lI-l6 
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• PROBLEMS 

8-114. The collar bearing uniforml)' supparls an axial 
force of P - 800 lb. If Ihe rocfficlcnl of Slal;e fricI;on is 
1' . - OJ. dClermine Ihe lorque At required 10 o,'ercomc 
friction. 

8-115. The collar bearing uoiformly supports an axial 
force of P - SOO lb. If a IOrque of At - 3 1b· ft is applied 10 
lhe shaft and eauscs ;1 10 rOIMe 31 conSlanl ,·~IOC;I)'. 

dCICrmine Ihe coefficienl of kin elk frk lion allhesurface of 
romaCl. 

, ----

J in. 2 in. __ oLJ(-~ , 

"robs. ~ 1 14I 11 5 

·~II 6. If Ihe spring. exem 11 force of900 Ib on Ihe block. 
determine the torque At required to rotate the shafl. 'Ille 
coefficient of stl1lic frklion al all contac!ing surfaces is 
1'. - 0.3. 

6;n. 

)'rob. 8- 116 

·8-117. The IIiJk ('/11/(11 is uscd in s!andard transmissions 
of automobiles. I f four springs arC used to force the tIm 
plales A and IJ togelher. delCrmine the force in each spring 
required 10 tr:tnsmit a moment of At - 600 lb' ft across the 
plates. The coeffic;cnt of Malic friction bcl",'een ,t and H;s 
1'. - 0.3. 

rrob. 8-11 7 

8-11 11. If p - 900N is applied to Ihe handle of !he bell 
emnk. determine the maximum torque At the rone clutcb 
can trBnsmit. The rocfficienl of stalk fricI;on 3t the 
conlacling surface is 1' , - 0.3. 

""' mm 

- -ffl" 
, 

"roh.8-I I& 



11- 11 '.1. Hecause of wearing at the edges.. the pil'ot Il('aring 
is suhjected to::l conical pre$Sure distribution at ilS su rface 
of contact. Dctemline Ihe tnrque M required to overcome 
friclion and turn Ihe shaft. which supports an axial force 1'. 
The coefficienl of smtic friction is 1' .. For Ihe solution. it is 
nccessary to detennine the peal: pre$SuTe /hi in terms of I' 
and the Il('aring radius R. 

R 

Prol •. 11-1 19 

all- IlO. The pil'ot bearing is subjeeled 10 a parabolic 
pressure dimibulion m ilS surface of conlact. If Ihe 
coefficient of slatic friClion is 1' ,. determme the .orque M 
required 10 O\'e~ome fricl ion and tum .he shaft if il 
supports an axial force P. 

M. 

R 

, 

I'roh. 1I-120 

437 

oil-ill. 'rlIc shafl is subjected to an uial force .... If the 
re3CIIl'e pre$Sure on .he conical Il('aring is uniform. 
dctcmline Ihe torque MIhal is Just sufficient 10 rotate the 
~hDft. 1111.' coefficient of SIDlic friction at the contacting 
su rf3cc is 1', . 

, 

• , 

Prob.lI- lll 

" 

11-122. llIe tractor is used 10 push Ihe 1500-lb pipe. 1'0 do 
this il must ol'crcome Ihe frictional forces at Ihe ground. 
caused by .s.1nd.J\ssuminG Ihat the .s.'nd exerts a p~ssurc on 
the bollom of Ihe pipe assho"·n.and the coefficient ofstalic 
friction Il('lween Ihe pipe and Ihe sand is 1'. - 0.3. 
dClemline Ihe hOrUonlal force required 10 push Ihe pipe 
forward. AI5O,dclennine the peak prt: $SUTC 110-

12f1 

Prob. 8- 122 
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8-123. lbe C()Qical bearing is subjeCled to a eonstant 
pre$liure distribution at its surface of contact. If Ihe 
cocffkicnt of sl:llic friaion is IA ,. dele rmine the torque /II 
required to overcome friction if Ihe shaft supporlS an axial 
force r . 

, 

"rob.8-lll 

"8-IU. Assuming that the \"arialion of pressure at Ihe 
OOllom of the pi-'m bearing is defined as p - IJo( Rd , ). 
determine the torque AI needed 10 o..-cTCome (riel ion if Ihe 
shaft issubjccted 10 an axial force r . The eOl'fficient of stalic 
friclion is IA ,. r-or the solulion. il is ne«sary 10 de termine 
PIl in terms of I ' and Ihe bearing dimensions H I and Hz. 

" rob. 8- 124 

°8-Us. The sbaft of radius r filS loosely on Ihe jouTMI 
bearing. If Ihe shafl transmils a "enical force r 10 the 
bearing and Ihe coefficient of kinetic friction between Ihe 
shafl and Ihe bearing is IAl. delermine the lorque M 
requi red 10 tum Ihe shafl "'ilh conSlant \·doci l}'. 

f'roh. 8-125 

8-H6. The pulle)' is supported by a 25-mm·diameler pin. 
If Ihe pulley filS loosel}' on the pin. determine the 5111.111est 
for«" required 10 raise the buekel.'''e bueket has 11 mass 
of 20 kg and Ihe coefficienl of SIalic friaion bcl"'e~n the 
pulley and Ihe pin is lA , - 0.3. Neglect Ille mass of Ihe 
pulley and assunle thai the cable dOl'S not stip on the pulley. 

8-H7. The pulley is supported by II 25-mm·diameler pin. 
If the pulley fiu loosety on Ihe pin. determine tile largest 
force I' thai can be applied 10 Ihe rope and ret lower the 
bucket. ""e bucket lias II mass of 20 kg and the cOl'fficicnt 
of sllllic friction belween Ihe pulley lind Ihe pin is IA . - 0.3. 
Neglect Ihe mass of Ihe pulley and DSiiume thm Ihe cable 
does 1101 stip 011 the pulley. 

I'rob.\. 8- 1261127 



Oil- Ill!. The cylinders are suspended from the end of Ihe 
bar which filS loose ly inlo a 4().mm·diamelcr pin. If A has a 
mass of JO kg. dClermine the required mass of 8 which is 
just sufficient to keep the bar from rotating cloclr::w1se.lhe 
coefficient of stalie friction between the bar and the pin is 
1'. - 0.3. Neglect the mass oflhe oar. 

011-129. The cylinders are suspended from the end of Ihe 
ba r whIch filS loosely into a 4(l·mm-diameler pin. If A has a 
mm;s of 10 kg.de1Crmine Ihe rcquired maS!i of B which i$jusl 
sufficient 10 keep Ihe bar from rotating counterclockwise. 
The coefficlcnt of Wllie fflclion belwc('n Ihe oar and Ihe pin 
is 1'-, '" 0.3. Neglccllhe maS!i oflhe bar. 

I'robs. 1I-128I129 

11-130. Thc connecting rod is 311aehed to the piston by 
a 0.75- in .-diarncter pin at 8 and 10 Ihe crank shaft b)' a 
2·in.·diameler bearing A. I f the piston is moving 
downwards. and Ihe coefficient of static friction at tlie 
COntacl points i$ 1', '" 0.2. de terminc the radius of tlte 
friction circle at each conneclion. 

11- 131. The connecting rod is attached 10 the piston by a 
20-mm·diam ... ler pin at 8 and to Ih" crank shaft by a 
5O-mm·diameler bea ring A If llie pislon is mO"ing 
upwards. and the ooefficicl\l of slatic fricti on at the contact 
points is /1 , - 0.3. delermine Ibe radius of the friction ci rcle 
at each conneclion. 

I'roll$.lI-BOIl31 

8.8 ROWNG REStSTANa 43 9 

*11-132. The 5·kg pulley has a diameter of 240 mm and the 
axle has a diame ter of 40 mm. If the coefficient of kinetic 
frictIon betwe ... n the a~1e and the pulley is /1 l - U.15. 
deleTJIline the verlical force f' 0 11 the rope requ ired 10 lift 
the SO·kg block at constanl velocilY. 

08-133. Solve Prob. 8-132 if the force I' is applied 
horizontally 10 the right. 

tZO w," 

,. 

ProlJ!;.. ~13211.l3 

8- 134. The be ll crank filS loosely into a 0.5·in·di3melcr 
pin. Determine the requi red force P which is JUSt sufficient 
LO rotate the bell crank clockwise. The coefficient of sta tic 
friction belween tlie pin and the bell crank is 1'. ~ 0.3. 

11- 135. t he bell cr3nk fits loosely into 3 OS·ln·dlameter 
pin. If I' '" 41 lb. the bell crank is then on Ihe verge of 
rOl311ng counterclockwlsc. Determine the coefficient 01 

static friclion between the pin and the bell crank. 

"''' j , 

I'robs. 1I-134I135 
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°S-I36. l 'he wagon togClller Willi tile load ""eiglls 150 lb. 
If tile coefficienT of rolling resistance is II ,. 0.03 in .. 
determine llle force P required to pull tile wagon willi 
~onSl ant velocity. 

I'rob. S-136 
oS-l.n . 'Ibe lawn roller has a maros of 80 kg. If Ih~ amllJA 
is IIcld at an angle of 30" from the horizontal nnd the 
~ocfficient of rolling resisl~nce for The roller is 25 mm. 
dclennine Ille force l' needed 10 push the roller al constant 
speed. Neglect friction developed at lhe axle.A. and arosume 
Ihal the resultant [oree I' act ing on Ihe handle is applied 
along ami L111. 

Prob. S-J31 
S-IJS. Determine Ihe force P required 10 o\'ercome 
roll ing resislancc and pull the 50-kg roller up the inclined 
plane "'itll ~onSlant ,-cloc:ity. The coefflCienl of rolling 
rcsistanccisll - 15mrn. 

II-B':J. Delcmllne Ihe force P required to o\'crcomc 
rolling resistance and support tile 5O-kg roller if il rolls 
down Ihe inclined plane with constant \'ciocily, 1"h ... 
coefficient of rolling resistance is /I - 15 mm. 

I'robs.II-I3&'I3!l 

-S-I40. lbe cylinder is subjected 10 a load that hIlS a 
weighl 11'. I[ Ihe cocfficients of rolling resistance for Ihe 
cylinder's top and bollom surfJces 3rc "" and "/I. 
respcclh·ely. sho'" thai a homontal force lIa"ing a 
magnitude of ( . .. [1V(II .. + 1'~)J!2r is required 10 mo"c Ihe 
load and thereby roll the c)'linder forward, Neglect the 
weight of Ihe cylinder. 

" 

011- 141 . The L2 - ~' l g slcel beam is mo,'cd o~'er a le"cl 
surface using a series of JO-mm·diameter rollers for which 
Ihe eocffieien! of rolling resistance is 0.4 mill Jlthe ground 
and 0.2 mm at the OOl1om surface of Ihe beam. D.!lermine 
Ihe horizon!al force (. needed 10 push the beam forwJrd al 
a constant ~pced. Ifim: Use the result of Pr<)b. 8--140. 

f' r<)b.1I-141 

11-142. OclCmline tile sma!lesl lIoril0nta i force P thai 
mllSI be exerted on Ihe 200-lb bloek 10 mo,'e it fo",,"ard. The 
rollers each weigll 50 lb. and the coefficienl of rolling 
resislance atillc top and OOnom surfaces is /I .. 0.2 in. 

I'rob.1I-142 



 

CHAPTER REVIEW 

I)ry t 'rk l;on 

Frictional fortes exist between two 
rough surfaces of 00011«:1. These forees 
x\ on a body so as to oppose ils motion 
or tendency of mOlion. 

A sialic frictional force approaches a 
maximum value of ,.., - /J.,N. wlicre p., 
is the r(J('ffici~.u of$lIllir {riOIQII. In this 
case, motion bet .... een the contacting 
surfaces is illlpeUlUII8. 

If slipping occurs. then Ihe frklion force 
remains essentially constant and equal 
\0 Ft .. /AkN. IIcTe lA, is the r;<Nffici~m 
of kille/it, fTlClioll. 

The SOh.llion of a problem im'olving 
friction requires first dlll"";ng the frce­
body diagram o( Ihe body. If Ihe 
unknowns cannot bedctcrmincd strictly 
from Ihe cqum;ons of equilibrium. and 
the possibility of slipping occurs. lhen 
Ihe friction equation should be applied 
at Ihe appropriale poilll~ of cnnlaCI in 
order \0 complete. the 5Olulion. 

II may also be pos:sible for slendl'r 
objl'CIs. likc cratcs. to tip oveT. and Ihis 
situation sllould aJ50 be investigated. 

I" 
,. 

Rough surfact 

" 

, 
N 

lml"'n<hng , 
mollon 

"'=11;="- F • • • • N 

N 

" 

r 

lmp<nding stipping 
1-" - 1'.'" 

N 
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Motion , 
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WedgH 

Wedges are inclined planes used 10 
increase the application of a force. The 
Iwo force equilibrium equations arc 
U5Cd to relate Ihe forces aCling on 
the wedge. 

An appl ied force I' mU5t pU$h on Ihe 
wedge to mOn" iliO the righ!. 

If Ihe coefficienlS of friction belween 
thc surfaces arc large cnough. Ihen I ' 
ean be rcmOI'ed. and Ihe Vi edge will be 
IICl f·locking and remain in plac.:. 

Square·threaded screws are used 10 
mol'e heav}' loads. The}' repre$Cnl an 
indined plane. wrapped around a 
cylinder. 

The momenl needed 10 tum a screw 
depends upon Ihe coefficienl of friction 
and Ihe screw's lead angle O. 

If the roefrtcicnl of friction between Ihe 
surfaces is large enough. then the screw 
";11 supporllhe load wilhoul lending In 
turn. i.e .. il will be IIClf·locking. 

~l~ t Belts 

The force needed 10 move a flat belt 
on:r a rough cun'cd surface depends 
only on the angle of belt contact. fJ. and 
Ihe coefficient of friction. 

'S.F, _ 0 

!.F,- O 

,II _ Wrlan(O + <,II,) 

Upward Impending Screw Motion 

M' - II'rtan{O - 4>.) 
Downward Impending Screw 

MOlion 

,II" .. Wrlan(4) - 0, ) 

Downward Screw ~ I otion 

"'~ > 0 

J~!!<,~di..2g 
moIion 

~t' L • :r N
) 

··, -t­
N, 

w 

I 

Motion o. irnf"'ndlng 
IlIOIjOlI or bell rdati,'c 



Collar Dearings and Pisks 

The frictional ~nalysis of a collar 
bearing or disk requires looking a1 a 
differential dcmCIll of the rolllaC! area. 
lhe norm~1 force aCling on this element 
is determined from force equilibrium 
along the shafl. and Ihe momcrn needed 
to turn Ihe shafl al a constant raIl.' is 
determined from moment equilibrium 
aboullhe shaft's s.,;s. 

If the pressure on the surface of a oollar 
bearing is uniform. llien integration 
gives lhe resull shown. 

Journal 8carings 

When a moment is applied 10 a shaft in 
a nonlubricalcd or panially IUhricated 
journal bearing. the shafl will lend 10 
roll up the side of Ihe bearing until 
slipping occurs. This defines Ihe radius 
of a friction circle. and from il lhe 
moment needed 10 tllrn Ihe shaft can be 
determined. 

Kolling I( l'Sist anc~ 

The resistance of 3 whcclto rolling o\'cr 
a surface is caused by locali7.cd 
tlt/o,marlO" of the two materials in 
COnlnc!. This causes the resultant normal 
force acting on the rolling bod)' 10 be 
inclined so that it provides a component 
thaI ae\s in the oppositc direction of lhe 
applied force P causing the mOlion. This 
effect is cha ractcrized using lhc 
cQt'/ficieUl uf rollillg resisr<lnCt. ( •. which 
is detcrmined from experiment. 

2 (R'- ") M ~ 3/L,P ~ _ ~ 

M .. Rrsin4>~ 

IV" p ", ­ , 
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• REVIEW PROBLEMS 

8-143. A slIlgle fort~ I' is applied to the handle of the 
drnwcr. If friction is neglected at the boltom and the 
coefficient of static friction along the sides is /l, .. OA. 
detemline the largest spacing $ be tween the ~rmmetricall)' 

placed handles so that the dra""er does nOi bind at the 
comers A and 8 when the force I' is applied to one of 
the handles. 

L.:!5m 
I . 

a.'JIl.-' ~O"_'" =-"lHm 
L·-T , 

Pmb. 1I-143 

-11-144. The semicircular Ihin hoop of ",'e ight II' and 
center of gra~ity 8t G is suspended by the small peg at A. A 
hori1.Ontai foree I' is slowly applied at K if the hoop begins 
to slip 3t A when /J - 3O". dctcrminc the coefficient of static 
friction between the hoop and the peg. 

'. "y 

V---., 
8 

l' rob. lI- l44 

· 1I-14S. The truck has a ma~ of 1.25 Mg alld a center of 
mass at G. Delermine the greatest load it can pull if (a) too 
truck h..1S rcar.wheel drive wtule the front wheels arc frel.: to 
roll . alld (b) the truck has four·wheel dril"C.1lM: rocfflCicnt of 
SIalic friction between the whel.:ls alld too ground is /l, - 05. 
and between tbe I;r.Ile and tbe ground. it Is 1': .. 0.4. 

II- I~. Soh'e Prob. 8-145 if the truck and crate Dre 
Ital'cling up a 10" incline. 

I' rubs. 11- 145/146 

11-147. If block .II has a mass of 1.5 kg. determine the 
largest mass of blo<:k 8 \\;thoul causing motion of the 
system.""e coefficient of static friction between the blocks 
and inclined planes is /l, - 0.2. 

"roh.1I-147 



- tl-14!I. Ihe oone has a weight 1\' and center of gravity at 
C. If a horizontal force I' is grndu~II ~' applied 10 the st ring 
attached to ils ,·crlex. dctermine the maximum coefficient 
of stalic friclion for slipping 10 ocrur. 

tr-----, 

I'roll. tl- I 411 

I 
t, 

' 8- 149. lhe traclor pulls on the fi~ed tree Stump. 
I)ctermine Ihe torque that mUSI be applied by the engine 10 

Ihe rear wheels 10 cause Ihem to slip. The fronl wheels arc 
free 10 roll. The Iractor weighs JSOO Ib and has a cellte r of 
gravily at C. The coefficient of SIalic friction be lween the 
rear wheels and Ihe ground is,., ... O.S. 

8-150. The tractor pulls on Ihe fi~ed Iree Slump. If Ihe 
coefficient of stanc friction bet"'een Ihe rear whee ls and 
the ground is,., - 0.6, determine if the rear wheels slip or 
Ihe fronl wheels lift off llie ground as Ihe engine provides 
torque to the rear wheels. What is the torque needed \0 
cause. Ihis mOlion1 The fronl wheels arc free 10 roll. The 
IrnclOr wciglis 2SOO]b and lias a cenler of gravity al C. 

Prohs. 8-149f150 

445 

8- 151. A roofer. having a nl;l5$of 70 kg. wa lks slowly in an 
upright position down along Ihe surface of a dome llial ha5 
a radius of curvature of r - 20 m. If the coefficient ofslatic 
friclion helwc.::n his shoes and th.:: dome is ,., ... 0.7. 
delennine the angie 6 al " 'hich he first hegins 10 slip. 

Prob. 8- 151 

· 8-152. Column 0 is subjected 10 a "erlical load of 
8000 1b.1t is supporled o n IWO identical wedges A and H for 
which the cocfrlcicnt of static friction at Ihe cOTllacling 
surfaces between A and 8 and be tween H and C is p. , - 004. 
Determine the force P needed 10 rni5ll Ihe column and Ih.:: 
equilibrium force /" needed 10 hold wedge .1\ slationary. 
"Ille conlacting surface belween .l\ and f) is smoot li. 

' 8-153. Column f) is subjectcd to a '·c rtical lo~d of!!OOO Ib. 
II is supported on \"'0 identical ... .::dgcs II and B for "'hich 
Ihe coefficienl of stalic friction al tlic contacling surfaccs 
bet ... een A ~nd fl 3nd oc t ... een H and Cis p. . ... 0.4. If the 
forces I' and P ' arc r.::moved. are Ihe wedges sclf·loel.:ing? 
The conlacting surface het ... ec:n A and D is smoolh. 

D 

I~' 

C 

A _p' 

Prok 8-1521153 



When a water tank IS designed. It IS Important to be abje to determine its center of 
gravity. calculate its volume and surface area. and reduce three-dimensional distributed 
loadings caused by the water pressure to their resultants. All of tnese topics are 
discuS$ed ,n this chapter. 



Center of Gravity and 
Centroid 

CHAPTER OBJECTIVES 

• To discuss the concept of the center of gravity, center of mass, and 
the centroid. 

• To show how to determine the location of Ihe center of griwity and 
centroid for a system of discrete particles and a body of arbitrary 

shape. 

• To use the theorems of Pappus and Guldinus for finding the surface 
area and volume lor a body having iI)(ial symmetry. 

• To present a method for 'inding the resultant of a general 
distributed loading and show how it applies to finding the rewltant 
force of a pressure loading caused by a fluid. 

9.1 Center of Gravity, Center of Mass, 
and the Centroid of a Body 

In this section we will firsl show how 10 locale [h..: center of grtlVi lY for a 
body. and then we will show thaI the cenler of mass and the centroid of a 
body can be dC \'clopcd using Ihis s;lmc melhod. 

Center of Gravity. A body is colllposed of an infini te number of 
particles of differential si;.:e. lind so if the body is located wi thin a 
gra\'i lalional field. Ihen each of these particles will ha\'e a weight t/ IV. 
Fig. 9- l n. l bcsc weightS will form an Ilppro)[inmlely paraliC-! forel: 
system. and the resultant of this system is the total weight of the body. 
which passes through a single point called the emf.., oj grrn·ify. C. 
Fig.9-lb.· 

'1lti$ is I'ue ~ Jon, as 1/11: ".-i'Y r..,ld is iWurmd 10 \l3~( ,/II: same ma&nil\llk and 
di'«1ion e\'CI') ... hc~. Th:1l :wumpt"'" is appropriate for mos. Cn&"I<,<"in, 'pplic:loIOOns. 
';nct gt1I"lIy dncs not ""Y apprcri.bly ""1,,'Ccn. (0. inSl:tlK'<:, IhI: bollom and lhe lop o( 
a building. 
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,b, 
I') 

~lg.~1 

Using the methods outlined in Sec. 4,8. the weight of the body is the sum 
of the weights of aU of its particles. thu t is 

The location of the center of gravity. measured from the y axis, is 
d\'termincd by equating the moment of IV about the y axis. Fig. 9- lh. to 
the sum of the moments of the weights of the particles about this same 
axis. If dlVis located III point (1.;.7). Fig. 9- 111.lhcn 

:fW '" !xdlV 
Simi[llrly, if momentS arc summed about the.r <lxis. 

)o1V '" !rdlY 

FinllUy. imagine that the body is fixed within the coordinate system and 
this system is rotated 90" about the y axis. Fig. 9- le.11len the sum of the 
moments about the y axis gh'es 

zW = FidlV 
·nlercforc. the location of the center of gravity G with respect 10 the .r.y. 
;:: axes becomes 

IxdW 
y = 

I y (flY _ IZ('IV 
'i = ---

I ,flV z = / JIV . IdlV 
liere 

X. y. ~ arc the ooordinlltes of lhe center of gravity G. Fig. 9- lh. 

:r:". 1 arc the L'Oordinll les of each particle in the body. Fig. 9- ln. 

(9- 1) 
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Center of Mass of a Body. In order to study the dymllnic 
,espollse or accelerated motion of a body, it becomes important to locate 
the body's center of mass Cm. Fig. 9-2. This location can be determined 
by substituting fll\' "" g dm inlo EQs. 9- 1. Since J.: is constant. it cancels 
ou\. and so 

_ 1 1' 11111 
x ~ ---I tim 

_ IJdlll 
Y "" ---

Idlll 
(9-2) 

Centroid of a Volume . If the body in Fig. 9-3 is nlade from a 
homogeneous material. Ihen its density p (rho) will be consl;ml. 
1llerefore. a differential clement of volume dV has a mass lfm "" p dV. 
Substituting this into Eqs. 9-2 and canceling out p. we obtain formulas 
that locate the ('t'lI/roill C or geomClric center of the body: namely 

11 dV 
- ~ 
, ~ ---

LIV 
(9-3) 

l11cse equat ions represcnt a balance of Ihe mOments of Ihc volumc of 
the body. Therefore. if the volume possesses two planes of symmetry. 
then its cent roid must lie along the line of intersection of Ihese Iwo 
planes. For (;_~amp[e, Ihe cone in Fig. 9-4 has a ce!l\roid that lies on the Y 
axis so thaI :i = 'i '" 0, The loculion y tan be found using a single 
integralion by choosing a differential clement representcd by a Ihill disk 
having a thickness ,f)' and radius ' '''' z. [ts volume is (I V "" 
11",.1(/), = Tl"zz(f)' and its centroid is at x .: O. y "" y.1-: 0. 

dill o C .. , 

• )--'-'--,-" , / 
--J------>' / )1 

/ ---'---' 

Fig. 9-2 

ffr; 
" I / J----,' 

• 



450 C",APTER 9 CENtER OF GRAVITY ANO CENTROIO 

, 

/ , - {(:,:) 

· c , 

,.j 

Inlegralio n rnu'l be used 10 delermine the 
location of lhe ecoter of gra"ily of Ihis 8001 
(>061 due to lhe eu"" alure of Ihe ~uPJl.," ing 

ntCmber. 

, , 

y " ((.) 

I-::=::::;=,=f-.,'/:':' J) IIl1 r- I 
~ i - , 

I , 1 " /t.t) 

"-__________ -LL-, 

"j "j 

Centroid of an Area . If an area lies in the x- y plane llnu is bound~-d 
by the curve y '" [(x) . as shown in Fig. 9--511. then its centroid "ill Dc in 
this plane and can be de termined from integrals similar 10 Eqs.. 9-3. 
nllmcly. 

(9-4) 

These itllegrlll~ can be evaluated by performing a sin,r.;//! il1ll'g((llioll if we 
use a r t'clfmgu/llr $/rip for the differen tial area clement. For example. if a 
wrtical strip is used. Fig. 9-5h. the urea Of lhcc lemenl is d A .. Y I t(. and 
its ~'C n troid is locu1cd at x '" x and y '" y/2. If we consider a horizontal 
Sirip. Fig. 9--5(, then ilA '" .r ily, und itso.:nlroid is located lIt x - x/2 ~lIld 
'j'f - y. 

Centroid of a Line . If a line scgme1l1 (or rod) lies wi thin the x-y 
plane and i1 can Dc described by a thin eUTve)' == lex), Fig. 9-611. then ils 
cent roid is determined from 

(9-5) 
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Here. the length of the diffqcntill.l elemem is given by the Pythagorean 
theon:m, (II. = V«(/X)2 + (dy )l . which (.:;10 ;.Iso be writtcn in the fo rm 

tiL = - tlxl+ - dx l ("')' ("Y)' tlx dx 

J(<Ix) ' (<lY )' tiL '" - tll+ _ (/yl 
(Iy d)' 

=( J(~~)' +,) <iy 

Either one of these cxpTessions can be uscd: however. for application. 

" 

;;------, o (., 

r ,. .. z..! 

the one that wi[! result in a simpler integration should bc sdected. For 2m 
example. ~onside r Ihc rod in fig. 9-6/). defined by y = 2.~. The length of 
the dement is tiL = \IJ + (dy/ t1:r )2 dx. and since tly/ tlx = 4x. then 

tiL = VI + (4x )2 tlx.The centroid for Ihis dement is located at x = x 

llnd y '" y. 

Important Points 

• 111e centroid represents the geometric center of a body. 
1bis point coi ncides with the ccnter of mass or the center of 
gravi ty only if the material composing the body is uniform or 
homogeneous. 

• Formulas used 10 locate the center of gnll'ilY or the centroid 
simply represent a balance bchl'een the sum of moments of all 
the parts o f the system and Ihe mOlllent of the "resultant " for the 
system. 

• In some caseS the centroid is localed at a point thai is not on the 
object. as in the casc of a ring. where the centroid is at ils center. 
Also. this point will lie on any axis of symmetry for the body. 
Fig. 9-7. 

~--'---'------;--, 

f 'm-l 

, 

'" t1~. 9-6 

c 
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Procedure for Analysis 

The center of gravity or centroid of lin object or shape can be 
determined by singlc integrations using the following procedurc. 

Differential Element. 

• Select an appropriatc coordinate system. specify the coordinme 
axes. and then choose a differential eicment for integration. 

• For lines the clement is represented by a differcntiallinc segmcnt 
of length dL . 

• For areas the element is generally a rcctangle of area dA, ha\'ing 
a finite length and differential width. 

• For volumes the clement can be a circular disk of volume dV. 
having a finite radius and differential thickness. 

• Locate the clement so thill ;ttouches the arbitrary point (x, y,,::) 
on the curve that defines the boundary of the shape. 

Size and Moment Arms. 

• E:l':p ress the length tiL. area {lA, or volume tlVof the clement in 
terms of the I;oordinates describing the I;urve. 

• Express the moment arms X. ;, r for the centroid or center of 
gravity of the dement in terms of the coordinates describing 
the cun'e. 

Integrations. 

• Substitute the formulations forx. J, I and dL, clA.or dV into the 
appropriate equations (Eqs. 9- 1 through 9- 5). 

• Express the funl;lion in the integrand in terms of the S{lIIle 

wlfillble as the differential thick-less ofrhe element. 

• The limits of the integral arc defined froll1 the two extreme 
locations of the clement's differential thickness. so thaI when the 
clements arc "summed" or the integration pcrfoml<:d.the entire 
region is covered.-

· fo,mul ... for inlcy alion arc gi"en in Al'fX'ndi~ A. 
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EXAMPLE 9 .1 

Locate the centroid of the rod bent into the sh~pc of a parabolic :lrc as 
shown in Fig. 9-8. 

SOLUTION 

Differential Element. The differential clement is shown in Fig. 9-8. 
It is located on the curve at the arbitrary I'oill/ (.1. y). 

Area and Mome nt Arms. The differential clement of length Ill. 
can be expressed in terms of the differentials dx and dy using the 
Pythagorean theorem. 

(IL = V«(l.ll + «(f)' )l ~ Je:Y + I II)' 

Since x = r. then d_I/ dy = 2)'. Therefore. expressing ilL in terms of 
y and dy. we have 

tiL = V (2y )l + I dy 

As shown in Fig. 9-8. the centroid of the clement is located at x = x. 
y = y. 

Integrations. Applying Eqs. 9-5. using thc fo rmulas in Appendix A 
to evaluate the integrals. wc gel 

1
,· 

o x~lfy 

1
,· 

u ~tly 

0.6063 
= -- '" O.4lOm 

1.479 

1
,· 

(\ r~dY 

1
,· 

u ~rf)' 

l "f dL 1ImY~'IY 
, """:;;;:-____ 0.8484 

Y = -l-,-d-L- = [m V4y + Illy = - '-.'-79- = 0.574111 
AII.~. 

NOTE: These restllls for C seem re<lSonablc \\"hen they arc plotted on 
Fig. 9-8. 

, 
--'m 

'm 
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EXAMPLE 9 .2 

Locate the centroid of the circular wire scgmcnI shown in Fig. 9-9. 

SOLUTION 

" 

/ qf.,,) 
H • "-,-

d& -::::::;,' i ~ (R.8) y _ R.in 9 

of~-L------~~--, o 
t"ig. ~\1 

Polar coordinates will be used to soh'e this problem since the arc is 
circular. 

Differential Element. A differential circular HC is selected as 
shown in the figu re. This elcmell! intersects the curve at (R.O). 

Length and Moment Arm. The length of the differential clement 
is dL = R dO. and its cent roid is located at x = R cos 0 and 
y= R sinH. 

Integrations. Applying Eqs. 9-5 and integrating wi th respeetto O. 
we Oblain 

2R 
Am' . • 

l Y(IL r r o (R sin O}R dO RZ 
(I sinO(fO 

2R y=---= r 1"/2 All.!". 

[IL • 
o R dO R 0 (/0 

NOTE: As cxpectcd. the two coordinates arc numerically the same 
due 10 the symmclry of the wire. 
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EXAMPLE 9. 3 

Determine the distlmee y measurcu from the x axis to the centroid of 
the area or the triangle shown in Fig.9-IO. 

, 

l'-__ : ____ -_-__ L~~, __ . 
f-- , 

tlg. 9- 10 

SOLUTION 

Diffe re ntial Ele ment. Consider a rccl<lngullir clement having a 
thickness dy. and located in an arbitrary position so that it intersects 
thc boundary at ('t. y). Fig. 9- 10. 

Area and Moment Arms. The arca of the clement is .til = x If)' 

= £ ( 11 - y ) dy. and ilS centroid is located a distance y = y from lhe 

" x axis. 

Inte grat ion. Applying the second of Eqs. 9-4 and integrat ing with 
respect to), yields 

" 3 
1I11s. 

NOTE; This result is valid for any shnpc of tri;U1glc. Il states that the 
centroid is located at one-third the height. measured from the base of 
the triangle. 
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EXAMPLE 9 .4 

Locate the centroid for thc area of a qUlIner circle shown in Fig.9-11. 
, 

y R (/6 

fig. 1).. 11 

SOLUTION 

Differential Element. Polar coordinates will be used. since Ih.: 
boundary is circular. We choose the clement in the shape of a lrimlsle. 
fig. 9- 11. (Actually the shape is:1 circular sector. however, neglecting 
higher·order differentials. the d ement bctomes triangular.) The 
clement intcrsctls the curve at point (R.O). 

Area and Mome nt Arms. The area of the clement is 

II' 
dA '" !( R)( RdO ) = - lID . , 

and using the results o f Example 9.3.lh.:: e.::mroid of th.:: (triangular ) 
e l.::mem is located at x = § R cos O. y = i R si n O. 

Integrations. Applying Eqs.. 9-4 and int.::grating with rcspct!1O O. 
we obl;lin 

l xdA 
x = --- ~ 

["(' )" o "3 R tOSO T ll/) (' J[' "3 R (I 0050,/0 411 

" 
AII.I: 

[ ""' lflll - dO 
" o , 

LYdA ["(' J"' o "3 R sinO 2"(10 
)' = --- ~ 

[ ""' 11111 - (f/) 
, 2 

r o dO 

(~R)l·(1. s in odo 

[" (I II/! 

411 ,. 
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EXAMPLE 9 .5 

Locate the centroid of the <lrell shown in Fig.9-12(1. 

SOLUTION I 

Differential Element. A differential clement of thickness dx is 
shown in Fig. 9- 1211. The eJcment intersects the curve at the lIrbirmry 
poim (x. y). and :>0 it has a height y. 

Al'ea and Moment Arms. 'Ibe area of the clement is ciA "" Y !ix. 
and its centroid is located at X : X. y = y/2. 
Integrations. Applying Eqs. 9-4 and inlegnlling with respect to .( yields 

1'" 
II xy(/x 1'" 

"

xl d.l 
= 0.250 = 075m 

1
1m 0.333' 

o .r2 dx l
,m 

o y (lx 

['" 

" 

1'" II (y/ 2)y(/.r i ll (.r 2/ 2)xZ 
dx 

""_ :;;:---__ = _0,_'00_ = 0.3 m Alt.!: t m 0.333 

l Y(IA 
y= _A __ = 

l"A l 'm 
o )'ll.( io x 2 

(/.1' 

SOLUTIO N II 

Differential Element. The diffe rential clement of thickness dy is 
shown in Fig. 9-12h. The clement intersects the curve at the arbitmry 
poim (x. y). and so it has a length ( I - .l ). 
Area and Moment Arms. 'Ibe area uf the clement is 
tlA = ( 1 - x ) (/y. and its ccntroid is located at 

- (' - ') 1 +,' _ x = x+ - ,- = - ,- .), = y 

Integrations. Applying Eqs. 9-4 and integrating with rcs]Xel to y. 
we obtain 

,-

" 

, . ", 

• (i.n 

,.) 

(') 

l X dA _ A l 1m
[(1 + x}/2J (1 - X) dy 

l t m

( l _ x ) dy 

1 11m Fi~. 9-12 
- ( I - y ) d)' _ 
2 u 0.250 
~c;----- = -- = 0.75 m Alts. , =--- = , l"A ., 1

1m 0.333 
( 1 - vr) dy 

" 
['" i ll ( y - , Jr. ) d)' 

1'" o (1 - Vy) dy 

0. 100 03 
= - 33' : . m 0, , 

NOTE: Plot these results "lid notice thaI they seem rca:>onablc. Also. 
for this problem, clements of thickness (/.1' offer a simpler solutiol1. 

Am: 

'm 
, 
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EXAMPLE 9 .6 

Locale the cenlroid of Ih.;: scmi·clliplical area shuwn in Fig. 9~13u. 

" 
( ~ ... )'I 

f '" -- .-T 
)' .--

~--2f1---+-- -!;:~ ---2f1 

,., 
Fig. 'l-U 

SOLUTION I 

(0' 

Differential Element. Th.;: fcelanguJar diffcrenlial clement pMa1Jcl 
10 the y axis shown shaded in Fig. 9- 1311 will be considered. This 
elemenl has a thickness of dx and 11 height of y_ 

Area and Moment Arms_ -n lUs., the area is tilt '" Y II.T. and its 
c.::ntroid is Joc:ltcd at x '" .f ;md y = y/Z. 
Integration. Since the aTCa is symmetrical about the y axi~. 

X"' O AII.<. 

Applying Ihe second of Eqs.. 9-4 with )' = J 1- .::. wc ha\'c 

'1'''( ') - 1-·' dx 
Z _!h 4 = 4/ 3 

1
!h ~ rr = 0.424 fl AIlS. 

_ ll. \f l -~II.l 

r 12/'1' )i dA "- ("llx) 

" 

= _ , __ = "'_"~"02. __ 
1 -12(, 

,fA )' ,,., 
, I - lfl. 

SOLUTION II 

Differential Element. 'JlJe ShMlcd rcctangular differenlial elemenl 
o f thickness dy and width 21. parallel to the x axis. will be cunsider.;:d. 
Fig.9-13b. 

Area and Moment Arm5. TIle area is tlA = 2.1'11". and it~ ccntroid 
isatx '" Dand y = y. 

Integration. Applying the second of Eqs.. 9-4. with ,l = ZV I-Y. 
we have 

l YdA [ h)'( l fll)') 
y= - ' -- = '" 

1 [''' 
/A )0 2xd)' 

r'" )0 4" v'i"="I d" 

r' " )0 4~dy 

4/ 3 
-- (I = 0-424 ft Ails. 

o 
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EXAMPLE 9 .7 

Locate the y centroid for the paraboloid of revolution. shown in 
Fig. 9- 14. 

,-

IOUmm 

~[ [-""''''-1-'-- - --'-'' 

Fig. ?-14 

SOLUTION 

Differential Element. An element having the sh:lpc of a Ihill di.\·k is 
chosen. This clement has ~ thickness .!y. it intersects the generating 
cu rve at the IIrbilfllry poilll (O.y. Z).:lnd so its radius is r = 1.. 

Volume and Moment Arm. The volume of the element is dV = 
(11';! ) lIy. and its centroid is located at y = )'. 

Integration. Applying the second of Eqs. 9-3 and in tegrating with 
respect 10 y yields 

LytfV 
y= -'-- ~ 

{'IV 
j" 

1
,ro mm 

]01"1' 0 l dy 

1
,ro mm 

10011 0 ylly 

66.7 mn! AilS. 
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EXAMPLE 9 .8 

Determine the location of the center Ilf mass of the cylinder shown in 
Fig. 9- IS if ics density \'aries directly with the distance from its base. 
i.e .. f) = 200:: kgfmJ. 

, 

'm 

I~_ , 

fig. '1-15 

SOLUTION 
For reasons of material symmetry. 

tillS. 

Differe ntial Element. A disk clement of radius O.S III lind lhiekness 
tlz is chosen for integration. Fig. 9- 15. since the den.rily of Ih e f wirt 
eil'l//("I!l is ("om'llIIll for a given value of z . The clement is located along 
the :z llxis at the {Irbilfllry lwill/ (0. O. ~). 

Volume and Moment Arm. TIlc volume of thc clement is 
{IV= 7T(0.5l tI::.. and its centrOid is located at 1 = z. 
Integrations. Using an equ~ t ioll similar to the third of Eqs. 9-2 mid 
integrating with respcctlO~. noting Ihal p "" 200t. we have 

l p t/v 

" 

1
,m 

Z ll.;: 

" 

1
,m 

o .;:(200Z)[7T(O.S)2t1: j 

1
,m 

a (200<:)01"(0.5)2 (I~ 

Ails, 
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• FUNDAMENTAL PROBLEMS 

F'l- I. Determine tile centroid (X. y) of tile slladed area. 

.. 
-~I---

'm 

.... , 
F9-2. Delermine Ille cenlroid Ix. ).) of Ille slladed area. 

, 

'm 

~~-<---~-, 

- "'~ 
1'9- 3. Determine tile cenlroid y ofthe shaded area. 

.,9-4. Lor;atc tile center mass X of tile straigllt rod if its 
mass pcrunitlenglll isg;"cn by /II - moil + .x:/L~) . 

, I--l - -, 

J ----L 

~"'9-! . Locate tile C'emroid y of the homogeneous solid 
formed by re\'olving Ille shad<:d area about the yaxis. 

'm- -, 
F>-S 

~~ Locale Ille centroid: or Ille homogeneous solid 
formed by re\'olving the shaded area about the : axis. 
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• PROBLEMS 

·~I. Determine Ihe mass and Ihe location of the center of 
m~ss (i'. j') of the uniform parabolic·sh:lp<.'d rod. The mass 
p<.' r unit length of Ihe rod i~ 2 "glm. 

r 
'm---

Prill). 9-1 

9-2. The uniform rod is bent inlo the shap<.' IIf a parabola 
and has a weight p<.'r unit length of n Ihj f!. Determine the 
r':'1ctions 3t the fixed support A. 

, 

r 
'" 

I--- J ft---1 

Prob. ~2 

9-3. Delennine the d istance x to the center of mass of Ihe 
homogeneous rod bent into the shape shown. if the rod has 
a mass per un; t length of 0.5 kgfm. detcnn;ne the react ions 
:u the fixed support O. 

'm -,-, 

"roh. 9-3 

. 9-4. Determine the mass and locate the center of mass 
(i. J) of the uniform rod . The mass per unit length of the 
rod is 3 kg/Ill. 

, 

frob. 9-4 
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· '1-5. Determine the mass and the 100ation of the cent~r of 
mass x of the rod if its mass peT unit length is 
/II - 1110( 1 + xIL). 

'~I - ,.--1 
"rob. 9-5 

~ IXterminc the locatioo (.f. ).) of the centroid of the wire. 

, 

'" 

I'roh. ~ 

'1-7. Locate the ~~ntroid:i of the circular rod. Express the 
answer in terms of the radius, and scmiarc angle R. 

I?------t---f--II - • 
• 

,~ 
Prob. 'J.-7 

0<).41. ~tenninc the area and the centroid (i. Y) of the area. 

~+----, 

'm---
I'rob. 9-8 

. 9-'}. Detcmlinc the area and tbe centroid (x. y) of\hc area. 

r 
'm 

'm 
I'rub.9-9 

9-10. Detemlinc the area and the centroid (x. y) of the area. 

---''' ---
Proh. 9- l ll 
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9-11. I)clcrmi lll.' the area and lhe cenlroid ( .•• }'l oflhe area. 

, 

~--j _____ ---1_" 

, _ J 

Prob.9-11 

' · 9-12. Locale Ihe cenlroid j of Ihe area. 

0-9-13. Locale the centroid y of Ihe area. 

, 

Prob~ 9-IZlI3 

9- 14. I)ctermine Ihe area and the cenlroid (x. y) oflhe area. 

" 

Prllb.9-14 

9-15. o.:lennine the area and the centroid (:t, f) oflhe area. 

, 
- , 

, 

.- -
f' rob. 'J- IS 

' ')..16. Locale the centroid (x, jl) of the area. 

, 

,. , J-L-__ -+ ___ ~_, 
,.- -

Prob. '1-16 
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' 9-17. Dctcmunc the 3rea;md The cenTroid (.I. j') oithe area. 

, 

, 

• 
" rob. 9- 17 

9-11l lhe plate is made of steel ha"ng a dcnsity of 
7850 kgfm). 1f the Thlclness of the platt IS 10 mm.dc:Tcrmine 
the horizontal and "erlical components of rcacllon 3TThe pin 
A and the Tension in c~blc He. 

c 

,.' - 20 ---,. 
--. 

• m----· 

"roh. !l-III 

9-19. DeTcnninc Ihe locaTion :t to the cenlrold C of The 
opper ponTOn of the cardioid. r '" utI - (OS 8). 

• 

Prob. 9-19 

' 9-20. Thc plalc has a thICkness of 0.5 in . and IS made of 
$Iel."l hal'lng a speClrtC .... clght of 490 lb/ ft '. Dctl',mme the 
horizontal and "cnkal componenTs of rC3cllon allhc pm A 
and The force m 11M: cord 318. 

J 
' " Ll!1_-,--. 

j 
'" 

Prob. 9-2il 

' 9-21. Locale the centroid x of the ~adcd area. 

" r a 2t (.r - l;;J 

,. 

-r--------------+~- , 
~ • 

PrOO. 9-2 1 
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9-22. Locale Ille C"Clll roid "i of Ihe area. 

9-l3. Locale tile centroid y of tile area. 

Probs. 9-l!lB 

. 9-2.1. Locate the centroid (.1'. y) of the art.'a. 

'" 

-'-+ ---1---- , 
3 f1 ~ 
Prol!. 9-24 

09-25. [Xlcrmine Ille area and tile centroid {X. 1) of tile 
~rea. 

'" 

l'rob. 9-25 

9-26. Locale the ccnnoid X of the area. 

9-27. Locate the centroid y of the area. 

I' robs. 9-26127 
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' '1-28. Locate tbe centroid).' of tbc ar~a. 

·9-29. Locate tbe centroid y ortbe area. 

, 

9-30. The steel platc is 0.3 m tbick and bas a density of 
7850 kg/m). Determine the location of its center of mass. 
/\!so determine the bori7.onwl and vertical reactions at the 
pin and the reaction attbe roller suppor\.lIim:The nomlal 
force at 8 is perpendicular to the tangent 3t lJ. wbicb is 
found fTonltan if ,. dy/d.l. 

1 'm 

2m--l 

Pmb. '1-30 

9-3 1. Locate tbe centroid of the area. Hill/: ChO(l$C 
clements of thickness <I)' and length [(2 - y) - il. 

, 

r 'm 

1L-------'-------="'-
I---t m~--! ~- I m---! 

Prob. '1-31 

-9-32. Locate the centroid x of the area. 

' 9-.13. Locate the centroid yof the area. 

" 

2ft 

1ft i 

Prllhs. '1-32/33 
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9-.l4. If the density 31 any point in the rcClangular plate is 
defined by p " (Joil + .fl u). where "., is a constant. 
dt.'lerminc the nla5S and locale Ihe cenler of mass j of tl'>c 
plale. l he plate It:Is a Ihiclme.!S I. 

Prob. \1-34 

9-35. Locale Ihe centroid y of the homogeneous solid 
formed by revoh~ng the shaded area about the y axis. 

Y+ (: - Il)'·';' 

Ao,,",,----j--' 

Proh. \1-35 

°9-36. Locate Ihe centroid ~ of 1he solid. 

-I 
" 1 ,-;1'---, 

/ , 
" rob. \I- .wi 

0\1-37. Locate the centroid }' of the homogeneous solid 
formed hy re"oh';n!! the shaded arca about the y axis. 

,-
Zm 

"rob. 9-37 

11-38. Locate Ihe centroid -: of Ihe homogeneous solid 
frustum of the paraboloid formed by revolving the shaded 
area aboul the ~ axis. 

: . ~(".! _ }'l) 

• 

J'rob. \1-38 

r 
h , 
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~J9. Locate the centroid y of the homogeoeous solid 
formcd by rcvoh'IIlS thc shadcd area about the ), axis. 

, 

, 

'" 
z! -.~ - 9 

3 fl - ' 

J 

", 
A---~-'!I-~-' 

!'ruh. ~39 

. 9-4(1. Locate the eeruer of mass y of the circular cone 
fomled by re\'ol~ing the shaded area about the ), axis. The 
density 8t nny point in Ihe cone is defined by I' " (p"j ll)'. 
where 1'0 is a constant. 

" 

t' roh.~ 

09-41. Delermine the mass aod locate the ccnter of mass y 
of Ihe Ilcmisphere formed by revolving Ihe shaded arCH 
about the), 3Kis. The density at any poiru in the hemisphere 
can 1M: defined by p - p..,(1 + y/a). where PI! is a constant. 

I«--~.---,. 

, /' 

!'rob. \1-4 1 

9-42. Determine Ihe volume and locate the centroid (y.:) 
of the homogeneous conical ,,·edge. 

, 

, 
I'rob. 9-42 

9-43, The hemisphere of radius r is made from a slack of 
"cry thin plates such that the densi ty varies with height. 
p _ kz, where k is a constant . Determine its mass and the 
distance z to Ihe center of mass G. 

Prob. ,*-_U 
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9.2 Composite Bodies 

A com positl' budy consists of a series of connected "simpler" shaped 
bodies. which may be redangular. lri3ngular.scmicireul3r. etc. Such a body 
can ofte n be scdion('d or divided into its composite parts and. prO\'ided 
the ",!'igbt and tocat ion of the cenl er of gr:l\'ilY o f each of Ihese parts arc 
known. we can Ihell eliminate the need for integration to detCmline the 
center of gra\'ity for the ent ire body. The method for doing th is follows the 
same procedure out lined in $cc. 9. 1. Formulasanalogous to Eqs. 9-1 result : 
howe\·er. rather than account for an infinite number of dirfen::nlial weights. 
we have instead :1 finit e number of weights, ·Iltercfore. 

Hen:: 

x. y. "l 

YII' 

_ ~xw , =--n v 
_ ~yW 

Y "" ~W 
_ ~IW 

z = YIV (9-6) 

represent the coordinates of the center of gra\'ity G of the 
composite bod)'. 
represent the coordinates of the center of gra\'ity o f each 
composite part o f the body, 
is the sum of Ihe weights of all thc composite parts o f the body. 
or simply the 10 lal weight of the body. 

When the body has a CUlISllml (Ilmsil), o r Jpl'cijic "'I'ighl, the center of 
gra\~ ty coil/cidt's \\ith the cent roid of the body, The c.:ntroid for composite 
linL'S, areas. and volumes can be found using relations analogous to 
Eqs. 9-6; howel·er. the W's arc replaced by L's, A's. and V's, respectivel y. 
Centroids for common shapes o f lines. areas.shcl ls. and volumes that often 
make up a composi te body arc given in the table on the insi&:: back co,"er. 

In ordcr lodctcrminc the (ora: requITcd to 
tip o,'cr Ih" oo1lCrCIC oorr;e r il Is fi~1 
nce.:SS!lr), 10 dclcrnunc the localion of its 
e.:nlCt ur Vow;t)' G. Duc 10 s)'mmc:tr)~ G "ill 
lie on lhe "erlkal nx~ o( symmclry. 



 

Procedure for Analysis 

The [ocalion of Ihe cenlt,:r of gravity of a body or the centroid of a 
composite geomelrieaJ objeci n:presenled by a line. area. or \'otume 
can be determined us ing Ihe foHowing procedure. 

Composite Parts. 

• Using a sketch, divide Ihe body or objecl into n finilc number of 
composile parts that have simpler shapes. 

• If a composite body has a Iwk or a geometric region having no 
malerial. then consider the composite body ",ithoul the hole and 
consider the ho[c as an ut1tiiliOlIl/I composite part having lI~gtlli\'e 

weight Of sb,:c. 

Moment Arms. 

• Eslablish Ihe coordiml!c rutcS on the sketch and determine the 
coordinatcs X. y. ! of the cen1crof gl1lvity or centroid of each parI. 

Summations 

• Determine X. y. z by applying the center of gravity equations. 
Eqs.~. or the analogous centroid equations. 

• [f an object is .rymmelricul about an axis, the centroid of the 
objcetlics on this axis. 

If desired. the calculations can be arranged in tabular form. as 
indicated in the following lhn:e examples. 

9.2 COM POSln BOOES 

The ""nlcr al gra,i ly oflh ill waler Ilu>k can 
be dete rmined hy d" 'iding il Illi o 
oompo. ile paris and applying Eqs.~. 

471 
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EXAMPLE 9 ,9 

Segment 

I 

2 
J 

L(mm) 

". (60) ., 188.S ... 
20 

'::oL ., 248.5 

l(mm) 

OJ 
0 
0 

Locllh! the centroid of the \\ire shown in Fig. 9- 1&,. 

SOLUTION 

Composite Parts. The wire is dil'ided in to three segments as shown 
in fig. 9- 16b. 

Moment Anns, The location of the centroid for each scgll!enl is 
determined and indicawd in the figure. In particular. the centroid of 
segment <D is determined either by integration or by using the table 
on the inside back cover. 

Summations. For con\'enicnce. the calculations can be tabulated as 
follows: 

jf{mm) ~(mm) XL (mm~) y L (mm' ) I L (mm!) 

-"" 0 II 310 - 7200 0 

20 0 0 .,. 0 ... - 10 0 &XI - 200 

'::oXl. - 11310 '::oyL ., """ '::on ., - 200 

i = 'i.:1L ,. 11310 "" 455mm 
~L 248.5 . 

_ 'i..YL -5600 
)' = ~L '" 248.5 = - 22.5 mm AII.I". 

'>'.L - 200 
Z = -r'L = 248.5 = - 0.805 mm AII.I". 

, 

~",,,;:,,~,:,==,,,, ... Lc>m 20 mm _._ -.J8.1_ .~ 

.............. 60mm e .1 

Y ............ 10 mm -l...~ O )' 

~lg. 11- 16 



EXAMPLE 9.10 

Locate the centroid of the plate area shown in Fig. 9-1711. 

SOLUTION 

211 

-t­

'" 

, 

~+--,----t----';-- , Go+ 2fl 3(1-1 

", 
~i&. 9_11 

Composite Parts. The pilite is divided into three scgmcnts ;lS 
shown in Fig. 9- 17b. I"lere the ;ITea of the small rect:mglc 0> is 
considercd ··negativc·· since it must be subtracted from the larger 
one<%>. 

Moment Arms. The-centroid of eaeh segmcnt is located as indicated 
in the figure. Note that the x coordinates of@and (j)3fclltJ<;dlil"lt. 

Summations. TOIking the data from Fig. 9- 17b. lhe calculations are 
labulated OIS follows: 

Segment II (fll ) x (fl) y( fI ) xII (fll ) yA (ftl) 
1(3)(3) .. 4.S , •. S 'S 

2 (3)(3) .. ') - '5 '5 - 13.S I3.S 

3 -(2)( 1) " -2 - l-S , S -. 
~A ... 1I .S ~iA .. , ~yA " 14 

Th" 
,-- I 4 

"i = _ .rl = -=-- = - 0.348 f( 
. ::iA 1I.S 

Ails. 

_ ~yA 14 
Y = rA ="iI.S = 1.22 ft Am". 

NOTE: U these results arc ploued in Fig. 9- 17. the location of point C 
seems reasonable. 

9.2 COMP'OSln BOOES 473 

II 

OJ " 

r t..'i fl 

Orflm­
lj~ 

'" , 

, 

O. 
- ~-, " , 

tli 

,. 

'" 
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EXAMPLE 9 .11 

, 

,.j 
Fig. ?- HI 

Segment 

I 

2 

3 , 

"" mm 

~:50mm 

Loca.e .he cenler of mass of the assembly shown in Fig. 9- 1&,. The 
conical frustum has a density of Pr = 8 Mg/mJ• and the hcmisphere 
has a de::nsil)' of P~ .. 4 Mg/m). There is a 25-mm-radius cylindrical 
hole in the center of the [rUSlunl. 

SOLUTION 

Composite Parts. The assembly can be thought of as consis ting of 
four segments as shown in Fig. 9- IBb. For the calculations.. (J) and@ 
must be considercd as --ncgati\'c" segments in ordcr that the four 
segments.. when added together. yield the total composite shape 
shown in Fig.9-1&,. 

Moment Arm. Using the .able on the inside b,ICI: CO\"Cr. the 
computations for the centroid :- of each piece arc shown in the figure. 

Summations. Because of J)'mml!lry. nOte that 

i=y=O Am. 

Since IV = mg. ,md g is constant. the third of Eqs.. 9...{i becomts 
Z "" ':!.'"i.III/ 'im. The:: rnassof e::ach piece can be computed from III ,.. pV 
;lIld used for the calculations.. Also. 1 Mg/mJ :: 10 ..... kg/mmJ• so tll<lt 

m(kg) t"(mm) t m(kg·mm) 

8(10"')O) IT (SW(200)" 4.189 50 209.440 

4(10-6)(1) :rr (5O)) " 1.().l7 - 18.75 - 19.635 

- lIt 1O-6)(}) :rr (25f( 100) - - 0.524 100 +25- 125 - 6s.45O 

8! JO 'l "ll" !251:( 100) .. 1.57 1 50 

Lm - 3.142 

l ltus.. 
_ 'iIm 45.8 15 
• • --. -- = 14.6mm 
~ 'im 3.142 

''l 

l..OO.mm. .. 2S n:m . ~ 

- 7!-i.540 

~tm - 45.815 

I 
IIlOim 

An!. 

2S mm 

r-



• FUNDAMENTAL PROBLEMS 

t~7. Locale the centroid (x.,. Z) of the wire bi.-nl in the 
shape shown. 

, 
400mm 

0'>-7 

t--,...s. l./X~lc th.., centroid y of the beam"s crosHcclional 
area. , 

lSOmm 

-'---'-H'--.' 

2S .. ,"' 25 mm 

PJ- 9. Locale the centroid )' of the beam's cross­
sectional area. 

9.2 COMPOSln BOOES 475 

FY-1I1. Loc.llc the centroid (X. fJ of the cJ'OS/i·seclional area. 

, 
0.5;11. 

3i". --I 
n - Io 

0.5 ,no 

tll- lI . Locale the center of ma5S (,t, y.:) of Ihe 
homogeneous solid block . 

l ." 
1 

1>"9-11 

P~- I l. Determine the center of mass {x.y,fJ of Ihe 
homogeneollS solid block. 
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• PROBLEMS 

' 9-44. Locate the centroid (x. y) of the uniform wire b<!n\ 
in Ihc shape shown. 

~ ,- iF===-I: 
~mn' 

100 nlm ---. 

150mm 

Yroh. 9-44 

·9-15. Locate the centroid (:I'. y. :) of the ..... ire. 

, ,. 

Proh. 9-I5 

?-46. Locale th~ C\':ntroid (:t. y.:) of the wire. 

, 

l' rob. 9-16 

9-17. Locale the centroid (x.y."Z) of the wire which;s bent 
in the shape sho ..... n. 

--2;n.- -

"-,. 
Prob. II-I7 



. 9-48. The truss is made from 5C"en m~mbers. each having 
a mass per unit length of 6 kg/m. Locate the position (.r. y) 
of the center of mass. Neglect Ihe mass of Ihe gussel plales 
allhe join ts. 

y 

D ,-
I 
'"' 
l,I!tiilooo-~,~~c ' 

3 m 'm 

I·rob. ~ 

0'1-49. Locate Ihe cemroid (x. y) of Ihe wire. If Ihe wire is 
suspended from A determine Ihe angle segment AU m~tes 
wilh Ihe venical when the wire is in equi librium. 

, 

" 

Il _lOOmm+2(X)n'm~-c--' 

Prob. H9 

9.2 COMPOSln BODIES 477 

'J-541. Each of Ihe Ihree memb.)rs of th~ frame h~s a mass 
per unit lenglh of 6 kg/m. Locale Ihe position (:I'. y) of Ihe 
cenler of mass. Neglectlhe size of Ihe pins al Ihe joints and 
Ihe Ihickness of Ihe members. Also. ca leul31e Ihe reaclions 
allhe pin A and roller E. 

y 

~' "'-r ~ml 
~ £ 

D 

'm 

f- H 

'm 

L A 

"rob. 9-50 

'J-SI. Locale Ihe cen!foid (.i. :n of Ihe er05s-5Cclionalarea 
oflhe channel. 

, 

tin. - ' r--.9 ,n.- I,n. 

l' rob. '1-5 1 
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-9-52. L.o;;alc the centroid y of the crOS$'~Cl ional area of 
the concrele beam. 

12 ill 

!'rob. 9-52 

. 9-53. Locate the cenlroid y or the cross·sectional area of 
the buih-op beam. 

'-J ill . 

l,n. in. 

!'rob.9- 53 

9-54. Lo<:alc the centroid y of tbe channel's cross­
sectional arCR. 

lin. 

!'rob. 9-54 

9-55. Locate (he distancc y 10 the cenlroid of (he 
member's cross-sectional area. 

6in. 

, 
0.5 111 .~ in 

~ 

;---
IS ,n 

, ; . .ri----+--r=---­
\- Jill. 1 3in. .j 

Prob. 9-55 



• 'I-~ Locale the centroid y of [he eross-sc"ional area of 
lhe buill-UP beam. 

I'rob. 9-56 

09-57. The gmvi t}· walt is made or concrete. Determine the 
locadon (:t. y) of lhe cenler ofmass G for lh .. wall. 

" •
um 1 

--, 
7. 

O.6m 11.6 ". 

I' rob. 'l-S7 

9.2 COMPOSln BOOES 479 

'l-SII. Locate the centroid .. ' of the composite area . 

I'rob. '1-58 

'1-59. Locate the centroid IX. YJ of the composite area. 

3 In. 

'---'-----'--~- , 

I'roo. 9-59 

.~. Locate the centroid (:t. y) of th .. composite area. 

, 

l oS (. 
311-t-3 ft --.. 

I'rob. 9-60 
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- 'J-61. Divide th~ plate into parts.. and using the grid for 
mcasur~men1. det~rmin~ ~pproximatel)' the location (.t. y) 
of the «ntroid of the plate. 

.. 
200mm , 

200 mm , 

t>. 

j" 
t ~ , 1'\ , 

Prob. 'J-6 1 

'J-62. To det~rmin~ the location of the center of gr3lojt)' of 
the automohile it is first placed in a Inri pomiQu. with the 
twO wheels on one side resting on the scale platform I'. In 
th is position the scale records 3 reading of II' t. Then. one 
side is clcl'ntcd LO a ronl'cn;ent height (' as shown. The new 
readtng on the scale is IV!. If the automohile has a total 
weight of 11'. dctennine the location of its center of gm'it)' 
G{x.1). 

"rob. 9-62 

'J-6J. Locate the centroid}' of the cfoss·sectional area of 
the built-up beam. 

.. 

]5Omm , ; mm / 

~20m'n 

""'1"----' 
2On,m 

!'rob. 9-6J 

.~. Locale the cenlroid y of the cross·sectional arca of 
the built·up beam. 

, 

" mm ]1:::'~==1l~ SO mm I 

t50mm 

i 
""mm 

IOmm 

20mm 

IOmm 

20mm 

I ---'---'"'-"'------.. 

!'rob. \1-64 



 

.~. The eomposile plate is made from bollt steel (A) 
and brass (B) segments. Determine Ihe mass and location 
(.t'. y.~) of its mass (Cnter G. T.lke p" _ 7.~ Mg/mJ and 
PI>< .. 8.7~ Mg,lm). 

)Omm 

.... 01t.9-65 

9-66. The ~ar reSIS on four Kales and in tltis position tlte 
scale readings or botlt the front and rear tires arc shown by 
F" and fir- When tlte rcar wlteels!lre c!e\'aled 10 a height of 
3 fl abo\"t' tlte fronl Kales. tlte ne'" rcadings of tlte fronl 
"lteels arc alro recorded. Usc tltis d~ l a 10 compute tlte 
Io<:alion X and r to the (Cnh.'r of gra\"ily G of tltc car. The 
lires eaelt Ita"e II diameter of 1.98 11. 

FA - 1129 tb + 1168 tb _ 2m tb 
f·._ 97S1b + 'I!I-Itb _ I9S91b 

F~ .. 1269 Ib + 1307 Ih .. Z5761b 

"'rob.~ 

9.2 COMPOSITE BOOtES 481 

9-e7. UnIform blocks ha"ing a lengllt I. and mass III arc 
stacked one on top oflht' other. willt each block O\'erhanging 
tile other by 11 dislance d. lIS sho"-n. If Ihe blocks are glued 
together. ro thaI they "i]] nOI lopple o\"cr. dClemline the 
localion .r of tile cenler of mass of a pite of" blo<:ks. 

o'J-6IL Uniform blocks hll'ing a length L and mass iii ate 
stacked one on lOp of the olher. " ';Ih eaelt block 
overhanging Ihe olher by II dist~nce II. as shown. Show Ihal 
the maximum number of blocks whiclt can be stacked in 
tltis manner is" <: 1./11. 

~C-______ ~ __________ • 

r , j 
I'.ub!'. k716X 

·49. Locale the cenler of IIra'ity (:I'. :) of Ihe sheet­
metal bmcket if the material is homogeneous and has a 
ronswn t Ihkkness. lf the bracket is resting on Ihe horizontal 
... _y p1:l.ne shown. dctermine the maximum angle of lil l 0 
which ;t can hal'e before it ralls o\·er. i.e .• begins 10 rotale 
aOOU1 Ihe y axis. 

, 
",mm 

20mm 

10 mm dla. holes 

I-'roll. 9--60 
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')...711. Lorale lite ('ellte r of milS$ for Ihe comprcssor 
35SCmbl)'.l'he loclI1ioll§ of lite rentel'$of mU5 of tlte "arious 
components ~Ild their masses arc illdicated and labul~ted in 
Ihe figure. Whal Dre lite \'Cnical reacliollS al blocks A and 8 
needed 10 suppon lite plalform~ 

o In.<lrumcnl ~nd 

e Fihc. ')"I~m 
o Pil'inlllU<'nlhty 

o LIquid Storage 

o SUIKtur.ol (r:II"''''ork 

I'.ob. ')...10 

23(HI 

183 kl 
lZOkg ,n, 
"" " 

m 

')...1 1. Major Ooor loadings in a shop arc caused by Ihe 
weighlS of the objects sltown. Each fore<: aCIS through ils 
rcspccti"e centcr of gravity G. Locale lhe center of gra,'ity 
(1',),) ofalltltcse components. 

, 
450lh 

G , 

611 .... 

, 

l' rub.9-7 1 

-9-n. Locale the ceiller of mass (1'. y.:) of the 
homogeneolls block a5SCmbly. 

l00mm 

I'rolt. 'l-n 

"" mm 

----

0'1-13. Locate the rente r of mass z of tlte assembly. The 
hemi~pltere and the cone arc made from materials having 
dcnsiliC$ of II Mg,lmJ and.j Mg,lmJ. rcspcclh·c\)·. 

, 

, 
I'.ob. \1-13 



~74. Locate the IXnter of mass "f of the assembly. The 
t')' linder and the rone nrc made from mate rial§ having 
densities of S Mynl! nnd 9 M!!/ml. respectively. 

l'roh.9-74 

9-75. Locate the cent .. r of gral1ty 0', y,:) of the 
homogeneous block assembly having a hemispheriC3.1 hole. 

"9-76. Locate the center of gr~\"ity (X.y.:!) of the 
assembly. The triangubr and the rectangular blocks are 
made from materials hal'ing spccirlC weights of O.25lb/ inl 

and 0.] ]b/ inl. resp«lively, 

" 13 in. 

lin . , l .15 In. 

, '< l,n. 
W ""',. 

9.2 COMPOSITE BOOtES 4 83 

' 9-77, Dclennine the distance .r 10 the centroid of the 
solid which ronsists of a cylinder wilh a hole of length 
/J - SO mm bored imo its bas.:. 

9-711. DClennine Ihe distance Ir 10 which a hole must be 
bored into the cylinder so thnl the IXnter of mass of the 
assembly is loc:lIed 31 j ' • 64 mm. 111e material has a 
densilrof8 Mg/ml. 

l20mm 

Probs. 9-77ni1 

9-79. 'Ille assembly is made from a steel hemisphere. 
p" - 1.00 Myml. and an aluminum t')·linder. 
P. - 2.70 Mynt' . Delcnninc the mass cenler of Ihe 
asscmbly if the height of Ihe C)'linder is II _ 200 mm. 

*9-80. The asscmhly is made from n steel hemisphere. 
P .. _ 7,SO MgJml. and nn aluminum cylinder. 
p. - 2.70 Mg/ml. Determine the height /, of Ihe C)'llnder 
so that the mass center of Ihe assembly is located 3\ 

: . l60mm. 

" , 
160mm 

r 

Prulls. 9-7Y76 I'rob" 9-7'J/lIO 



484 CHAPfE~ 9 CEN TER Of GRAVITY AND CENlROID 

The an>O\lnl <If rooIing.m~1<cr;31 usedon this 
.torage huild,ng can be c'''",3tcd by ""ing 
tbe first theo",m 0/ J>~J>J>u, and Guldin"" 
10 determine ;a ~urb", arca, 

*9.3 Theorems of Pappus and Guldinus 

The IWO IIIt'OUl/1S of PI/pp/lS 1/1111 GllidillllS arc used to Find Ihe surface 
area and volume of any body of revolulion, They were Firsl de\'eloped by 
Pappus of AlexllOdria during the founh cetllury A,I), and Ihen reslated;1I 
a later time by the Swiss mathematician I)aul Guldin or Guldinus 
(1577- 1643), 

, .. 
Surface Area , Ir we re\'olve a I,itllll' CI/n'l' about ,III :txis Ihat does 
nm inlersect the curve we will generate a s"rftlce (orell (If rt" 'Oll/film. For 
example, the surface arca in Fig, 9- 19 is formed by re\'olving Ihe cun'c of 
length L about Ihe horizontal axis. To delermine Ihis surface area. we will 
first consider Ihe differenlialline clement of length dL. If this clemenl is 
revoh'ed 211' radians about the axis. a ring having a surface area of 
dA = 21fr IlL will be generated,Thus, the surface area of Ihe enti re !xxIy 
is 1\ "" 211' frilL. Since J r dL :: n (Eq, 9--5), Ihcn A "" 211'1'/.. If the 
cUl"\'e is revoh'ed only through an angle 0 (radians). then 

where 

(9-7) 

A = Surf:lce area or re\'olulion 

0 = angleofre\'olulion measured in rndians,O S 211' 

r = pcrpendicul:lr dislance from the axis of re\'OIUllon to 
Ihe een!roid of Ihe generating curve 

t = length of Ihe generating eurve 

Therefore the first Iheon:m of Pappus and Guldinus stales that Iht' 

/lrf/l of II s"rflll:r: of re,'o/",im/ eqllilis flit' pmdllfl l'f III" Ifllglll of Ille 
genl.'raling fltrl 'e /11llllh~ dislIllice Irlll'e/t'li by Ihl.' cell/Will of Iht, CUrl'/, ill 
g('lIl'rlllil/~ Ihe sllrfi'C/' IIrl.'lI, 
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,,' A 

C. 
~ 

~ 

h'T 

Fi~. !J-lO 

Volume. A l 'II/IIIIIt" can be gcncr:ltcd by revolving a flllmt' nUll about 
lin axis that docs not intersect the area. For example. if we revoh'e the 
shadcd area 11 in Fig. 9-20 about the horizontal axis. it genera tes 
the "olume shown. This voluille can be determined by first re"olving Ihe 
differential clemenl of area I/A 2"71" radians about the axis. so Ihm a ring 
having the voluille i/V = 2::1"' II A is generated. The enti re "olul11e is then 
V = 2"71"/ri/A. Howcl'Cr. / n/1I '" i'A, Eq. 9-4. so tha t V ", 2".i'I1 . lf lhe 
area is only revolved through an angle 0 (radians). then 

where 

(9-8) 

V = ,'olume of re"olutioll 

o '" angle of re,'olution measurcd in mdians. 0 s 2"71" 

;: = perpendicular distance from the axis of re"olution to 
the centroid o f the gener-uing area 

II = generating area 

Therefore the second theorem of I>appus and Guldinus states thatlht" 
1'O/lUlle of II b()f/Y of rlvO/lllioll I'I/IIII/S Ihl' flrm/llcl of lh l' gl'lIl'rlllillg Ilrl'll 
(11111 IiiI' dislfllt(/' IfII)''''/'''11 b)' Ihe cmlroil/ of Ihe '''1'11 ;11 gmcfIIlillg Ihe 
"(Jlmllt'. 

Composite Shapes. We may also apply the abo,'c twO theorems 
to lines or areas that arc composcd of a series of composi te parts. In Ihis 
case the total surface area Of volume genefated is the addi tion of the 
surface areas or volumes g~'ne rat ed by each of the composi te parts. If the 
perpcndicular disl;lncc from thc axis of rcvolution \0 the centroid of 
each cOlnposite part is r, then 

II = or- (lL ) (9- 9) 

V = O:qr 1\ ) (9-10) 

Application of Ihe above theorems is illustrated numcricall)' in the 
following examples. 

The "oluItK of r~ rI ;h(r ton13;n~d 
"ilh;n lhiss;lo c<~n be dcl~m"ncd IIs;ng 
lhe second Ihcorem of Pappu. and 
Guld;n .... 
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EXAMPLE 9 .12 

,.j 

Show that the surface area of II sphere is A = 41f1f and its volume is 
V = ; 1fRJ. 

lJi 
" 

,OJ 

SOLUTION 

Surface Area. The surface area of the sphere in Fig. 9-2111 is 
generated by r<:volving II semicircular arc about the .r axis. Using the 
table on the inside b,\ck cover. it is seen that the centroid of this arc is 
located 3t a distance r = 2R/ 1f from the axis of revolution (x axis). 
Since Ihe centroid moves through an angle uf 0 = 21f rad to generale 
Ihe sphere. then appJ)'ing Eq. 9- 7 wc h3\'c 

A = OTL: ('R) , A = 21f -;r 7rR = 41fR- Am. 

Volume. The volume of the sphere is generated by re\'olvlng (he 
scmicircularllrl'lI in Fig. 9-21b aboulthex axis. Using the tllble unthc 
inside baek cover to locale Ihe centroid uf the arclI. Le., r = 4R/ 3r.. 
:md applying Eq. 9-8. we have 

V = OrA: (4R)(' ,) 4 V = 21f); "21fR' = ) '1fRl AII.L 



EXAMPLE 9 .13 

Determine the surface area and volume of tht: full solid in Fig. 9- 2211. 

~ t in. - . 

lin 

L 
2..5in.~ 

lin.---
15in.----

(.j 
(>, 

SOLUTION 

Surface Area. The surface! area is generated by revolving the four 
line segmel\ts showll in Fig. 9-22". 2IT fndi<ltlS about the z a)(is. The 
distances from the centroid of each segment to the .t a)(is arc also 
shown in the figure. Applying Eq. 9- 7. yields 

I in. 

2 in. 

A = 21T ~;:L = 21T[(2.5 in.)(2 in.) + (3 ;n.)( V(J in.)2 + (1 in.)2) 

+ (3.5 in.)(3 in.) + (3 in. )(1 in.)[ 
2..5 .n. + (+)(1 in.) - 3.1667 .n. 

A II.1I; 

Volume . The \'olume of the solid is generated by revolving Ihe two 
ar.:a segments shown in Fig. 9-22c. 21T radians about the ::: axis. The 
distances from the cenlroid of each segment to the .t mds arc also 
shown in the figure. Applying Eq. 9-10. we have 

V"'2"IT:£;: A"'2"IT{ (3.1667 in.)[ t ( I in.)( I in.) ] + (3 in.)[(2 in.)(1 in.)} 

= 47.6 inl AII.1I; 

1 .n . • 

3 in. 

", 
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• FUNDAMENTAL PROBLEMS 

F~IJ. Determine the surface area 3nd volume of the solid 
formed by revolving lhe shaded area 360" aooullhe : 3xis. 

, , 

F9- 1J 

F'}- I·" Detcrmine the surface area 31ld volumc of the solid 
fomlCd hy revolving the shaded area 360" about the z axis. 

Urn 

-L 
Um 

1.5 " ' 0.9 01 
1 

tV-l-I 

f'!:I- 15. Delermine the surface area and volume of the solid 
formed by revolving the shaded area 360" about the ~ axis. 

3Om. --· 

t~ 15 

foV-16. Delcrmine the surfJcc area and volume of the solid 
formed by re\,oh'ing Ihe shaded area 360" about tbe Z axis. 

105m 

l in 

! 

"-" 



• PROBLEMS 

' '141 1. The elevated waler storage tank has a conical lOp 
and hemispherical bonom and is fabricated using thin slcel 
plale. Determine how many square fec t of plale is nceded 
to f:tbrintc the tank. 

9-82. The clc"alcd wmer storage tank lias a conical top 
and hemispherical bouom and is fabricated using thin sled 
plate. Determine the \'olume " 'jlhin the lan~ . 

. 
'I, 
i-

10ft 

ofiii'H - .-

Probs. 9-81/112 

'I' 
I 

9-83. Determine Ihe "olumc of Ihe solid formed by 
revolving the shaded area aboulthc x a.tOs using the $Ccond 
theorem of Pappus-Guldinus. The area and centroid YOf the 
shaded area should fin, be obtained by using imegration. , 

Ht -l 

Prob. !HI.! 
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.~. IXh,'nnine the surface area from It to IJ of lhe [;mk. 

' 9-85. Determine thc volume ,,"j,hin the thin-walled tank 
from 1110 H. 

I' rubs. 9-Ml85 

9-86. Determine the 5Urf~~ area of thc roof of the 
structure if i1 is formed hy ro,ating 'he parabola about 1he 
)' axis. 

, 

16n. 

I'rob. 9416 
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9-117. Determine the sUffat<' area of the solid formed b)· 
re\"oh~ng tile shaded area 360" about the: axis.. 

. !h/lI:I. Determine the \"olume of the solid formed by 
rel'oh'ing the shaded area J6(r about the taxis.. 

n.75 in. 
~L O.7Sin. 

---+"-',:.. 

, 
_<-'--1 II in. " - , 

lin. 

~ 

.9-89. Determine the \"olume of the solid formed by 
r~I'ol\'ing the shaded area 360" abo\llthe t a.tis.. 

lOOmm 

I·rob.~ 

?-'}O. Determine the 5urface area and volume of the solid 
formed b~' I"CI'ol\"Ing the shaded area J6O" about the: axis. 

llR. 

)'rob. 9_91:1 

?-9 1. Determine the surface area and \'olume of the solid 
formed by rC\'o)\"Ing l h~ sbadcd area 360" about tbc ~ a%is. 

75mm 

, ,-rSOmm 
--~ 

1 
lOOmm 

"mm 

--' 
~ - L 

1S mm 5()mm 

)'rob. 9-91 



 

. 9-'JZ. The process lank is llscd to $lore liquids during 
manufacturing. Estimate both the "otume of the lank and 
ilS surface area. The lank has a nllllUp and a thin wall. 

, 3", • 

I'rob.9-9! 

011-93. The hopper IS filled \0 ils lOp wilh coal. Estimate 
Ihe volume of coal if the voids (air space) are 3S percent of 
Ihe \'olume oflhe hopper. 

[ 
,. 

J 
1.2m 

I'roll.\1-\13 
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9-94. The lhin-"''311 13nl.: is fabrkatcd from :I h.emisphere 
and cylindrical shell. Determine the "ertical rcaclions lhal 
each of the four symmetrically placed legs c~crls on the 
noor if the lank contains water w'hkh is 12 rt deep in 
the tank. The specific gravit), of waler is 62.410/ fI1. Ncgka 
the weight of tile tank. 

'1-95. Determine the approximate amount of paint needed 
10 cover the outside surfatt of the open lank. Assume lha\ a 
galLon of paint COI'Crs 4{X} f1 ~ . 

water 
$."fae<: -

'----- I ~ -.­

'" -1-
I 

1r------11~~' 

~"-~u" 
l'roh!i.~S 

*9-96. Determine the surface area of the lank. which 
consists of a cylinder and henli$phcrical cap. 

· 9- '17. Determine the "olumc of the thin·wall tank. which 
oon~isls of a cylinder and hemispherical cap. 

"" ~ 

•• 

J 
"r!lb~. 'I-'H5I97 
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9-018. l bc water tank A8 has a hemisphe rical tOP and is 
fabric;lIed from thin steel plate. Determine the volume 
"'ithin the tank. 

9-99. Thc water tank A8 has a hemispherical roof and is 
fabricated from Ihin steel plate. If a liler of paint can covcr 
3 ml of the tank 's surface. determine how IlUIny liters arc 
required to coat the surface of the tank from A to 8. 

I' rok 9-9i1N9 

' 01- 100. Determine the surface area and \'olumc of the 
" 'heel formed by revolving the cross·sectional arca 36(f 
about the z axis. 

Proh. '1-100 

09- 10 1. Delermine the outside surface area of the 
storage tank. 

9-102. Determine the volume of the thin·wall StOrage lank. 

t- IHt 1 
'''~~ 

"' '' 

l' robs. 9-I01/ 11)2 

'.1- 1113. Determine the heighl/r to which liquid should be 
poured illlo the conical paper cup 50 thal;t contacts half the 
surface area on the inside of the cup. 

--100 ...... --1 

150 ...... 

Proh. 9- 1113 
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*9.4 Resultant of a General Distributed 
Loading 

In Scc. 4.9. wc discussed the method used to simplify a two·dimensional 
distribUlcd loading 10 a single rcsultant forcc acting al a specific poinl. ln 
Ihis scction we will generali:/.C this method to include nat surfaces that 
have an arbitrary shape and arc suhjected to a variable load distribution. 
Consider. for example. the na t plate shown in Fig. 9-23<'1. which is subj«t.::d 
to the 10:lding defined by ,,;,,(.1', y) Pa. wheT(" I P:I (p:lsc:ll) '" 1 N/ m!. 
Knowing this function. w(" can determine the resultant force Fit ac ting on 
the plate and its location <X,f). Fig.9-23b. 

Magnitude of Resultant Force. The force IfF aCling on the 
differcntial arca dA m2 of the plate. located atthc arbitrary point (x. y). 
has a magnitude of IfF '" [/,(,\", y) N/ m![(dA m!) '" [" (.1'. y ) dA[ N. 
NOlicc Ihat p(,l. y) IIA = dV. Ihe colored diffe renlial I'ollllllt' ('/1'111(,/11 
shown in Fig. 9- 23f1. The mflgnimlif" of F II is the sum of the differen tial 
forces ac ting over thc plate's emir<' !mrfarl:' firM A. ThuS: 

(9-1\ ) 

This result indicates that thc /llflgnill/til' of ,I,I:' rl:'slIllall/ fora is .. qllllllO 
,II .. 1010/1.'01111111.' IImf.., tile 11i,."ibm .. d.I(){/(lillg dillgfll/ll. 

l ocation of Resultant Force. Th .... location (x. y) of Fit is 
determined by sclling the moments of Fit equal to the moments of all the 
differential forces dF aboul Ihe respect;'·c), and.l" axcs: From Figs.. 9-230 
and 9-23b. using Eq. 9-II. this r .... sults in 

1 xp(x.Y)IIA 

1,,(x,)') (fA 
Y'" (9-12) 

Hence. the fillt!' of fltlill" of tht rt$IIIIIIII/ f"rtl! plUStS IllTImgll lilt 
gl:'ollll'/ril' t!'tlllt'r or (t'fJlroid af Ih .. mit/IIII:' IIlIdrr ,It I' /iislribll/t"lf·laotiing 
tlillgrlllll. 

(.) 

(0) 

The re,uhanl or a ,,·;nd loading that is 
distribulcu un the flonl or side ... alls of 
this buitding nlust be (81<u\31.;-d using 
int~gration In ohlc. to <k5ign Ihe 
fr:lnl~"'OIk Ihat hold5 the building 
together. 

, 
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*9.5 Fluid Pressure 

According 10 Pascal's law. II fluid ;U rest creates .1 pressure p at a point 
tha t is the SlllIIe in 1111 di reclions. The mBgnitude of p. measured BS a force 
per unit area. depends on the specific weight y or mass density p of the 
fluid and the depth z of the point from the fluid surface.- The relalionship 
can be clipressed mathematically as 

(9- 13) 

where g is Ihe acceleration duc to gr3"ity. This equation is valid only for 
fluids that arc assumed illcOlllpressiblr.as in the case of mOSt liquids. Gases 
arc compressible fluids. and since their density changes signifiC"dntly with 
both pressure anulemp!.!raturc. Eq. 9- 13 cannot be used. 

To iIIustral!.! how Eq. 9- 13 is applied. consider Ihe submerged plat!.! 
shown in Fig. 9-2>1. ·Illr!.!e points on th!.! plate ha"e b.!en specifi!.!d. Since 
point H is at deplh 1:, from the liquid surface. the f'"~'llrt' allhis point 
has a magnitude PI :< Y~I ' Likewise. points C .111d D arc both at depth ,!z: 
hence. pz :< Y~ !. In all cases. the pressure aCIS lIorfllafto the surface area 
tit! located al the specified point. 

Using Eq. 9- 13 and the results of Scc. 9.4. it is possible to determine 
the resul tant force caused by a liquid and specify its location on the 
surface of a submerged plali:. Three diff!.!renl shapes of plates will now 
be considered. 

, 
Liquodsllff~ 

, 
" , 

°tR partl<'wa •. rOJ wate. '1 .. 6l A [b/ rt' . OJ 1 .. p~ .. 91110 N/ m' 10"" p .. tOOO ks/m' 
and ~ .. 9.81 m/.~. 



Flat Plate of Constant Width. A fill! rectangular plate or 
constant width. which is submerged in a liquid ha\'ing a spedfic weight '/. 
is shown in fig. 9-2511. Since pressure varics linearly wi lh depth. E(I. 9-13. 
the distribution of pressurc over the rime's surface is rcpresented by ,I 
trapezoidal volume having an inlensity of P I = ytJ at deplh z\ and 
('! = Ylz at depth z!. As noted in Sec. 9.4. the magnitude of Ihe fl'SlIfWIII 

f"w: Fit is equal to the l'fJillme of this loading di<lgrnm nnd Fit has a /ine 
of IIC/;on thaI passes through the \'olumc's centroid C. Hence. "'It docs 
/1m <lCI a\ the cenlroid of the plate: ralher. il acts 3t point P. catted the 
center of pressure. 

Since the plate has a ("OIlS/alii wit/lh. Ihe loading distribution m<ly also 
be viewed in two dimensions. fig. 9-25b. Here the loading intensity is 
measured as forceJJcngth and varies linearly from IVI = bPI = bYll \0 

1V2 = hP2 = bytl. The magnitude of F /I in th is case equals the 
trapezoidal IIrell. ;md Fit has 11 lil/e of IICI;OII that passes Ihrough 
the aren's cell/mid C. For numerical 'lppliclltions.. the area :md 1000ation 
o f the cenlroid for a Ir<lpezoid arc wbuiated on the inside b<lck cover. 

t..qwd . urf""" 

,.) 
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The .... all. of1hc Innk must "" d~.ign~d 
\0 support the pr~~~llf~ loading. of 1he 
liquid 1ha1 iscomaincd " 'jlhin it. 

'" 
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L,,!u,d ~urface 

y 

1 
" 

,. - ",I'll.' \ 

I. 

") 

(.) 

Uqu,d.u,facc F~~ Curved Plate of Constant Width . When a suhm~rged plate of 
~ll"--'=::;;;~;;;;~';;;---' constanl widlh is curved. the pressure aCling normal 10 Ihe plale 
z, mnlinually ch.mges both its magnilude and direction. and Ihncfore 

" 

(0) 

calculalion of the ln~gnitude of .·It and its location P is marc difficult 
Ihan for " nal plat~. Thr~e· and two-dimensional views of the loading 
distribulion a r~ shown in Figs. 9- 2&1 and 9-26b. respectively. Allhough 
integralion can be uscd 10 :;ol\'c th is problem. a simpler mdhod ~l(i sts, 

This method requires separale ca1cuhllions for the horizontal and 
vcrl ieal CfllII{I"IU!IlI.< of F 1/. 

fur example. the distributed loading acting on the plate can be 
represented by the (O(fll;"ulr m loading shown in Fig. 9-26c. !-lere Ihe plate 
supports the weighl of liquid W, mntained within Ihe block BDA. This 
force has a magnitude IV, = (ybHareil /lll") and 3C\S through the centroid 
of BDA. In addi tion. there arc the pressure dimibutions causcd by the 
liquid acting along the \'crl ic;d and hor~ontal sides of the block.Along the 
yertical side AD. the force F.lt/) has a magnitude cqual 10 the area of 
the Irapc7.0id.lt acts Ihrough th~ centroid CJlI) Qflhis area. The distribUled 
loading along Ih~ horizontal sid~ All is Cml5llllll since ~II poinls lying in 
this plane He at the same depth from the surface. of the liquid. The 
magnitude of F A/f is simply Ihe arca of lhe rCClanglc. This force acts 
through the centroid CAB or al the midpoint of AS. Summing these three 
forces yields .'R = ! F = F ,H) + F"'1I + WJ. Finall y. the location of Ihe 
cenl~r of prcssur~ P on the pl31~ is UClcrmin\.'(/ by applying M R = ~M. 

which slates thai the moment of the r~sult.ml force abom ~ conveni~nl 
reference poinl such as D or 8 . in Fig. 9-26b. is ~qual 10 the sum of Ihe 
moments of the thre~ forces in Fig. 9-26(" about this sallie poin!. 



Flat Plate of Variable Width , The pressure distribution ,Iet ing 
on the surface of a submerged plate having a variable width is shown in 
Fig. 9-27. lfwc consider the forc.:t.: (f lo' acting on the diffe rential area sn ip 
fit\. parallel to the .r axis.. then its magnitude is IIF ~ l1IfA. Since the 
depth of fiA is :::. the pressure on the dement is p = y.:. Therefore. 
tlF = (y=)tfJl and so the resul tan t force. becomes 

Ffl = IllF = yJ:lfA 

If the depth to the centroid C' of the area is •. Fig. 9-27. then. 
I :::IIA = "fA. Substit ut ing. we have 

(9-14) 

In olher words. Ihl' magl/ilm/l' of Ihl' '1'£/11111111 fa'C/' IIClillg (III lilly flm 
pillfl' is 1'111111/ /I) Ill<' /I,m/llcl of Ihe 11r1'11 A of Ihe /lIllie all/llhl' pTeSS/Irf' 
p = yt 1IIIIrl' IIt'ptlr of IIII' IIrl'lIS C'<"IItmitl C'. As discussed in Sec. 9.4. this 
forc.:t.: is also equivalent to the volume lmder the pressure distribution. 
Rcali7.e that its line of actiOn passes through the c.:t.:n lroid C of this 
,'oillme and intersects the plate at the center of pressure P. Fig. 9-27. 
N<>t ice thHllhc location o f C dO<!s not coincide with the location of P. 

Uquld surface , 
F.. ,IF 

I 
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l1Ic Icsullarol (o.ox of tbc Walcr prCSSII'C 
3n<.l it~ location oro thc clliptical b:lck pl~IC 
or lbi~ lank It uck ntust be dCle,miroc<.l to)' 

integration, 
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EXA MPLE 9 .14 

'" 
2m 

" .... - 29.431lN/mc=='!II'~-; 

~'":. ~~ 
"'II - 7.1,58 tN/ ttl 8 

<'I 

----n~ 

.-
I..'l B' .·' 'm _. . 

1'". 

h---
44 IS kN ""2943 kN 

,. 
A I 

I-

I 
j 
" 

Dcwnnine the m<lg.nitude and location of the resultant h)'drost;uic force 
<lcting on the submi!rgl.-d n.'Ctangular plate liB shown in Fig. 9-2&. The 
plme has a width of I j m: p.., = 1000 kg/rnJ. 

SOLUTION I 
The water pressures at depths II and Bare 

('It = P. g=,\ ~ ( 1000 kgfm3)(9.81 m/s2)(2 m) = 19.62 kPa 

Po = P.·g~8 = ( 1000 kgfmJ )(9.81 m/s2}(5 m) ... 49.05 kPa 

Since the plale has a conSlilnl width. the pressure loading can be 
viewed in two dimensions as shown in Fig. 9-28b. The intensities or 
the load at II and 8 arc 

IVA "" bp" = ( 1.5 111)( 19.62 kPa) = 29.43kN/ m 

!VII = bP8 = ( 1.5 m)(49.05 kPa) = 7J.58kN/ m 

From the table on the inside back cover. the magnitude 
resultant force F /{ created by this distributed lo.1d is 

FR = Mea of a trapezoid = ~ (J)(29.4 + 73.6) = 154.5 kN 

This force acts through the centroid of this area. 

I (2{29.43) + 73.58) 
II = 3' 29.43 + 73.58 (3) = 1.29m 

measured upward from B. Fig. 9- 3Ih. 

SOLunON II 

of the 

All£. 

An£. 

l llC same results can be obtained by considering \1'.'0 components of 
.. '/{. defined by the triilngle and reCl:lIIgJc shown in Fig. 9- 2&. Each 
fOrce acts thruugh ils associated centroid and has 11 magnitude of 

Henc(: , 

FR< = (29.43 kN/ m)(3 m) = 88.3 kN 

F, = j(44.15 kN/ m)(3 m) : 66.2 kN 

FI?, '" F/{< + F, '" 88.3 + 66.2 : 154.5 kN Am. 

The location of FR is de termined by summing moments about B. 
Fig. 9--28b and c. i.e .. 

(e) C+( MR)" = 'EMH; (154.5)" = 88.3( 1.5 ) + 66.2( 1) 

fig. 9-211 1I = 1.29m Ails. 

NOTE: Using Eq. 9--14. the resultant force can be calculated as 
F/I = y~A = (9810 N/ mJ )(3.5 m)(3 m)(1.5 m) = 154.5 kN. 



EXAMPLE 9 .15 

Determine the magnitude o f the resultunt hyllrostutic force acting on 
the surface ofa sca,,'all shaped in the form of a rambola a!l shown in 
Fig. 9-2911. The wall is 5 m long: (J~ . = 1020 ky m . 

" '8 - IS-Ill kNjm 

(.j 

!'"ig. ~29 

SOLUnON 
The hori~ontal anll vertical components of the resultan t force will be 
calculatell. Fig. 9-29b. Since 

P6 = P.·g Z6 = ( 1020kgjm')(9.81 m/s2)(3 m) = 30.02 kPa 

then 

11/6 = hPn = 5 m(30.02 kPa) = lSO.1 kN/ m 

I~ = l(3m){ 150.1 kN/ m) = 225.1 kN 

The area of the parabolic sector ABC can be Ileterminell using the 
table on the inside bllek cover. Hence. the weight of waler withill th is 
5 m long region is 

F" = (p".gb)( ar<:a ,u/C) 

= (1020 ky m1)(9.81 m/s2)(5 m)[}( 1 m)(3 m) 1 = SO.O kN 

The resul tant fon:e is therefore 

Fit = v Fl + F! = V (22S.1 kN )l + (50.0kN)l 

= 231 kN Ails. 

9.5 FwIO PRESSURE 499 
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EXAMPLE 9 .16 

, 

Determine the magnilUde and location of the rcsuhant force ac ting 
on the triangular end plates of the water trough shown in Fig. 9- 3<k1: 
P .. ' = lOoo kg/mJ. 

,. 

,., 
SOLUTION 
The pressure distribution ",cting on the end plate £ is shown in Fig. 9-30b. 
The magnitude of the To:!'sultant force is t.-qual to the volume of this 
loading distribution. W ... will sol\"e the problem by integration. Choosing 

0- the differential l'oIume clement shown in the figure. we have 
O.5 m , 

. 'i ll IfF = dV = fJdA = fJ ... gZ(2.ld::: ) = 19620zxdz 

r:;:r z..""i U-- 1111': equation of lil1 ... AB is 

,» 

- .t x = 0.5 ( I -z) 

~, Hence. substitUling and integrating with respect to z from z = U to 
,I: I no • = I m yields 

-..... 1 F = II = fdv = 1 1m(19620)ZI0.5( 1 -Zl]dZ 11' 0 

= 98 1011 m(z _ ~ <) Ill. = 1635 N = 1.64 kN 

" 
Ails. 

This resultant passes through Ihe TIm/mill of/lit! volume. Because of 
symmetry. 

j = O Ans. 
Since I = ~ for Ihe volume clement. then 

_ iZI/V £'mt.( 19620 ) ~10.5 { 1 - z)](fz 1
,· 

9810 0 ( t. ! - Zl) ,fz 

z = it/v = 1635 1635 

= 05 m All.!:' 

NOTE: We can also determine the resullant for,e by applying Eq. 9-14. 
FRo = rzA = (98lO N/ mJ)(i )(l m)/ ~(I m)(1 m)] = 1.64 kN. 



 

• FUNDAMENTAL PROBLEMS 

1'9- 17. IXlcrminc the magnitude of llie hydrostatic force 
acting per meter length of the ""nil. Waler has n. densi ty of 
{> .. 1 Mg/mJ, 

m 

"~17 

PI- IS. Determine the magnitude of Ille hydrostatic force 
acting on gale A B. " 'hich has a " 'idlh of 4 [1. ll1e specific 
weight of waler Is y .. 62..1lb/ fll , 

1-'9-18 

F9-19. Iklcrminc the magnitude oflhe hydrostatic force 
aCling on gate A8. which has a ... .-idlll of 1.5 m. Water has a 
density of p .. 1 Mg/mJ, 

'm 

9.5 N.uIOPRESSURE 501 

1-'1-20. Determine the magnitude of Ihe h)'drosla!ic force 
acling on gale AB . ... hith has a widlh of 2 m. Water has a 
density of p '" J 1> lgfml, 

F~-20 

F9- 21. Determine the magnitude of the hydrostatic force 
aCling on gale JIB. which hali a ",idlll of 2 flo The specific 
weight of waler is y .. 62..1lb/ ftl . 
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• PROBLEMS 

·'-10." The tank is used to store a liquid hll"ing a $pecifie 
"-eight of 8OIh/ ftl. If it is filled to the top. determine the 
magnitude of the force the liquid ~~erls on e~ch of its two 
sides AIJDC and 8DFE. 

!'rob. 9- HM 

. 9-105. The conere!e "gravity- dam is held in place by its 
own weigh!. If the densit), of concrete is 1'< _ 2.5 My ml• 
and water has a densil)' of P. , - 1.0 Mg/ml. determine the 
smallest dimension II that will pre"em the dam from 
overturning about its end A. 

I'rob. '1- 1115 

9-106. The symmetric ronerete "gravity" dam is held in 
plaa: by its own weight. If the den5ity of concrete is 
p< - 2.5 MgJmJ

• and water has a density of 
I'. - 1.0 Mg/ml. determine the smallest distance tI al its 
base 1hal will prc"cnt the dam from Dvertuming 300ut ilS 
end A. The dam has a width of 8 m. 

" rob. '.1-106 

9-1117. The lank is llsed 10 store a liquid having 11 specific 
weight of 6OIh/ fIJ • If Ihe tank is full. determine Ihe 
magnitude of the hydrostatic force on plates CVEF and 
AHVC. 

,l 
1.5 ii' . :t 

Uh 
LS 11"-.......: 

I.H'l 

!'roh. 9-1117 

E 

> 



· 9- 1011. lhe circular slcd plale A IS used to scal the 
opemng on Ihe "'-Mer Jloragc lank. Determine !he 
magnitude oIllle r('SuLl:!.n! hydrostatic fmn: Iha1 M1S on it. 
Thcdcnsuyofwalcrisp. _ I Mg,lmJ, 

' 9- 109. The dliplical lied plale B IS us.ed 10 K,d Ihe 
openmg on !he WIlIer sloragc lank. DctctnllMe the 
maplltudc of the rcsul1~nl hydrlKlallC force Ih:)! XI.!i on il. 
The dCllSIt ),Or"'''lu I5p. _ I My ml. 

9-110. l)elcrTninc the magmtudc of the h)"drOSlalic force 
Kling on the &lass ,,"'Indo ... , If 11 IS circular. A.1bc 5peCIfic 
"ClghlofKa'I.-alcrl5y. _ 63.6Ib/fll. 

9-111. Determme 1M: ma&nnudc arK! location of 'he 
Tcsullanl h)"drlKlanc force Khn, on the gl:1.S5 ... indQ.l· ifit is 
dhplical. 8 . ~ $p«ifK l'Ie'ghl of seawater is 
r. - 63.6Ibj rrJ. 

· .. 
~ f1 

O_~ h 

A O-S h··· wB 
IIl lh 

I' rum. V- IIIII I II 

50 3 

"'}-Ill. Determine Ihe magnnudc of the l'Iydroslatie forox 
leling per foot of length on 11K: su .... ll. Y. _ 62.41b/ f11• 

l' rob.9-I U 

09-1 U. If segment JI8 of gate JIHC is long enough. the 
gate .. ,11 M 01\ thc ,·crgc of openln," Octcrminc thc length 
I. of this sc:gmenl In order for this 10 O«'ur. ~ gatc IS 
hlngl:d at H and has a ",·Klth of I m. lhc denSIty of w;lIcr is 
p. _ I Mg/ml. 

9-1 14. If L . 2 m.dctcmul1oC liM: foru thc gatc ABC cxcns 
on the SIIlOOIh slOJIpi!r a\ C. The pIC IS hinged al H. free al 
A. and is I m WIde. 1M densll)' orwater is p. _ I M&lml. 

,11---_ 
•• , 

A 

" ,. C • 

I' rol». Y- II .II I I .. 
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~II S. Determine the mass of the eoumerv.'el!ht A if the 
I"m·,.-;\k !a.c is on the \"erge of opening ",hen the "'OIlel is 
at .hc le\ (I shovon. The gate is hinged a. B and held by thc 
smooth s.op al C.llIe dens.ly of .... ater IS p _ _ I Mg/mJ• 

- '1-116, If the mas:s of the countcrv.·cight at A is 6500 kg. 
determine the forcc Ihc gale exerts on the smooth SlOp al C. 
11\e gate is hinged at 8 and is I·m wide, 111c dcnslty of 
"'aIel is p_. _ I MgJmJ , 

,. 
,.-

"~. 'l- II Sl I16 

0'1-111. "ll1e COOCICte sm\;ty dam ,$ dcsiSJ'll'd 50 Ihon It IS held 
III po$'llion by lIS O\\n ""righ!. [),::.erminc lhe f:l('tor of safet)' 
against O\"Cllulnlng about poult A if ;$ _ 2 m. lhc factor of 
sMet)' ISdcfincd as .he I"ilOO oflhe Sl3bilu.mg monlol'nt dl\'!dcd 
h)' the O\"cnurning moment, llIe densities of c:orocn'te 
and "OItel arc p~ - 2.40 ~ 1 g/mJ Md (1 _ _ I Mg/mJ. 
IC$pC(lI\'dy.Assume Ihat lite dam docs nOi slide. 

Prom. 9-111 

'l-II IJ. The tGncn:tc gr.t\'lIy dam IS designed 50 thaI illS 
held in posIlioTt by us o·, .. n " 'Clght. Dctcrmine the minimum 
dllnension.l so Ihat thc factor of safety againsl Q\'crtuming 
about pomt II of thc dam is 1.lbe factor of safe t)' is defincd 
as .hc ratIo of tile stabilizing momcnt divided by Ihe 
ovelturnmg momcn!. ' ll1e densities of concrelC and 'Io"Jh:1 

ale (1,,_ - 2.40 Mg,/mJ and P ... - I Mg,/ml, Tcspeetlvely. 
Assume Illal Ihe darn docs not slide. , 

A 

2", .f - -

" rol».9- 118 

'J.-119. TlIc: undc""'OIter tunnel in the aquall" Cl:ntcr IS 

fabncalcd from I lransparent polyc:::tToonate malenal 
formed III the shape of I parabola. Delermine Ihc magnilude 
of Ihe h)'drostallc force Ihal acts per meIer length ~Iong thc 
surface AD 0( the tunnel. The density or Ihe \\'lIter is 
(I ... - 1000 kglmJ. 

,. 

- 'm 'm 

PTob, '1- 119 



CHAPTER REVIEW 

Center of Gn"'ity and Centroid 

The (tiller of grill"')' G represents a 
poi11l where the weight of the body can 
be oonsidcrcd ronreolralcd. The 
dislal1<;c from an rocis to tills point can be 
determined from a balance of moments. 
"hich requires IhPl Ihe nlOl11cm of lhe 
weight of all the particles of tile body 
about this axis must equal the momCIIl 
of the enlire weight of lhe body about 
the axis. 

The ccnler of mass will coincide ~ilh 
the cenler of gra\ily provided the 
acceleration of gravity is constant 

The (tlilroM is Ihe location of Ihe 
geometric cemer for Ihe body. 11 is 
dClcnnincd In a sin\ilar manner. using 3 
moment balance of gcomclTic clements 
~uch as line. area. or ,"olumc segmcnl5. 
For bodies having a oontinuous shn~, 
moments arc Slimmed (integrated) 
using differential elements. 

The ccnler of mass will coincide with 
the centroid provided the material is 
homogeneous. i.e .. the densi ty of the 
mntcrial is the sullie throughout. The 
centroid will always lie on an axil; of 
symmetry. 
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Cllmpo~ite (Iody 

If tile body is 3 composi te of ~\'Cral 
sllapes. eacll having a known localion ror 
ilS center of gravity or cent roid. then lhe 
localion of the center of gravity or 
eemroid of Ihe body can be determined 
from a discrete summation using its 
composite part$. 

Throrems IIr I'appu.~ and Guldillus 

The theorems of Pappus and Guldinus 
can be: used 10 determine Ille surface 
area and volume ofa body of re,·olution. 

The JII,jiu:e ami equals tile product of too 
lenglh of the generating cun'c and the 
distance traveled b)' Ihe centroid of 
lhe curve needed 10 generale the area. 

'l1le o'olum, of the body equals the 
product of lhe generating area and the 
distance traveled h)' Ihe cemroid of Ihis 
area oeeded to generale Ihe ,"olume, 

A .. Oi'L 

V " 0,,\ 



Gener~ l Oj~ lribul ed l.o~djn g 

'Ille magnitude of the resultant force is 
equal to the total ,·olume under tile 
distributed,loading diagram.1be line of 
action of the resultant force passes 
through the geometric center or 
centroid of this ,·olume. 

fluid Pressure 

The pressure de\"eloped by:l liquid at a 
point on a submerged surface depends 
upon the depth of the point and the 
density of Ihe liquid in accordance .... itll 
l'asca1"s la..... P " pgh .. yh , 1bis 
pressure will create a Iii/fUr dlJlriblllrOIl 

of loading on a nat \"e"ical or inclined 
surface. 

If the surface is horizontal. then the 
loading will be wu/omt. 

In any casc. the resultants of these 
Joodings can be determined by finding 
thc volume under the loading eun 'c or 
ming f R a yl A. whcre .: is tile depth to 
the centroid of the platc's area. "The line 
of aClion of the resultan t force passes 
througlt the oenlroid of tile volume of 
the loading diagram and acts at a point I' 
on the plate called the center of 
pressure. 

507 
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• REVIEW PROBLEMS 

"9-120. Locate tile centroid x of tile shaded area. 
' 9-121. Locate tile centroid yof tile 5haded area. 

, 

I 
tin. 

1 in. - 1--1 in. --I 

l'robs .9-I.201 I.21 

9- 122. loc31c the centroid y of the beam's cross·sectional 
area. 

, 

r
SO 

Plm - 7S 111m 

~ mm ~--I --.1..1--1-
l .­, 
100 Plm 

4 , 
25 nlm 

L_---"L =------'-_, -. , 
25mm 

Prub.9- 1.22 

9-12.1. locate the centroid I of the solid. 

Proll.9- I.B 

°9-IU. llIc sleel plJ1e is 0.3 m thick and has a dellsi1), of 
7850 kg/m' • 0\.1cnnmc Ihe IOX311011 of itS ccnler ofm;tSS, AIS<) 
oompute lhe rcacllOns atlhc pm and roller suppon. 

, 

fj,-- --++-, 

I' roh ';1. 1.24 



· 9-125. Locate the centroid ("'. y) of the area . 

" 

I'roll. 9-I2.5 

9-1,26. Determine the location (x. J') of the centroid for 
the structural ~hapc. Neglecllhe thickness of the member. 

, 

J in'

l I L-_~~---,-----_. 

-1.5;n._ u;n.1,_. I.5 ln. 1 1.5 ," .-
In. l In. 

Prob. 9- ll6 

~1l7. Locale the centroid ). orlhe ~haded area, 

1 

(-+------''1--. 

I. • , , J 
r T-rT i 

, 

P,oll. 'l- 117 

509 

~1 2lI.. The load over lhe plale I'aries linearly alOllg tbe 
sidCl; of lhe plme such thai II '" i [x(4 - y)[ kPa. Delermine 
Ihe resultant force alld il s position (:t. y) on lhc plate. 

, 
8 kPa 1 

JWffr rrl~:ZT' 
/ 4," ; 

• 

Prob. 9-I28 

.9-129. The pressure loading on Ihe plate is described by 
lhe function II '" t - Z-W/ (x + I) ... J40f Pa. Determine 
lhe magnilude of lhe rcsulwnt force and coordinalC5 of lhe 
point where the line of aClion of lhe force in lersects 
the plate. 

, 
,.", 

"roh. 9-12~ 



Thf! design of a structural mernbe-.., wen itS a beam or column, reqUIres cala..lallon of 
Its ~I moment of one~. In rh.s diaptet, we ..... " discuss how thIS IS done 



 

Moments of Inertia 

CHAPTER OBJECTIVES 

• To develop a method for determinIng the momen' of inertia for 
an area. 

• To introduce the product of inertia and show how to determine the 
mal<irnum and minimum moments of inertia fOf an area. 

• To discuss the mass moment of inertia . 

10.1 Definition of Moments of Inertia 
for Areas 

Wheneve r a distributed loading aCls perpendicular 10 :10 area llnd ils 
intcnsity varies linearly. the computat ion of the moment of Ih.:: loading 
distribution 3bQuilln a~is will invol\',;: II quantit), called the 11/01111.'111 of 
ilrl'r/;u oflhl' aTt'II. For cxarnp!'::. consider the plale in Fig. 10-1. which is 
subjected 10 a flui d pressure I" As discussed in Sec. 9.5. Ihis pressure I' 
varies Iinenrl)' with depth. such ,h1l\ /I :; l'Y. whcr.:: ')' is Ihe spccifil: 
weight of the nuid. Thus. the forcc ac ting on the differential area (I A of 
the platc is tiP :: p (fA >:: (y y)dA. The moment of this force about the 
x axis is therdore IfM '" }, tlF '" yil/tl.and so integraling tiM o\'er the 
entire area of the plate )1elds M '" yj ldA.The integral j iliA isenlle<! 
the 11101111'./11 of ;1It'fI;U I~ of the area about the x axis. Integrals of this 
form often a rise in form ulas used in fluid mechanics. mechanics o f 
materials. structural mechanics. and meeh:lOical design. and so the 
engineer needs to be fam il iar with the methods used for their 
comput'lt ion. tl~. 10- 1 



5 1 2 CHAPfE~ 10 MOMtNf5 OF INERTIA 
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Moment of Inertia . By definition. the momcnts o{ inenia of a 
dirfcrcntial area till aoont thc .J and" axcs arc II/~ = idA and 
III, = .r tlA, rcspecti\'cly. Fig. 10-2. For the cntire area A the IIIOIllI!/I/$ 
of i"ertia 3re determined by integration: i.c .. 

I, - l i llA 
l x2

dA 

(10- 1) 

I r = 

We can also formulatc this quantity {or tlA about the "pole" 0 or 
: axis. Fig. 10-2. This is rderrcd to as the pOI,I' mmlllmt of illalia. It is 
defined as 1/10 = , ! II A. whcre , is the perpendicular distalll,'c from the 
pole (z axis) to the e1l:nll;nt IIA. For thc cntire area the polUrllWlIIl!/I/ of 
illatia is 

' 0 = l,2,IA = I. + I , ( 10-2) 

This relat ion between ' 0 and I~, I " is possih1c sinec r = x2 + >,1, 

Fig. 10-2. 
From the above fo rmulations it is seen thai I ,. I r and '0 willlllway$ 

be pO$ilil'/~ since they involve the product of distance squarcd and area, 
Funhermore. the uni ts for moment of inen ia inlloh'e length raised to the 
fourth power.e,g.. m4. mm~. or ft', in4, 

10.2 Parallel-Axis Theorem for an Area 

The 1J(Jr(IIIi'/'llxu' rl"'flrl!/J1 can b<.: used 10 find the 1II0000..:nt of inertia of an 
3rea 300Ut /Illy II.ri.~ Ihat is p~l ral1clto an axis passing through Ihe centroid 
lmd about which the moment of incrtia is known. To dcvelop this theorcm. 
we will consider finding the momcnt of incrtia of the shadcd arca shown 
in Fig, 10-3 aboulthe.\' axis. To starl. wc choose a diHer..:ntial clement/fA 
locatcd al an arbitrary distance ,,' from the ce/l/roitlill .r' a,~is. If thc 
distance bctwecn Ihe parallel ., and ., ' axes is II", then Ih..: moment of 
inertia of tlll aboull hc x a,~is is III , = (y' + (lyF tlll. Fonhe en[ire area. 

1, = l (Y'+ ti,i tiA 
= 1,,': IlA + 21ly 1)" tlA + tl; lilA 



10.3 RAOIUSOfGYl!AlIONOfANAAU. S13 

The fiflit integral represents the momCIlI of inertia of the area about the 
centroidal f1xi~ I r' Tho.; second intCJraJ is lerO since the .r' axis passeS 
through the ~ref1's centroid C: i.e.. Y' IIA = y' J (IA : 0 since Y' = O. 
Since the third integra! rcprcselltS the total area A. the final result is 
therefore 

I ~ = I,. + Ad;. I 
A simi!:IT expression can be wriuen for I , : i.e .. 

( 10-3) 

II,.: 7,. + Ad~ I (lU-4) 

And finally, for the polM moment of inertia. since Jc : 7.0( + 7,. and 
III : IIi + Ii; .. we have 

[if): 7c: + AdZI (10-5) 

The form of each of these three equations states that lirl' 1II01lll'm of 
illalill fo, 1111 1"1'(1 libolllllli IIxis is I'lImlllO il$ 1II0llllml of illl'rtililibOll/1l 
pllTIIlld d.l"i.~ plln'ill8 Ilmmgir 1111' MI'II$ UI/I'oitl pillS lilt, "mdlle! flf the 
/lrM IlIId Ihl' sqlWr/' of/he "apt'm/icu/llr lfisl/lllel' bcrwl'rII Iht'II.I"I'$. 

10.3 Radius of Gyration of an Area 

The mllius of 8),'lIIioll of an area about 3n axis has units of length and is 
(I qu(tntity tlHu is uftcn used fu r the design of columns in structural 
mechanics. Provided the arcas and moments of inerti;) arc klll,It'II.the radii 
o f gyration arc determined from the formulas 

k~ = rz. 
v~ 

ko = Uv V-:t 

( 10--6) 

'nlC fo rm of these equations is easily remembered since it is simi lar 10 
thaI fo r finlling the mom"nl of inertia for it di fferenlial area about 
an axis. For example. 1.< = k; A : whereas for 3 diffe rential area. 
III, = I ,IA. 

In order '0 predie' 'he s' reng,h 3nd 
deflecti"n of Ihis bc~m. i' i~ nccnsary '0 
calculate 'he ",oment of iner'ia of 'he 
beam's cross-sec.ional area . 
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.. , 
"-1 

(t.y) 

~ 

- 'I ~ f{~) 

" " 
L-___ -'-'--- • 

(., 
,>, 

Fig. 10-4 

Procedure for Analysis 

In mosl cases the 1Il0meni of inertia can be determined using a 
single integralion. Tho,: followi ng procedure shows two ways in 
whith Ihis ean be done. 

• If the curve defining the boundary of the area is expressed as 
y = f(,l), then sckcl a rectangular differen tial clemen! such thai 
it has <l finile length and differential widlh. 

• The ekment should be located so thai it in tersects the curve al 
the IIrbitmry /loill/ (x. y). 

Case 1 

• Orient lhe ckmellt so thai its lenglh is ptlfl,IM to Ihe axis about 
which the momem of inertia iscompuled.This silUation OCCUf1> when 
the rectangular elemenl shown in Fig. 10--4<l is used 10 delennine I ~ 
for Ihe arca. Here Ihe emire element is at:1 distance y from the .r axis 
~ince it has a thickness dy.Thus I, "" j / d /tTo find 1 •. lhe clement 
is oriented as shown in FiS- l0-4b. This ~Jcmenl lies al the s(lm~ 
distance .f from the y axis so Ih ... lt I f = j £dA. 

Case 2 

• The length of the clement can be oriented pefl't'lUfic,IIl1r 10 the axis 
about which Ihe mOmenl of inertia is computl'd; however, Eq. 10- 1 
dlNS ' JOlllpply since all points on the elemenl win 'JOllie althe same 
moment-arm dislancc from tho:: axis. For example, if the TI.'"Clangular 
clemem in Fig. 1()....4<, is used \0 delennine I y' it will fif1>1 be 
necessary to calculate Ihe moment of inertia of Ihe efemtlll about 
an axis parallel to the }' axis thai passes through the dcment'~ 
Ct.'nlroid. and Ihen determine the moment of inertia of the demem 
about the y a.~is using the parallel·axis theorem. Integration of this 
resul t .... 'ill yield I , .. Sec Examples 10.2 lind 103. 
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EXAMPLE 10.1 

Determine the moment of inenill for the Tcct;lI\gulaT area shown in 
Fig.. 10-5 with respect to (a) the centroidal .t ' axis. (b) the axis .l b 

passing through the base of the rectangle. and (c) the pole OT z' axis 
perpendicular to the x' - y' planc and passing through the centroid C. 

SOLUTION (CASE 1) 

Part (8), The differential clemcnt shown in Fig. 10-5 is chosen for 
integration. Because of its loc:uion :md orieillation. the ell/ire dellient 
is at a distance y' from the x' axis. Here it is necessary to integrate 
from y' = - 11/2 to y ' = 11/ 2. Since tlA = btly'. then 

_ 1 , 
J =-b/! 

.r' 12 
All,\", 

Part (b ), The mOment of inenia about un axis passing through the 
base of the rectangle can b.! obtained by using the above result of part 
(a) and applying [he paTllllcl-axis theorem. EI.j. 10-3. 

= - bill + bl! ~ = - bill 1 (/0)' 1 
12 2 3 

AII.~. 

Part (e). To obtain the polar moment of inertia about point C. we 
must first obtain 7 Y' which may be found by interchanging the 
dimensions b and I! in [he result of part (a). i.e .. 

_ 1., 
f = - lifT" ... 12 

Using Eq. 10-2. the polar moment of il1enia about C is therefore 

- - - 1 , , 
lc = I x- + I f = 12bli{I!' + b-) AilS. 

• , 
I 

" 

c 

tlg. 111-5 

' >' 

• 

r 
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EXAMPLE 10.2 

, 
! 

, 
r -0\00., 

.!T (100 _ .<) 

200mm 

~---'--~, 
!--- IOOmm - -

,.j 

" 

++-~-I--: - " 

~I---C-. -~I----d' '----!-I ~ 
1-- tOO mm 1 

"j 

Fig. 10-6 

Ddermine the moment or inertia for the shaded :\Tca shown in 
Fig. 10-6.:, about the .l axis.. 

SOLUTION I (CASE 1) 
A differentia l elemenl of area that is pllrllllef 10 the x axis.as shown in 
Fig. 10--6u. is chosen for intcgrillioll. Since this .:Iemcn\ has:\ thickness 
dy and intersects the curve at the IIrbilrl/r)' point (x. y). its arca is 
tiA = (100 - x) dy. Furthermore. the clem.:nt lies al the same 
distance y fr01l11he .faxis.. Hence. integrating with respcc\IO y. from 
)' "" 0 to Y "'- 200 mm. yields 

r,",mm ( y' ) r,",mm( • ) 
i n I 100 - 400 dy = i o IOOyZ - ~ fiy 

= I07( 1(ji) mm4 

SOLUTION II (CASE 2) 
A differential clelllenl/Hlrtllf~f 10 the y axis. as shown in Fig. l0-6b. is 
chosen for intcgration. It intersecls the curye 111lhe orbi/rw)' fXJilll (x. )'). 
In th is casco all points of the clement do /II) /lie at the S.1Ille distance 
from the x axis. and therefore the parallel-axis theorelll most be uscd 
10 dctemline the momelll of illertill of /h~ eieml'l1l with respect to Ihis 
axis. For" rcctangle ha\'ing a base b and height If. the moment of 
inertia about its centroidai axis has been dctemlined in paTI (a) of 
Exampk 10,1. There il was found Ihal 7 .. = tz /Jhl . For Ihe differential 
clement sho ..... n in Fig. l0--6b. b "" fix and II "" y. and thus 
Jj .. "" n dx yl. Since Ihe centroid of the clement is y = y/2 from Ihe 
x axis. the mOlllen! of inertia of Ihe clement about this axis is 

I (Y)' I (1J,= d7~'+II;l r=12dx r+ )'(/x '2 =]'y dx 

(This result Clm also be concluded from p;lrl (b) of Example 1O.L) 
Integmting with respcctlO.I'. from x = 0 tox = 100 mm. yields 

= I07( H)iI) mm4 
AIIJ. 
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EXAMPLE 10.3 

Determine the momcnt of inertin with respect to the x lI)o:is for the 
circular uea shown in Fig. 10-7". 

,. 

o 

,.) 
SOLUTION I (CASE 1) 
Using the differential clement shown in Fig. 10-7". since rI A ~ 2x (Iy. 
we have 

AIlS. 

SOLUTION 11 (CASE 2) 
When the differential clement shown in Fig. 10-711 is chosen. the 
centroid for the dement happens to lie on the x axis. and since 
I t' '" l~ bltJ for n rectangle. we have 

) 
til. '" 12lb(2y)' 

2 
'" )"T Ii.r 

Integrating with respect to .r yields 

l u2 " ""/I~ 
I , = ...... 3"(11"" - .r )J ·'2 d.r = 4 Am. 

NOTE: B)' compnrison. Solution J requires much Icss computation. 
l llercfore. if an integral using a p;!rticular clement appears difficult to 
evaluate. try solving the problem using an dement oriented in the 
oth('r direction. 

,. 

1 , 
---f-------~'C'L'C)rt--_++__ Q .• 

,., 
Fig. 111-7 
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• FUNDAMENTAL PROBLEMS 

f lU- I. Determine the moment of inenia of the shaded 
area about the .~ axis. 

, 

r ,. 

,. 

flU-I 

,,' 10-2. Determine the moment of inertia of the shaded 
area aboU1tbe .l a!(is. 

,. 

'm 

f lU-J. Determine Ihe momcllI of inenia of tbe shaded 
area about the y axis. 

,. 

,. 

- ,. --1 

"·I~. Determine the moment of inertia of the shaded 
area about Ihe y axis. 

,. 

,. 

--'--t-----;--, 
-- lm --J 

f l lJ.-.l 



• PROBLEMS 

olG- l . Determine the momcn! of inertia oflhe area about 
the x axis. 

10-2. Determine the 1110menl of incnia of the area about 
tile)' axis. 

,. 

,. 

---,---+:::::::::-;:==-' f 2m 

l'roh5. 1tJ.- 112 

10-3, Iklcrminc the momen! of inertia of the area about 
the x axis. 

0' 0-4. Determine the mOlllenl of inertia oflhe area about 
tlie yaltis. 

,. 

T 

!'robs. 10-31 ... 

10.3 RAOIUS 01' GYRATION OF AN AREA 51 9 

·10-5. Determine Ille momen t of inertia of the area about 
Ihe .r axis. 

10--6. Determine tile monu:n! of inertia of the area about 
tile ya~ ls. 

,. 

,-

,. 

-4~ __________ -L ___ , 

,. 

"robs. \0- 516 

10-7. Determine the moment of inertia of the area about 
the x axis. 

· 10-11. IX:lcrmim.' lhc moment of inertia orlhe area about 

the " axIS. 

oiO-lJ. I)ctermine the polar moment of inertia (lf lhc area 
about the z axis passing through point O. 

,. 

,. 

I'robs. 10-71l119 
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111-10. Detcnninc the moment of inertia of the area about 
the x a"is. 

III-I I. Detemlinc the moment of inertia of the area about 
the" axis. 

" 
T 

" - ~ 

8 >no 

2in. 

Probs. 141- 10111 

° 111-12. Determine the moment of inertia of the area 
about the.f Mi", 

0111-13. Determine tlie moment of inertia of the area 
about tlie)' axis. 

.'- L-:-:-"':J~-
I in. 

l' robs. III- IV IJ 

10-14. Determine the moment of inertia of the area about 
the x 3.xis. Solve the problem in two W3)·s. usin~ rectangular 
differential clements: (3) having a thickness of IIx. and 
(b) hal'ing a thic~m.·ss of ,I),. 

1()..15. Detemtine the moment of inertia of the area aoom 
the), axi", Solve the problem in two wa)':\. uSing rectangular 
differenti al elements: (a) hal'ing a thic~ness of iI .... and 
(b) having a thickness of "),. 

1 
~ in . 

-ce­
lin. 

, 

!' rubs. 10-14115 II 

010-16. Determine Ihe moment of inert ia of the triangular 
area aboul lhe x a ~is. 

010-17. Detenninc the moment ofincrha ofthc triangular 
area a1>out Ihe}' 3~is. 

, 

y - .g.(b - x) 

!'rollS. 10-16,117 



 

11}- 18. iktuminc the moment of inertia of th .. area about 
the.f uis. 

11)- 19. ikt .. nl1inc thc moment of ine rt ia ofthc area about 
the~' uis. 

.' 

Prohs .. 10-IRl I9 

°11}-20. Determine the momcnt of inertia of the area 
about the .faxis. 

011}-21. Determine the moment of inertia of the area 
about the y axis. 

I' ,obj:.. 1ll-2M I 

10.3 RAOIUS 01' GYl!AT1()N OF AN AREA 521 

1ll-22. Detennine the moment of inertia of the ar .. a about 
the x axis. 

11}-2J. Dctennine the moment of inertia of thc nrea about 
the y axis. 

, 

2 in. 

~~--~----~~I _, 
I--- 4 in. ~ in.---l 

Prohs. I6-H/ !3 

*16-24. Determine the moment of inertia of the area 
about the x axis. 

016-25. Determine the moment of inertia of the area 
about the), axis. 

111-26. l)i!termine the polar moment of inertia of the area 
about the t axis pas.~ing through poim O. 

1<"'-----4- , 

" ,obj:.. 10-l.u2S126 
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10.4 Moments of Inertia for 
Composite Areas 

A composite urea consis ls of a series of connected "simpler" parts or 
shapes. such as rcctangles. trianglcs. and d rcks. Provided the mOlllent of 
inen la of each of these paris is known or can be de termined about a 
common 3xis. then the moment of inertia for the composite 3rea about 
this axis equals the 1I/8I'iJmic SIIIII oflhe moments of inerli<l of all its pllrts. 

Procedure for Analysis 

l be moment of inerlia fo r a composi te urca about a reference axil; 
can be determined using the followi ng proced ure. 

Composite Parts. 

• Using a sketch. divide the arca into its composite pans and 
indicate the perpendicular distance from the cent roid of each 
part to the reference axis. 

Parallel -Axis Theorem. 

• If the cent roidal axis for each part docs nOI coincide with the 
reference axis. the parallel-axis theorem, I .. 7 + Ad!. should be 
used to deteonint the moment of inert ia of the pari about the 
reftrence axis. For the calculation of j , usc the table on the inside 
back OO\'cr. 

Summation. 
• The moment of inertia of the t nl in:: area about the refert ncc axis 

is determined by summing the results of its composilt parts 
about this axis.. 

• If <I composi te p<lrt has a ·'ho le:· ils moment of inerlia is found 
by ··subtracting·· the momcnt of inertia of Ihe hole from Ihe 
momenl of inert ia of the enlire part including the hole. 

f'Of dc_'," or an3t)'Sts ortbis Tee beam. 
cngillccn nHI~~ be abt e tQ loo:alt tbe 
« nl.oid of j" cr.--scct;onal area. an<l 
Ihell fin<llhc n")m~ nl of incn ia of tbis 
area 3boUllhc cenlroidat axi .. 
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EXAMPLE 10.4 

Determine thc moment o f inerti<l ofthc Mea shown in Fig. 10--&, 
about the .fax is. 

r- LOUmm -1 r- IOO mm -1 
T T 

2S Inn! 15 mm 

'± 
25 mnl , 

'- + 8 
?~ mm 7S mm 

, , 
(o' f" 

fig. 1l1-li 

SOLUTION 

Composite Parts . TIIC area can be obtained by s/,I)/r(JC/ing the 
circlc from the rcctnngl.:: shown in Fig. 10-Sb. The centroid of each 
area is iocau::d in the figurc. 

Paralle l·Axis Theorem. The moments of inertia about the .f nxis 
arc determined using the parallel-axis theorem and the data in the 
table on the inside back cover. 

Circle 

Rectangle 

= 1~ (100)( ISW + ( 100)( ISO){75 )2 = 112.5( 106) mm" 

Summation. 11,c 1Il0lllCni of inertia for the arca is therefore 

I, = - JI.4{I06) + 112.5 ( llf) 

= \01 (10") mm' Am:. 
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EXAMPLE 10.5 

(. ) 

" I OO m~ J--
I 200 mm 

T . 
JOO ~ i V' 2S!I mm, 

qtB-~~T-' 
30n mm 

ZIXIn1m D ...L 
-1 1-1oo mm 

'" 

Ddermine the moments of inertia for the cross-sectional arca of the 
member shown in fig. 10-9{1 about thex and y ccntroidal axes. 

SOLUTION 

Composite Parts. The cross section call be subdivided into the three 
rectangular areas A. Il. and 0 shown in fig. 10-9b. For the calculation. 
the centroid of each of th<:se rec tangles is located in the figuT\:. 

Parallel·Axis Theorem. From the table on the inside back cover. or 
E.xample 10.1. the moment of inertia of a rectangle about its 
ccntroidal axis is 7 = n bhJ. Hence. using the parallel·axis theorem 
for r .. '{:tanglcs;\ and D. the c;llculalions arc as follows: 

Rectangles A and D 

Ix = I", + Ad;. '" 1
1
2 ( 100)(300)3 + ( IOO)(300)(200)2 

= 1.425 ( 1O~) mlll~ 

I , = 7" + Ad~ = /2 (3OO)( IOO)J + {IOO)(300)(250)2 

1.90( 1O~} mm~ 

Rectangle B 

) 
Ix = 12(600)( 100)3 = O.05 ( 1O~) IIlm~ 

) 
I ,. = 11( J(X) )(600)J = 1.80( IO~) mm~ 

Summation. The moments of inertia for Ihe enlire cross section 
arc thus 

I j '" 211.90 ( IO~) J + 1.80{1(9) 

= 5.60( 1O~) mm~ 

AII.~ 

AIlS. 



• FUNDAMENTAL PROBLEMS 

FIO- 5. Determine Ihe moment of inertia of Ihe beam's 
cross-scctlonal area about Ihe cenlroidal x and ), axes. 

l OOmn, 

J 
150 mm' 150 mml 

50",,,, 

1"1U--5 

F IIJ....6. Determine Ihe moment of inenia of the beaDt 's 
cross-sectional area about the c~nlrojdal x and y axes. 

" 
I .lOrnn' 

2fX) In'" or 

1 ~ 30 mnl 

,--r--3{t) ",m-J. 
30 mm 30 m", 

10.4 MOMENTS OF INERTIA FOR COMPOSITE AlfEAs 525 

t'J1l-7. Determine Ihe moment of inertia of the cross­
sect ional area of Ihe channel wilh respect 10 the ), axis. 

.' 

", .. ml-

SO mm 
J(X) Ill"' 

L 
SO mm! 

r- 200 mm --4 

• JU-ll Dct .. rminc Ihe moment of inertia of Ihe cross· 
s«lional area of Ihe T·bcam wnh respect 10 llie .r' axis 
passing through Ihe cen troid of the cross sc<:lion. 

ISO mm ---+- - 1----,--" 
~-

; 
3O mm L L ___ ~ 

.--- I50 mm 



526 C",APTER 10 MOM€Nt5 OF INERTIA 

• PROBLEMS 

''''Z7, Detcrmine the di~tance " to the centroid of the 
beam's cross-.sl,·ctional area: then find lhe momeni of incrlia 
aboullhc .r ' axis. 

*' ()-2X. Detcrnllnc Ihe moment of inertia of the beam's 
cross-sectional area aboul the x a.tis. 

o'O-Z'I, Dclennine the moment of inenia of Ihe beam"s 
cross·S('ctional area aboul the ,. axis. 

, 

1.,.30, Determine the moment of inerlia of the beam's 
cross-sectional area about thc.l" uis. 

10-3 1. Detcnnmc the moment of inertia of the beam's 
cross-5CClional area aboutthc )' a,lis. 

Pnlbs. IO-J(lI3J 

*I(1.....U. Delcrmine the moment of inertia of the 
oomposite area aboul lhe x a.,'s. 

01 (1....33, Detennine Ihe moment of inenia of Ihe 
composite area about the )' axis. 

" 

~ 

jloomm 

[loomm 
I""----------L~ __ , 

3OOmm - - 7Smm 

Pnlbs. , .,.)U3J 

1.,.34, Determine the distance y to the centroid of the 
beam's cross,S('cl ional area: Ihen determine the momcni of 
inertia about the x' axis. 

10-35. Delermine the moment of inerlla of the beam's 
crOS-Hcctional area aboutlhe)' a.~is. 

, 
lSmm 
~ 

, 
+f-__ ,.l r:,--;-;---'" 

I __ 75nlm 
~Imnl 

100 mnl 

~ -
"mm 

I'robs. 10-J.U35 



- 111-.16. Locate the ccntroid )' of the composite area. then 
de tennine the moment of inenia of this area about the 
eent roidal x· axis. 

010-37. Determine the moment of incnia of the 
composite area about the ccnt roidal), axis. 

, 
.., 

l.!!!: lin . 

2 ",. C i, 
~ 

, 
• Jin.- · - Jin. 

P rohl;, III-J6I37 

11l-38. IXtermine the distance), to the «ntroid of Ihe 
bcam·s ("ross-sectional area: then find the moment of inertia 
about the x' axis. 

10-311. IXtcnnine the mome", of inenia of tlte bcam·s 
fross-sectional area about the x axis. 

- 1040. Determine tlte moment of inerLi~ of Ihe bcam·s 
cross-seetional arca about the )' axis. 

, 
SOmm 50mm 

- I 
""--

I' robs, 10-3iII39140 
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010-41. Determine the moment of incnia of the beam's 
cross·seelionalarca aboutthc.r axis. 

10-42. Determine tlte moment of inertia of the bocam·s 
cross·sect ional area about the), axis. 

"'--
Prohs. 1I1 .... W.U 

10-43. Locme the centroid." of Ihe cross-sectional arca 
for the anglc.1hen find the moment of inertia 1,_ about the 
.f' c-cntroidal axis. 

*11).4.&. Locate the centroid ¥ of the cross-sectional area 
for the angle. Then find the moment of inertia I .. about the 
)" ccntroidal axis. 

, 

___ 6;n. 
2,n. 

, 
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·10-45. Determine the nlOment of inerlia or the 
composite area aboulthe x axis. 

10-46. Deteml!Oc the nlOmenl ofinerlia of Ihe composite 
area aboll1the y axis. 

, 

T 
l SOmm 

~---j----++-, 

ISOnll1l 

L-___ +-__ "O-<-

-ISO mm -JSOmm~ 

Prllb5. 10-45/.\6 

10-47. Determine the moment of inertia of the composite 
area aboul the {{ntfoidal y axis. 

· 111-48. Locate the centroid y of the composite area . Ihcn 
determine the moment of inertia of this area about the 
x' axis. 

'" 
, I I 1\ 40 nom 

I , ., 50 . 

I c 
- "... I hom , 

I , . __ . . 
ISO n,m ISO non, 50 nom 

010-49. Determine the momcnt or inert ia ' .' of the 
section. The origin of (()(}rdinales is al the centroid C. 

HI-SO. DeINmine the momcnt of inertia I .. orthc section. 
The origin of coordinate !> is at the nnt roid C. 

:ztXl nom 

~UI~~:;Ct:::::~~=c, 
~ .... 6011 mno ----

20mm 
20 mOl 

200 mm 

2O mm-,~ • 

"robs. 10-49/50 

10-51. Determine the beam's moment of mcrtia I , about 
Ihe ccntroidal x axis. 

· ' 0-52. Determine the beam's momenl of inenia I , aboUI 
the nntroidal r axis. 

I'robs. 10-4714l1 I'rohs .. 100S I/5.2 



·10-53. Locate the centroId y of the channel's cross­
seetionnl area. then determine the moment of inertia of the 
area ~bout the ccmroidnl.T' axis. 

10-54. Determine the moment of inert ia of the area of the 
eh~nnel about Ihe y axis. 

rrolr.i. 10-531.>& 

10-55. Determine the moment of inertia of the cross· 
seetionalareJ about the ." axis. 

· 10-56. Locate the centroid j of the beam's cross­
sectional area. and then dcteml ine the momem of inertia of 
the area about the cemroidal )" a.xis. 

". 

lOmm - toumm -~ 

"rolr.i. II) .. S5I56 

10.4 MOMENTS OF INERTIA FOR COMPOSITE Al!EAs 52 9 

010-57. IXtermine the moment of inertia of the 1x:am's 
cross·sectional area about thc.T axis. 

111-58. Determine the moment of inertia of the beam's 
cross-sectional area nboutthe yaxis. 

Prob~. 111-57158 

10 .... 5'.1. Determine the moment of inertia of the 1x:am's 
cross·sectional area with rc~pcct 10 the .T ' axis p3!oSing 
through the centroid C of the cross section. y .. 104.3 mm. 

" r 
150 ",m 

I 

-.++-'-1--, l- " 15 nln> 

" 1J mm 

I'rob. III-59 
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L-__ ---'---, 

Fig. l fl- IO 

The effe<:I;"cnc,," of th IS beam to resist 
bendin, can be de lermincd oncc its 
moments of inertia and ilS product of 
inertia arc kno"'n. 

*10.5 Product of Inertia for an Area 

[\ wi ll be shown in the next section that the property of an area. called 
the product of inertia, is required in order to dclerm ine the IIIlIx;mulll and 
I/I;n;/IIIIIII moments of incrtil1 for the area.lnesc maximum and minimum 
I'alues lire important properties needed for designing structural and 
mechanical members such as beams. columns. and shafts. 

The prodlU:/ of ;/It'f/;lI of the area in Fig. 10-10 with respect to the .r 
and y axes is defincd as 

( 10-7) 

If the clement of area chO!'oCn has a dif(erenthll size in two directions, as 
shown in Fig. 10-10. a double integration must be performed to evaluate 
I.". Most often. ho\l'CI'er, it is easier to choose an clement having. a 
differential si7.c or thickness in only one direction in which case the 
evaluation requires onl), a single integralion (sec Example 10.6). 

Like the momem of inerlia, the product of inert ia has units of length 
raised to the fourth power. e.g.. m4. mm' or ft4. in'. However. since xor)' 
may be negative, Ihe product of inertia may either be positive, negative. 
or zero, depending on the IOC~lt ion and orienlat ion of the coordinate 
axes. For example, the prod uct of inertia I., for an :ITea will be um if 
either the.f or)' axis is an lIxis of SYllllllt'ff)' for the Hea. as in Fig. 10-1 1. 
Here el'cry clement dA located at point (x, y) has a corresponding 
clement (IA located al (.f. - y). Since the products of incnia for thesc 
elements arc. respect ively. x)' fiJI and - x)' fiJI. the algebrJic sum or 
integration of all the c1emcnts that arc chosen in this way lI'il1 cancel 
cach OIher, Consequently, the product of inertia for the tOtal are,l 
becomes lero. ft also follows (rom the definition of 1~l that the "sign" of 
this quantit)' depends o n the quadrant where the area is located. As 
shOll'n in Fig. JO-I2. if the area is rotated from one quadrant to another, 
the sign of I., will change. 

, 
~, 

tIl!, Ifl- II 
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)' 

-f-----t----+-, 

,"1~. \(1-12 

Pa ra lle l-Axis Theorem. Consider the shaded :trea shuwn in 
Fig. 10-13. where x ' and y ' rcpresentll SCt of axes passing through the 
cenlrQitf or the Mea. and x and y represcni a corresponding set of parallel 
axes. Since the product of inertia of 1111 with respcctto the x and y axes is 
Iff" = (x' + Ifx)( Y' + il,.) dll , thell for the entire area. 

The first teml un the right represents the product of inertia for the 
area with respect 10 the cenlroidalaxcs. I.y . 'Ille integrals in the secund 
and third terms ,Ife lero since the moments uf the area arc taken about 
the ccntroidal axis. Realiling that the fourth integral represents the 
entire area A. the parallel·axis Iheorem for the product of inertia 
becomes 

(10-8) 

It is important Ihat the IIlgl'lJwic :iigns {or 1(, and tI .. be maintained 
when applying this equation. 

" 

T ~ 
c 

d, 

L 
1-",-1 

'~ 

dA 

Fig. Itl-l.1 

W 
" 

/' 
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EXAMPLE 10.6 

" 

('1 

, 

('I 

,. 

(,, 

Dderminc the product of inertia I ~1 for the triilngle shown in 
Fig. 10- 1411. 

SOLUTION I 
A differential cicmentth<ll has ilthickncss d:c, as shown in Fig. 10-14b. 
has an are;1 IIA : Ylfx. 'Ille product of inertia of this clcment wilh 
respect to thex and y axes is determined using the parallel 'll.~is theorem. 

dl •• =lfl." ,_+,lAxy 

where l' and y locate the ct'lllr(Jid of the clement or the origin of the 
x'. y' axes. (Sec Fig. 10-13.) Since ii",,: 0, due to symmetry. and 
x: .r. y : ),/2, then 

lfl'r: 0 + (YdX )x(f) = (~x d.l )x(;x) 

Integrating with respect to x from x = 010 X = b yields 

All$. 

SOLUTION II 
l oe diffc rcllIial cJcmcnllhat has a thickness d), . as shown in Fig. 10-14c. 
can also be used. Its area is dA :0 (h - .r ) dy. l oe "rll/mill is localcd 
at point x = x + (b - x)/2 : (b + x )/2, Y "" y. so the product of 
inertia of the dement becomes 

II l n= lfiro" + dAxy 

(
1)+ x) = 0 + (b - x) II)" - , - )' 

( b) [b + (bib»)'] 1 (, ''' ') = b - -)' II)" Y = -y tr - -r II)' Ii 2 2 ,,2 

Integrating with respect to Y from), = 0 to )' = h yiclds 

An.~ 
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EXAMPLE 10.7 

Delermine Ihe product of incrlin for the eros.~-sec liona l area of the 
member shown in Fig. 10-1511, aboul lhe x and y centroidal axes. 

• 100"'1 r-
200mm 

T A 
)()1 .nm 

200mm n .l. 
-l I-- llIOmm ,.) 

1" 

~lg. 111-15 

SOLUTION 
As in Example 10.5. the cross section can be ~ubdivided in to three 
composite rectangular lIrcas A B. (md D . Fig. 10-15b. The eoorditwles 
for the cent roid of each of these T<:ctangics arc shown in the figure. 
Due 10 synunetry.the product of inertia of I'lleil rl'cwlIgll' is zuu aboul 
a SC I of .t'.J" (txes Ihal pa~Ses through Ihe centroid of each rectanglc. 
Using the parallel-axis theorem. we have 

Rectangle A 

I ~! "" I x'l + IId,II,. 

"" 0 + (300)( 100)(-250)( 200) = -1.50(109) mm~ 

Rectangle B 

I .. ! = 7~ 'l + Jld"l, 

= 0 + 0 "' 0 

Rectangle D 

I .. }' = I .<'l + 111/.,11, 

= 0 + (300)( 100)(250)(-200) = - 1.50( \09) mm' 

The product of in(."rlia for Ihe entire cross section is therefore 

I., = - 1.50(109) + 0 - 1.50(109) = -3.00(IO~) mm4 Am: 

NOTE: 1"his negative resul t is due to the facllha! rectangles A and 0 
have centroids loc~lCd \\;th negative .f and negative)' coordinates. 
resp<:cti\"cly. 
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" 
, 

f1~ 10-16 

*10.6 Moments of Inertia for an Area 
about Inclined Axes 

[n st ructural and mechanic<l[ design. it issomctimes necessarr 10 calculate 
Ihe moml."nlS and producl of inertia I~. I,~ <lnd I ... , for an area wilh respo.:C t 
10 a sct of inclined II and v axes when the \'alues for O. I" I,.. and 1", arc 
kIlOWIi. Tudo Ihis we will usc IraliSforlllllfiOlI 1:f/llllliO/IS which rdale Ihe .f, 
y and II, II coordinalcs. Prom Fig. 10-16. Ihcse equations arc 

11 = .t cos 0 + ysinO 

v = )'cosO - xsinO 

With these equations. the moments and product of inertia of ,IA about 
the II and v axes become 

(//" = If (IA =- (y cos 0 - .nin 0)2 d A 

(/I ~ = II! llA = (xcosO + y sin 9)1 dA 

(lI"r = IIvdA = (xcosO + )' sin O)(ycos 0 - x sin 0) tiA 

Expanding eOlch expression and inlegrating. realizing that I , = J llill . 
I , = j.r till, and i, .• = Jxy IIA, we obtain 

I" = l.oo~.!. O + l ,sin! O - 2/.,sin II cos 0 

I ~ = I , sin20 + I " oo~.!. () + 21., sin o cos 0 

f.~ => I, sin 9 cos 0 - I , sin 0 t'OsO + 1,,(oos20 - sin20) 

Using the IrigonomCltic identities sin 20 = 2sinOcos(J and cos29 
= coo!O - sin! 0 we call simplify Ihe aoo\'e expressions. in which case 

1.+ 1, I , I , 
{ = --- + ---cos 20 - I sin'O .. 22 "-

1. +1, I . - I , 
{ = --- - ---cos 29 + I sill 20 
• 2 2 " 

I x - I , 
I ." = --, - sin 20 + I ., cos 20 

( 10-9) 

NOliee Ihat if the [irsl and second equations ;lTe added togelher. we call 
show Ihat the polar momenl of inerlia about Ihe l axis passing through 
point 0 is. as expcCled, ;m/t;'p"/lllell/ of the otientatiOIl of the 11 and v 
axes; i.e .. 

JO= I.+ I ,. = I .+ I , 
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Principal Moments of Inertia. Equ:uions 10-9 show that/u. ,<. 
and l u< depc::nd on the angle of inclination. O. of the u. !) axes. We will 
now determine the orienta tion of these t\xes about which the moments 
of inertia for the area arc maximum and minimum. This particular sct of 
axes is called the principill 1I.ft'S of the are<l. and the corresponding 
moments of inertia with respect to these axes arc called the principlll 
IIIUI/ICIlIJ of il/l:r/;II. In general. there is a sct of principal axes for every 
chosen origin O. However. for structural and mechanical design. the 
origin 0 is located at the centroid of the arca. 

The angle which defines the orientation of the principal axes can be 
found by differentiating the first of Eqs. 10-9 with respect to I) and 
selling Ihe result equ<ll to lero. ThUs. 

1I / ~ (Ix - 11) do= - 2 --, - sin20 - 21ncos211 = O 

l11t:refore. at (J = Il l'" 

(10-10) 

The IWO roots Op, and Op, of this equation arc 90" apart . and so the), each 
specify the inclinalion of one of Ihc principal axc~ In order to substitute 
them into Eq.10-9. we must first find the sine and cosine of20p, and 20p,. 

This C;U\ be done using these ratios from the triangles shown in 
Fig. 10-17. which arc based on Eq. 10-10. 

Substituting eaeh of the sine and cosine ratios into the first or second 
o( Eqs.10-9and simplifying. we obtain 

I , + I, 
/-. = - - - ± - , (10- 11) 

Depending on the sign chosen. this result gives the maximum or 
minimum moment of inerti;! for thc arc,!. Furlhcrmor .... if th ... above 
trigonometric rcl;!t ions for Op, and lip, are substitutcd into the third of 
Eqs.10-9. it can be shown th3t/u" = 0; that is. the pmducl Q!i/l/mit, ... i,h 
fi!Specl 10 Ihe prilll:i/wi (IXt'J i~' 1..1' '0. Since it W,IS indicm<.:d in Sec. 10.6 that 
the product of inertia is zero with respect to an y symmetrical axis. it 
therefor<.: (ollows th3t lilly s),lIIlIIclriclllluis represents II principlll luis uf 
ilrer/ill for lire IIrefl . 

I" 

~ 
"' . 
" '\ ", - I.n 

/ =M1 
(~r+ /! 2 ., 

t·il;. I{)....1? 
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EXAMPLE 10.8 

"J 

''l 
Fi,t. 10- 18 

Dccermine the principal moments of inertia :md the orienlation of the 
principal axes for thl! cross-sectional aTea of the member shown in 
Fig. 10-18i1 with respect \0:111 axis passing through the centroid. 

SOLUTION 
The momciUS and product of il1cl1ia of Ihe cross SCl:tion wilh respect 
to the x. y axes have been dete rmined in Examples 10.5 and IO.7. 111C 
results nrc 

I , = 2.90( [09) mm~ I , "" 5.60( 109
) n1ln4 1 sy = - 3.00( \09) mm4 

Usil1g Eq. 10-10. the a l1glcs of inclination of the principal axes /I ~nd 
v arc 

- I " 
tan 2flp = (/" i

y
)f2 

20p "" -65 .8~ and 114.2 ~ 

ThUs. by inspecliol1 of fig. 1001Sh. 

Op, '" - 32.9" ,lIId Op, '" 57.1 " Al l$. 

The principal momel1lS of inenia with respel:t to thl:se axes arc 
dett!rmined from Eq. 10-11. Hence. 

IT + I,. )"(7/,---'1",)-0,--
I .... = -- ± -- + I ' 
- 2 2 " 

2.90(1O~ ) + 5.60(1O~) 
" 2 

± 
f[ 2.9()(109) 560( IO~)l' 

\j ""-='-'---;,"'.="'-' + [- 3.00{JO' W 

1= '" 4.25(1O~ ) ± 3.29(JO~) 

0' 

I ..... = 7.54( 109) mm~ 

NOTE: The maximum moment of intnia. Iou< = 7.54(109) mm~ . 
occurs wilh rcspect to the II axis sinct by il!~"I'erlilJ/l most of tht cross­
scctiol1al area is fa rthest away from this axis. Or. stated in another 
mal1ncr. 1m .. occurs aboul the /I axis since this axis is located wi lhin 
± 4So of the y axis. which has the larger value of I ( I y > I ,). Also. Ihis 
cnll be concluded by substi tuting the dalOlwith 0 = 57.1° into the first 
of Eqs.. 10-9 and solving for I U' 
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Mohr's Circle for Moments 
of Inertia 

Equations 10-9 to I().... II have a grJphic,l1 solution that is convenicntto usc 
and gem::rally easy to remember. Squ3ring the first and th ird of Eqs. 10-9 
and adding. it is found that 

Here ' ,_ 'J~ and ' " arc kllowl/ COI/SIIIIIU. ThUs. the ~I)(,..e equation may 
be written in compact form as 

When Ihis eq uation is plollcd on a sct of axes tha t represent the 
respective moment of inert ia and the product of inertia. as shown in 
Fig. 10-19. the resulting graph represents a cirriI' of radius 

/('. ")' R = --- + J! 
\ 2 '1 

and having its center located at point (t!. 0), where II ~ (I, + J ,)/2. The 
circle so constructed is called Mohrs d rdt'. named after the German 
engineer 0110 Mohr (1835- 191 8). 

.' " 

A~;, for mioo. pnncipal 
momenlofmcnuo. l_ 

,.~:--J'T.---
'" 

Ax .. for ma)m" princip.d 
momrnl of i""rl,a. I .... ,.) 

.. 

.l~ 111-19 

( '. -,.)' . R. , - ,-- + r;, 

'--- '. 
~',--.... 

-oJ 
IA 

a 

,-~ tj";" 
1'; "-1 

'--'- '-
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'" 

, 

AXl. fOf ,,"nof princ'pal 
lIIon>cnl ofinc.ua. l_ 

,.'--::-h::---
~~,,-'" 

Axii for major t"indpaJ 
momcnl of in«I;.. . I .... 

" 
(.) 

, . , (" ".j' . --, - + /;, 

Procedure for Analysis 

The main purpoSl.: in using Mohr's ci rcle here is to have a 
convenient means (or finding the principal moments o( inertia for 
an area. The following procedure provides a method for doing this. 

Determine f.,., t,., and 1..,-

• Establish thex.y axes and detennine (,. I J ' and I X," Fig. 10-1911. 

COn51fUct the Circle. 

• ConStruct a rectangular coordinate system such tha t the abscissa 
represents the moment of inertia I. and the ordinate represents 
the product of inertia I x)," Fig.10-19b. 

• Determine the el!nter of the circle. O. which is localed al a 
distance ( It + 1.)/ 2 from the origin. and plotlhe reference point 
A having coordinates ( I , . I ,y). Remember. I , is always posi tive. 
whereas I xy can be either positive or negalive. 

• Connect the reference point A with the center of the circle and 
determine the distance OA by trigonometry. TIlis distance 
represents the radius of the eire,le. Fig. 10-1911. Finally. draw 
the circle. 

Principal Moments of Inertia. 

• "Ille points where the eircle intersects the I axis give the values 
of the principal moments of incrti:! 1m", and Imo:<. Notice th:lI. 
as expected, the prodliCI of iller/ill "'ill be uro III Ihest poims. 

I., Fig. 10-19b. 

'- -
~-l 

1-- '-' ,_ ---

(b) 

Fig. 10-19 

Principal Axes. 

• To find the orientation of the major principal axis. use 
trigonomCIf)' to find the angle 20p,. /1II'OS'tfel/ fmm tlJe radil/.,· 
OA 10 the positive 1 (lxis. Fig.10-19b. This angle representS twice 
the angle from the x axis to the axis of maximum moment of 
inertia l nuu, . Fig. 10-19". Both the angle on lhe cirdc. 20p" and 
the angle Op, . IIIIISI be me/lSI/red ill tilt' salli/": JeIlSt:. as shown in 
Fig. 10-19. The axis for minilllum moment of inertia I """ is 
per~ndicular to the axis for I ...... 

Using trigonometr)'. the above procedure can be verified to be in 
accordance with the equations develuped in 5ec. IO.6. 
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EXAMPLE 10.9 

Using Mohr's circle. deteonine the principal moments of inert ia ;U1d 
the orientation of the major principal axes for the cross·scctional area 
of the member shown in Fig. 10-2OtI. with rcspc,t to an axis passing 
thr(')ugh the centroid. 

SOLUTION 
(., 

Determine I., 17' 1~7' The moments and product o f inertia h[lve 
been dCI<;rmincd in Examples [0.5 and 10.7 with fespe" 10 Ihe x, y 
axes shown in Fig. 10-2Ot,. The results arc I I ~ 2.90(l0~) mm4. 
J, = 5.60( IO~) mm4. lmd 1'1 = - 3.00( 109

) mm4. 

Construct the Circle. 111e I and I." , axes arc shown in Fig. 1ll-2Ob.111e 
C(:Ilh.'f o[ lhe drcle. 0, lies al a <.Ii.s tmKe (/-,,+ 1,')f2 = (2.90+ 5.60)12 = 4.25 
from the Origin. When the refe r<:ncc point A{ I, . I I1) or A(2,90. - 3.00) is 
connected to point O. the radius OA is dctermjn~-d from the triangle 
081'1 using the Pythagore~n theorem. 

011 = v''''(I-;' :;-' j'',-C+:-(:--;, "O;.OO''j''2 = 3.29 

The circle is constructed in Fig. [0-20e. 

Principal Momenb of Inertia. The circle intersects the I axis at 
points (7.54, 0) and (0.960.0). I-Ienee, 

1mb = (4.25 + 3.29)\O~ = 7.54( 109) mm4 A n.\!. 

1m," = (4.25 - 3.29) \09 -= 11.960( \09) mm' 

Princ;ipal Axes. As shown in Fig. [0-20 ... the angle 20p, is 
determined from the cin;le by measuring ooumen;lockwisc from OA 
10 Ihe direction of the positive I axis. l·knee. 

20 = ISO° - 5in- 1(IBIII) = IBO" _ 5in- 1('.00) = 114.2" 
p, 10A I 3.29 

Th" principal axis for I"". "" 7,54(\09) mm4 is therefore oriellh::d at 
an angle Op, = 57.1 ", measured COIIIllI'rc/ock ... ;se. from the pmili" e x 
3xis to lhe positil'c II axis. Th\! (! axis is pe rpendicular 10 this axis. The 
results arc shown in Fig. 10-20d. 

1,.(10,) ",",' 

J,2S --{ 1.35 

2.90+'1 0 +"-.,""'7";---1 (to") mm' 
- 3.00 

--L 
, I (!.90. - 3.(0) 

lbl 

++-Jf-,t-' (10") mm' 

A (2.'IIJ. - 3.00) 

"I 

1'1 

Fig. 11)...20 
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• PROBLEMS 

.,(1...60. Determine the product of inertia of the parabolic 
area with respect to the .r ~nd)" axes. 

·10-61. Determine the product of inertia I ... of the right 
half of the parabolic ar .. a in l'rob. 10-60. bounded by the 
lines y - 2 in. and .1 - O. y 

r 
2 in. 

y _ 2<1 

!'robs. 11HI4lI61 

10-62. Determine the product of incrtia of the quarter 
elliplical area with respect to the x and y axes. 

, 

I , 
~+-----',--, 

4 • 
I'roh. 10-61. 

10-63. Detennioe the product of inertia for the area with 
respect to the x and}" axcs. 

- --- ~ in.--.j 

Proh. It.....,.' 

· 10 ... -64. Determine the product of inertia oflhe area with 
resped 10 the.t and )" a~es. 

, 

1;;--,.----, 

4 m. 

!'roh. 11.I-04 

.'0--65. Determine the product of inertia of the area with 
respeci 10 the.t and r axes. ,. 

I'rob. I0-6S 

1G-66. Determine the product of inertia for the area "ilh 
respect 10 the x and r axes. 

• 

r 
r - t -O.5x 

'm 

1m 

Prob. I tt-66 



 

Ik7. ~lumine the product of inertia for Ihe arca witlt 
respcetto tlte;( and r axes. 

, 
~ __________ CL"--, , 

!'rob.IlJ..67 

* 1l1-6li. Determine lite product of inertia for lite area of 
lite ellipse with resp«t \0 the .f and r axes. 

, 

! In. 

!'rob. 10-6JI 

0111-69. I)ctermine the product of inc rtia for Ihe parabolic 
area with n:sp«t tO tlte x and ,. axcs. 

, 

!'rob. 111-69 

541 

1(1-70. Detcrmine the product of inertia of tlte composite 
area witlt respc<:t \ 0 the of and ,. axes. 

, 

!'rob. HI ... 711 

10-71. ~tcrmine tlte produet of inertia of the cross­
sectional area with respect to lhe ;( and _" axcs that ha'·c 
their originlocalcd 8t the cent roid C 

,--

Sin. 

1--

0.5 in 

'r-------t~-., c 

3.5 ,no 

L i,": .. _____ ... :::. __ ~ 

"rob. 10 ... 71 
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- 10- 72. Delermin~ lile produel of inertia for [lie beam's 
cross,sec[ional area " ';111 respect [ollie .t and y axes [lial 
liaw tliciT origin located alille cemroid C. 

l' roli . llI-72 

. 111-73. Delcrmin~ lhe product of in~rtia of Ihe beam's 
crO:S$'seetional area willi respeci 10 llie x 311d)' axes.. 

I'roh, IO-73 

10-74. Determine the product of incrtia for Ihe beam's 
cross-sectional area willi respect 10 llie x and y axes Ilial 
lIa\'e llieir origin localed atille cenlroid C. 

0.5 ill.. 
I 

,,, 1--5'n.-- - 5'n. 

Proh, I1)-74 

111-75. Locate the centroid .f or lhe beam'$ cross-scclional 
area and then delermine Ihe moments of inertia and Ihe 
product of inenia of tllis area wilh respect 10 the II and 
v a~cs.. The nes have thei r origin at the centroid C 

Prall, 11)-75 



- 10- 76. Locate the ~e nt roid {x. y) of the beam'$ ~ross­
sectional area. and Ihen del ermine Ihe produci of incnia of 
Ihis area wilh respcctto the ccntroidal .t' and ,,' axes. 

"ro ll. 10-76 

olO-n. Determine Ihe product of inertia of the beam"s 
cross_sectional area with respect to the centroidal .r and 
y axcs. 

~·""' mm 

""'i'iiimm to mm 

"rub. ltl-n 

10.7 M OHII'S CII!Cl.E H)It MOMENTS OF INeRllA S43 

10-711. Dclcnninc the moments of inertia and tbc product 
of inenia of Ihe beam's cross-sectional area willi rcspecl In 

the 1/ and tI axes. 

.. 

" 

3in. 

I 
3in. 

I 

l' rub. 11I-711 

10-"79. Locate Ihe centroid y o(the beam's cross·sectional 
area and then determine the moments of inertia and the 
produci of incnia of Ihis area wi th respect 10 tlie 1/ and 
v axes. 

,. 

8in. 

I '---
"rub. 111-79 
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- IO-SIJ. Locale lhe eenlroid .• and y of ihe noss·sectional 
area and lhen delCrmine the orientation 01 the principal 
axes. "'hich have !heir origin at the cemroid C of !he area. 
Also. find Ihe principal momeniS of ineriia. 

Prob. IO-SIJ 

010-11 1. [)ctermine the orientation of the principal axes. 
" 'hith ha"e their origin al ccn!roid C of thc beam's cross· 
sectional area. Also. find the principal momeniS of inertia. 

lOm~L __ " I' 
"'mm 15{J mm 

---~e--C~-+----' c 

• lOOmm ""2Omn, 

"rob. 11hII1 

10-112. Locate the centroid y orlhe beam's cross~elional 
area and then de!erminc Ihe moments 01 inertia of this area 
and the product of incrlia with respcello the 1/ and IJ axes. 
The axes have their origin at Ihe ecntroid C. 

;"-;;;;,+,, mm 

I'rob. 11)-82 

10-113. Soh'c Pmb. 10-75 using ~ I ohr's circlc. 

°10--lI-l. Soh'c Prob. 10-78 u§ing Mohr's circle. 

010--85, Soh'c Prob. 10-79 using Mohrs circle. 

10-86. Soh'c Prob. 104!O uf ing Mohrs circle. 

°11H1-1l. SoNe Prob. 10-82 using MOhrs eirelc. 
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10.8 Mass Moment of Inertia 

The mass moment of inert ia of a body is II measure or lhe body's resistance 
to <lngular 3cccleralion. Since il is used in dyn3mics 10 sludy rOlalional 
mOlion. methods for its calculatiOn will now be discussed.· 

Consider the rigid body shown in Fig. 10-21. We define the IIIIISS 

IIWlIIl'm of i/l""ill of Ihe body aboul the z axis as 

(10- 12) 

Here r is the perpendicular dislance from the axis to Ihe arbitrary 
clemcnt tim, SincC the fomlUlalion invol\·cs,. thc value of I is /UrilJlll! for 
c;lch axis about which it is computed. The axis which is gcneTallychoscn. 
howe\"er, passes through the body's mass center G. Common units used 
for ilS mcasuremcnt arc kg 'ml or slug· ft l. 

If the body consists of material h:l\'ing a density p. then 11m :0 p dV. 
fig. 10-221,. Suhstituting this inlo Eq. 10-12, Ihe body's moment of 
inertia is then compukd using \·ollmrt' t'1t'/IIfIllS for integration: i.e. 

1 = j,zPdV ,. (10-13) 

For mOSI applications.. p will be II C/JIlSlmll. and so this teml may be 
factored out of the integraL and the integration is then purely a function 
of geometry. 

, =pl,zdV (1()... 14) 

, (., 
Fi~. 141- 22 

·"",,'h~. 1"'0000"Y of the body ,,·h..:h measUreS 'hc $~·mr1>C "")' of thc body"$ mass ""h 
1\:$1>«' to l roofdUl"C s)"Sttm is ,'''' mass p.odu(1 or I"cllia. ThIs pr"f'Cny _ ohtn 
3pplin 10 !Ito: Ihlce-din..:nsio .... ' mo.ioo of l bGd). and i, disnt!OS':d in F.nglnu""x 
,IIf"(hIJJ,lo: O)·n"mia (Cb'i'lcr 21). 

fiG_ 10- 21 

545 
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/ , 
" ) ", 

Procedure for Analysis 

Ir a body is sym metr ical with respect to an axis. as in Fig. 10-21. then 
its mass moment of inertia about thc axis can be determined by 
using a single in tegrillion. Shell and disk clements arc L1Sed fo r this 
purpose. 

Shell Element. 

• If a sll l'lI l!l l'lIIclil having a height ~ . radius y. lind thickness tly 
is chosen for integration, Fig. 10-22b. then its volume is 
(IV = (2"ITY )( z) lIy. 

• l bis clemcnt call be used in Eq. 10-13 or 10-14 for detcmlining 
the moment of incrthl I ~ of the bod)' about the z axis since the 
t'mi,e t'iclllt'm.due to its ··thinness.··1ies at the .WIIII! perpendicular 
distance, = y from the z axis (sec Examplc 10.10). 

Disk Element. 

• If a disk clement l\:Iving a radius), and ,\ th ickness d~ is chosen 
for integration. Fig. 10-22c, then its volume is dV = ("lTl) dz. 

• III this case thc clement is {inill! in Ihe radial direction. and 
consequently its points do IW/ all lie at the SUIIII: mdial dis/ullcl!' 
from the ~ axis. As a reSUl t. Eqs. 10-1] or 10-14 ell/111m be used to 
determine I ~. Instead. 10 pt:rfoml the integration using th is 
clement. it is first necessary to detenninc the moment of illertia 
of III,' d.-1li1'1II about the ~ axis and then integrate this result (sec 
Example 10.\1). 
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EXAMPLE 10.10 

Determine the moss moment of inertia of the cylinder shown in 
Fig. 10-2311 about the z a.~i s.The density of the mate rial. fl. is constant. 

(. ) 

SOLUTION 

-,­
• , -+-, 

i 

"'1;. 10-23 

''l 

Sh. 1I Ele ment. This problem will be solved using the sltell dl.'mem 
in Fig. 1002Jb and thus on ly a single integrotion is required. The 
volume of the clement is ti l ' = ( 211"r )( lI ) tlr. and so its mass is 
(1m = p tlV = 1)(27rhr dr ). Sine(· the elllire elemenl lies <II Ihe same 
dist<lnce r from the z axis. the moment of inertia of the I.'leml.'nt is 

IntegT3ting over the entire cylinder yields 

l ~ = l,1dm = p27rhll1 ,Jllr = P;"7 ltlr 
m , -

Since the mass of the cyl indcr is 

then 

AilS. 
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EXAMPLE 10.11 

A solid is formed by revolving the shaded area shown in Fig. 10-2411 
about the y axis. If [he density of the malenal is 5 slug/fl J • determine 
the mass moment of inertia about the y axis. 

.. 

'" ,.) 
HIl· I(J...14 

SOLUTION 

Disk Element. The moment of inertia will be determined using. this 
tlisk d emelll. as shown in Fig. lo-24b. l-lcre the clement intersects the 
eurve at the arbitrary point (x. y) and has a mass 

Although all points on the clement aTe IIUI located at the same 
dislance from the y axis. it is still possibk to determine the moment of 
inertia til>. of thl! I'/CI/II'II/ aboutlhe y axis. In the previous example it 
was shown that the momcnt of inertia of a homogeneous cylinder 
nboul ig longitudinal ax is is / = ~ I/J~ . when: 11/ and Rare Ihe mass 
~md radius of Ihe 1.")'linder. Since Ihe height of Ihe cylinder is not 
involved in this formu la. we can also usc this result for 3 disk. Thus. for 
the disk clemenl in Fig. 1O-24b. wc have 

Sublltituting x = yZ. p = 5 slug/ft l, and integraling wilh respect 10 y. 
from y = 0 to Y = I ft. yields the mOlllentOfincrtia forthecnti resolid. 

5'1111 

~ 51!"lirl , 1,= 2 0 of tlY =T Q y~tI}"=O.873slug·rl · 11115. 
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, 
f<1~. IO- l S 

Pa ra lle l-Axis Theorem . If the moment of inertia of the body 
about an axis passing through the body's mass ccnter is knowll.then the 
moment of inertia aoom any other flllrtllIl'llc':;$ can be dctermin(!d by 
using th(! pnmlld·nxis III("I)rl.'lII. To dcrh'c Ihis theorem. consider the body 
shown in Fig. 10-25. The :;:" axis passes through the mass center G. 
whereas the corresponding pllmlll.'! Z lI.lis lies at a constant distance II 
away. Selccting the dirrtrcn tinl demcnt of mass dm. which is loeatcd al 
point (x'. y').and using the Pythagorean theorem.? '" (d + x')! + .1',2. 
Ihe moment of inertia of Ihe body about Ihe ;: axis is 

Since r' 2 '" .\"'! + y'l. Ihe fi rsl integral represents ' 0 , The second 
illlegral is c'lual to uro. since Ihe z' axis passes through Ihe body's mass 
center. i.e .. J .\"' dm = x f ilm :0 0 ~inee x c:: O. Finally. the third integral 
is the total mass //I of Ihe body. Hence. the moment of inertia aboulthe;: 
axis becomes 

! I = 10 + /lui ! ! (10-15) 

where 

10 = momclU o rincnia aboulthe~' a.'lis passing through the mass 
ccntcr G 

III '" mass of the body 

II '" distance bclll'('C Il\he parallcl 3X~':S 

549 
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Radius of Gyration . Oceasion;,lly. the moment of inertia of a 
body about a specified axis is reported in handbooks using the rlldillS of 
gym/ioll. k. This lIalue has units of length. and wht'n it :lnd the body·s 
nl:lSS /II 3re known. the monl<:nt of inertia can be determined from the 
equlllion 

IT 
k ~ 1--::: - \111 ( 10-16) 

Note the simililri/y between the definition of k in this formula (lIId r in 
the equation III = r~ dill. which defines the mOlllent of inertia of a 
differential elcment of nl:tss dill of the body ;,boUl an ~Lxis. 

Composite Bodies . If a body is constructed from a number of 
simple ShllPCS such as disks. spheres. and rods. the moment of inertia of 
the body about ;lny axis <: Call be detennined by adding ;llgebraicall )' the 
moments of inertia of all the composite shapes computed about the same 
axis. Algebraic addition is necessary since :I composi te pMt must be 
considered as a neg:l1 i,'c quant ity if it has alre;ldy been included within 
another part - as in the caSt of a "hole'· subtracted from a solid plate. 
Also. the p:,rallc1-axis theorem is necdell for the calcul:l!ions if the 
center of mass of e;lch compositc part docs not lie o n the z axis. [n this 
regard. formulas for the mass moment of inertia of some common 
Shapes. such as disks. sphcre:>. and rods. arc gil'en in the table on the 
inside back covcr. 

Thi~ flywheel . which OJlCralc~ a melat 
cUl!cr. has a large mOmCni of inerlia all",u 
ilS cen lcr. Once it bcgjn$ '(>I~ling iL i~ 
dil/kutttn Wlpil aodthcrd«c a uniform 
molion can be dfccI;'·cly tronsfctrcd 10 
Ihe cuning blade. 
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EXAMPLE 10.12 

If the piatc shown in fig. 10-26a has a density of 8000 kgfm' and a 
thickn.:ss of 10 m11l, dete rmine its mass momcnt of incrt ia aoout an 
axis rcq~ndicular to the page and passing th rough the pin at O. 

0.15 m 

''l ,.) 
Fil!' HI-26 

SOLUTION 
The platc consis ts of two composite parts. the 2SO-mm-radius disk 
mill/l.f a 12S-mm-radius disk. fi g. 10-26h. The moment of inertia about 
o Co1n be detemlincd by finding the moment of inert ia of each of 
thcs.:: partS about 0 and then ulgl'brlliclllly adding the n;sults. The 
computations arc performed by using the parallcl-a.~is theorem in 
conjunction with the data listed in the table on the inside back cover. 

Disk. Thc momclll of incnill of a disk aboul an axis perpendicular 
10 the plane or the disk and passing through G is 10 "" 1m?'. Thc mass 
center of both disks is 0.25 III from point O. ThUs, 

m,/ "" PdVd ~ 8000 kg/m3["lT (O.25 m)~(O.OI !\I)1 "" 15.7l kg 

(10)d = } IIld~ + lIliJll2 

= ie 1S.11 kg)(0.25 01)2 + ( 15.11 kg)(0.25 m)1 

= 1.473kg·m2 

Hole. For the slmlllcr disk (hole), we ha\'e 

IIIh = PhVh = 8000 kg/m' ["IT (0.125 m)2(0.01 m)] = ].9] kg 

Uoh : l /l1lf~ + I/1hd1 

= i (3.9] kg)(0. 125 m)! + (].9] kg ){0.25 mf 
= 0.216 kg· JIl! 

The moment of incrti<l of the plate aooutthe pin is thercforc 

10 = {lOld - (l O)h 

1.473kg· 01
2 

- 0.216 kg· m2 

1.20 kg· m2 

0.125 m 
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EXAMPLE 10.13 

t11:' 111- 27 

The pendulul11 in Fig. 10-27 consists of two thin rods each having a 
weight of 10 lb. Dclermine the pendulum's mass moment of inertia 
about an a.~is passing through (a) th.: pin at O.and (b) the mass <:ent<:r 
G of the pendulum. 

SOLUTION 

Part (a). Using the lable on the inside bilck cover, the moment of 
inerlia of rod 0;\ about an axis perpendicular to lhe page and passing 
through Ihe cnd poinl 0 oflhe rod is 10 ~ j ill'!' Hencc. 

, , '( IOlb) , , (J ) =-111/-=- (2fl)-=0.414slug·fl-
0,1 (/ 3 3 32.2 fl /y/ 

Realize Ihallhi5 same value- may be <:ompuled using / G = -h IIII ! and 
Ihc parallel-axis theon:m: i.c .. 

I , , 1 ( 10 Ib) , 10 III , 
(10,1 )0 = 12 1111- + /lid- = 12 32.2 ft / s! (2 ft)- + 32.2 fl / s2 (1 fl )-

= 0.414 slug' ft 2 

For rod BC we h:l\"e 

1 , , 1 ( 10 Ib)1 ' 10 Ib 2 (/ oc)o= ,lIIf-+ llld-=-:;- 1 2fl)'+ 2(2ft ) 
1_ I .... 32.2fl/s 32.2f1/ 5 

= 1.346 slug· (12 

The momenl of inertia of Ihe pendulum about 0 is therefore 

10 = 0.414 + 1.346 = 1.76slug·ft2 

Part (b). The mass center G will be located rcl:lIive 10 Ihe pin at O. 
Assuming this dis tanc.:: 10 be y. Fig. 10-27. and using the formula for 
de1i:rmining the ma$S center. we have 

_ ~YIII 1(10/ 32.2) + 2(10/32.2} 
)' = ~III = (10/ 32.2) + ( 10/ 32.2 ) = UOfl 

The momenl of inerlia f G may be computcd in the same l11.mner as 
10 . which requires su<:ccssive appli<:atiolls of the parallel·axis theorem 
in order \0 transfe r Ihe moments of inertia of rods 0;\ and BC 10 G. A 
more direci solUTion. however. involves applying the parallel.axis 
theorem using Ihe resui! for 10 dctennined abovc: i.e.. 

L76s1ug'fI2 = f G + ( 201~ 2) ( l.SOft l 
32.2 fl s 

Am. 



• PROBLEMS 

.'G-89. Determine !he mass moment of inenia I, of the 
C(lIlC formed by .c\'ol\'ing Ille shaded area around tile z a:cis. 
The density of the material is p. EKprcss Ihe result in terms 
of the mass III orlhe eone. 

;: -f.('.-Y) 

, 

" ~ 

I'rob. 10-39 

10-911. Determine the mass moment of inenia f , of the 
rigl\t circular cone and c~prcss Ihe ro:sull in terms of the 
101al mass III of the oonc. The ronc ha5 a oonSlanl densit), p. 

" 
Prob. 10-90 

10.8 MASS MOMENTCIt' 1M::Rl\A 553 

10-11 1. Determine Ihe mass moment of inertia I . of the 
slender rod. The rod is made of material having a variable 
density ,, - Po(I + x/ I). wllefe AI is oonsmnl. The cross­
S('cl iona] an:a of the rod is II . Express the result in lermsof 
tile mass III oflhe rod. 

, 

• 
Prnb. 11I-9 . 

010-92. DcICn1llnC Ihe ma5$ momcm of inertia I , of the 
solid formed by fc\'oll'ing the sh.aded area around 'he )' 
axis. The den~i'y of 'he male rial i~ p. Express Ihe resuh in 
lerms of Ihe mass", of Ihe wlid. 

'm 

I' rob. 10-91 
"IO-':IJ. The paraholoid is fonned b)' rc,·olving the shaded 
area around Ihe x axis. Dctcnninc Ihe radius of g)'ration k •. 
The densit)· of the ma,erial is p _ 5 My mJ• 

100m", 

Prob. 10-9J 
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IO-~. Determine the mass momcl11 of inertHI I , of the 
solid formed hy re,'oI"In& the slmdcd area around the ,. axis.. 
The denSIty of the malcnallS p. Express the result In lerrru; 
of the mass m of the scnu·elhp5Old . 

• 
, 

I'roh. 10-94 

11I-9S. The frustum is formed b)' rotaling the shaded area 
around the:t axis.. Determine the moment of Inenia I, and 
e.'(preu the reliu i1 In lerms of lhe 101;11 mass m of Ihe 
frustum . The materilll has a constant density p, 

, 
,!_~~ + h -.... " , 

• 

"'" • 

I',"h. 10-95 

· 10-96. loe solid IS formed by rt\'oh'in& llie shaded area 
around lhe,. axis.. Oetcmunc the radius of gyration Ii,. 'm e 
spccirtr weight of the matenal is y .. .J.8O Ib/ fl' , 

"roh. Ill- Wi 

010-97. De termine the mass moment of inertia I, of the 
solid fomled by re\'oh'mg the shaded area around the;:: axis.. 
loe densily of the malcriallS /) .. 7,85 Mg/mJ, 

---,)<"-----~.1 

• 



10-98. ~lermine the mass momcnt of incrtia J, of the 
solid formcd by rc,<oLvi ng the shadcd area around the z axis. 
The solid is n\3de of a homogeneous material that weighs 
JOO lb. 

4ft _ 

'" , 
:. "I 

----~t_~--~---, 

Prob. IO-98 

10-99. Determine the mass moment of incrt ia 11 of the 
solid formed by rcmll'ing the shadi:d area around the." axis. 
The t01al mass oflhc solid is 1500 kg. 

i 

9°~~-------1~--' 

, 

Prub. 10-9'J 
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" 10-100. Determine the mass moment of inertia of the 
pendulum about an axis perpendicular to the page and 
passing th rough point O.lhe slender rod has 1I mass of 10 kg 
and the sphere has a ma550f 15 kg. 

" --, o 

"" mm 

I' roo. 14)..100 

"10-101. The pendulum CQnsists of 11 d is\.: ha,·ing a mass of 
6 kgand slender rods liB and DCII"hich!law a mass pe r unit 
length of 2 klV'm. Determine the length L of DC so thm the 
C('nter of mass is at Ihe boIaring O. What is the moment of 
inertia of the asscmbL)· aoout an axis pcrpt""ndicular to the 
page and passing throug.h point O? 

---O.SIII r 0.sm --1 f) ,-

e. % ~ .. 
(J B 

c 
C 

Prob. I4)..101 
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111-101. Determint' the mass moment of inertia of the 
2·kg bent rod about the z axis. 

Prob. 111-102 

111-103. The thin pl~tc has a mass per unil area of 
10 kgjm~. Dctemline its mass moment of inertia about the 
y axis. 

· 111-104. The thin plate has a nmss per unit area of 
10 kg/mI. Delermine ils ma~s moment of inerti a aboUllhc 
Z axis. 

Probs. 11I-10.JI1fl4 

0111-105. ·ll1c pendulum oonsis\s of the 3·~g slender rod 
and Ihe S-kg Ihin piate. Determine Ihe locatioo ,. of the 
cenler of mass G of the pendulum: Ihen find the mass 
mOlllent of inertia of the pendulum about an His 
perpendicular 10 the page and passing Ihrough G. 

I'rob. III- lOS 

11)-1(16. The cone and cylinder asscmbly is made of 
homogeneous material having a density of 7.$5 r-. Igfml. 
Determine ils mass mOnlenl (If inertia aboUllhe z axis. 

"rob. 10-1(16 



10- 107. Detcnninc tllc mass. moment of inertia of tile 
o"erllung crunk about tile .l axis. The material is steel 
h " ing a density of f' - 7.85 Mg/mJ

• 

010-1118. Determine tile mass. moment of inertia of the 
o"crllung crunk about the or' axis. The mate rial is steel 
having a density of p _ 7.85 Mg/ml. 

"' mm 

lSOmm 

20mn, 

-+E~-" 

2Omm--1 _'J 
. SOmn, 

I' robs. 10-1117/1011 

010-109. [rthe large ring.smaU ring and eaell of the spokes 
weigh [OOIb.15 lb. and 20 lb. r~"Spcct ivcly. determine the mass 
moment of inNtia of llie wh~l about an axis perpendicular 
to the page and pass.ing through point A . 

"'mb. 10-109 

10.8 MASS MOMENT OF INERllA S57 

10-110. Determin ... the mass moment of inertia of tile thin 
plate about an axis perpendicular 10 the page and pass.ing 
through poim O. l"he ma terial has a mass.. per uni t area of 
20 kg/mi. 

ISOmm 

/ ~ 
~ ISO !lIm 

__ I 
l400mn• 

V 

iSOmm tSOm'; 

I'mb. 111-110 

10-1 11 . Delennine the mass. moment of inenia of the tllin 
plale about an axis perpendicular to the page and pass.ing 
througll point O. The material has a mass pcr unit area of 
20 kg/m1. 

I' rob. 10-11 1 
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CHAPTER REVIEW 

Area Mumen. uf Incrtill 

The lIrea mQIII~,J1 o/illuria repre~n.s the 
SCCQnd momcn. of the area about an 1Ll;S. 

I, *' 1":'IA It is frequently used in formulas related to 
, 

the strength and stability of structural ...!-- i members or mechanical clemen,s. 
."- .) 

~ 

If the area shape is irregular but Gin 
, " 

" descnbed mathematically, then , 
I, - lrtfA • differential clement must " selected -if '" and in tegration o\"e r the entire area must 

be performed to determine the moment 
of inertia. 

Panllcl-Allis Thfflrcm ~A\ 
If ,he momcnt of inertia for an area is , 
kl\OW11 about a r:entroidal axis. then its 

\J moment of inertia about a parallel axis l - l + AiI~ 
can be dete rmined using the parullel,axis J 

thoorem. , , 
CAmposi!e Area 

II an area is a composite of common 
0- 8 shapes. as found on the inside back co'"cr. -- . -

then its moment of inertia is equal to the '-' 
algebraic sum of the momcnts of inertia of 
cilCh of its parts. • • 

l'roduct of Inertia 
, 

" 
The pru(/IlCI o/"'I("i" of an area is used in 

1,·- 1.rY dA ~I formulas 10 determine the orientation of 
an axis aboul which the moment of inertia 

• for the area is a maximum or minimum, 

" If the product of inertia for an arca is 

" 
Ii J 

known ,,·ith respect to its r:entroidal x', y' ' C 
axes.. then its ,·atue can be determined I ... _ 1, . .,. + Ad,l/, 
,,; .h rC$pcct to any .1". ,. axes using the l/' '. parallcl.-.xis theorem for the product of ~ 

inertia. , 
0 



Principal i\lomcnl$ of Inerlia 

Provided the moments of inertia. f, and 
I,. :lOd the product of inertia. f". arc 
known. thclllhc transformaTion formulas. 
nr Motu's circle. can he used 10 determine 
lhe mnimum and minimum or p'ilU~ifl"1 
IIIQlllelllS urillfn;" for the area. as well as 
findmJl ItIC oricntaliou of Ihe principal 
a~cs of ineflia. 

Mass Moment of Incrlia 

The mass momelll of mertill is a propert)' 
of a body 1hal measures its resisl:mce \0 a 
change in ilS rOlalian. It is defined as the 
"seoond mOnlcnt" of the mass elements of 
Ihe body aboll1 an axis.. 

For homogl.'ncous bodies having axial 
symmetry, the mass moment of incTlia can 
be determined by a single integration. using 
a di5k or shell clcrncnL 

The mass moment of inerlia of a 
composite body is dClcnnincd by using 
tabulnr values of its composite sha pes 
found on the inside baek cover. along with 
the paraJlcl-uI5Ihcorem. 

1, + 1, J(" -")' I_.---± _ . / 1 
- 2 2 '1 

C--CIC'~' '" 
tan 26, .. (I, 1,){2 

, 

i (~.1) 
..... ,.,. j <lz 

'-.L 

"T , 
-1.., 

/ 

f 
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• REVIEW PROBLEMS 

· 10-112. Determine the momem or inertia of Ihe beam's 
cro!.H I:Clional area 300m the x a.~;s which passes through 
the centroid C 

. 111-113. Delermine Ihe momenl of inerlia of Ihe beam's 
cross..sectional area aOOm the y 3)(is " 'hi eh passes through 
thecenlroid C 

" I ,-, 

" rohs. III- II2f I U 

.. 

10- 114. Determine the moment of inertia of the beam's 
(fOSHeClional area aboul the ofaxi!.. 

.. 

" " 

+---+--+---, 
• 

"roh. 10-1I4 

10-115. Determine the moment of inerlia of the beam's 
cros.Hcctional area wilh respect 10 the .... axis passing 
through the centroid C 

0.5 in. ·n. 

"mb. 111-115 

· 10-116. Determine Ihe producl of incrtia for the angle'S 
cross·&crl ional area wilh respecl to Ihe A" and .v' axes 
ha"ing thdr origin located at Ihe centroid C Assume aU 
corners 10 be right angles. 

57.37 mm 

"" mm 

-7=h-:JI-.----,-,' 
57p n"~ 

2tJ mmy,... ______ -''-_ J,_J, 
L-200 mm--4 

Prob. 10-116 



 

010-117. Determin..- Ih~ moment of inulia of th..- area 
aboullhe y axi$. 

11)- 118. Determine the mOment of inc rti~ of th..- ar..-~ 

aboutlhe .faxi$. 

, 

", 
2rt --l 

I'. ob .... 10- 11 7111 8 

10- 119. Detcrmin~ Ihe moment of inertia of the area 
about the;t axi$. "l'hen. using the parallel·axis theorem. find 
Ihe momenl of inertia abou t the;t ' axis Ihal passes through 
Ihe cenlroid C of the area. j' - 120 mOl. 

, 
""mm 

200 mm -.''i:"--cii---. '----" 

Proll. 10-1I9 

56 1 

" IO-HO. The pendulum consists of the slender rod O~L 
"'hich has a mass per unit length of J ky m. The Ihin disk 
bas a mass per unit area of 12 ky ml• Determine tbe 
distance ,. 10 Ihe center of mass G of the pendulum: then 
CIIlculale the momenl of ine rt ia of Ihe pendulum aboul an 
axis perpendicular to the page and ~ssing Ihrough G. 

l' rob. 10-120 

· 10-121. Determine the producl of inertia of the area 
wilh respect to the;t and y a~e$. 

, 

,- f-.... 
'm 

~-I.z::'---___ , 
'm 

l'mh. IO-H I 



EqUIlIbrium and stabolity of this artICulated crane boom as a funCIJOII of the boom 
posItion can be analyzed uSing methods based on work and energy. which are 
explained in this chapter. 



Virtual Work 

CHAPTER OBJECTIVES 

• To introduce the principle of vinual work and show how it applies to 
finding the equilibrium configuration of a system of pin-connected 

members. 

• To establish the potential-energy function and use the potential­
energy method to investigate the type of equilibrium or stability of 
a rigid body or system o f pin-connected members. 

11 .1 Definition of Work 

The pri,tripl, of drI/lU!II'ork was proposed by the Swiss malhcmalician 
kan Bemoulli in the eighteenth century. It provides an allcmali\'c method 
for solving problems invol\';ng the equilibrium of a part icle. a rigid body. 
or a system of connected rigid bodies. Before we discuss Ihis principle. 
however. we must first denne Ihe work produced by a force and by a 
couple 11I0I11I,:nl. 
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(.) 

~
-

J. rose -, 
,I. 

(b) 

H )t. II- I 

H I:. 11- 2 

Work of a Force . A force does work when it undergoes a 
displacement in the direction of its line of action. Consider. for example. 
the force F in Fig.ll - lllthat undergocsa diffcn.:nlial displacement dr. If 
/J is the angle between the force and the displacement. then the 
component o( F in the direction of the displacement is F cos O. And so 
the work produced by F is 

dV "" FdrcosO 

Notice Ihat this cxpres~ion is also the product of the foree F and 
the componcnl of displacement in the direction of the force. ({reos O. 
Fig. I I- lb. U we usc the definition of the dot product (Eq. 2- 14) the 
work can also be written as 

tlU = F·dr 

As the abm'e equations indicalc. work iS:I iical"r. and like other selilar 
quantities. it has a magnitude that can ei ther be posi/h't or m:guti.·t . 

In the SI system. the unit of work is a jO/dt' (1). which is the work 
produced by a I-N force that displaCt!s through a distance of I min Ihe 
direction of the force (I J = IN· m). The unit of work in the FPS system 
i5the foot.pound (ft ·]b). which is the work produced by a I-Ib force that 
displaces through a distance of I ft in Ihe direction of the force. 

1bc moment o f a forcc has th is stLme combination of UnilS; howe\'cr, 
the conccpts of moment and work arc in no way related. A moment is a 
vector quantit y. whereas work is a ,;caillr. 

Work of a Couple Moment. 111e rota lion of a couple momenl 
also produces work. Consider the rigid body in Fig. 11- 2. which is acted 
upon by Ihe couple forces F and - F that produce a couple moment M 
ha\'ing a magnitude M = Fr. When the body undergoes Ihe diffe rential 
displacement shown. points" and B move d, ,, and d' B to their final 
positions'" and 8'. respectively. Since (/ rll = dr" + tlr'. this mo\'emenl 
can be thought of as a /rIllls/llliOI! tl r". wh!!rc A and 8 nm\'\! to A ' and 
0". and a rolil/j(m about" '. where Ihe body rOlates through the angle tlO 
about A. The couple forces do no work during Ihe Imnslation dr,l because 
caeh force undergoes the SlImc amount of displacement in opposile 
directions.. Ihus canceling out the work. During rotmion. however, F is 
displaced d, · = ,tlO. and so it docs work tlU :: ,.. dr" = F, (/0. Since 
,\/ = F,. the work of the couple moment M is therdore 

(IV = MtiO 

If M and dO ha\'e the same sense. the work is POj"ilil'l' : however. if they 
have the opposi te sense. the work will be IItgll/i.'e. 
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Virtual Work. The defini tions of the work of a force and a couple 
have been presented in terols of (lel/illi I1WI·t'lIIeIlU expressed by 
differential displaccments having magnitudes of i f, and dO. Consider 
now an imogillll'Y or l'ifllwl " WI'tll/em of a body in static e([uitibrium, 
which indicales a displaC<!mcnt or rotation Ihat is flSSlllllt'(1 and does //01 

/ICII/III1)'t,riSI . These mO\'cmcnts ;Ire fiTliI-Ordcr dirr~'rentia l ([uanli l ies and 
will bc denoted by thc symbols 8r and 80 (delta , and delta 0). 
respectively. The "",lIwl work done by a force having a virtual 
displacemenll}r is 

I W - FcoSOl}r l (II- I) 

Similarly. when a couple undergoes it virlual rOlation li6 in Ihe plane of 
the couple forccs, lhe I ';rll/III work is 

( 11- 2) 

11.2 Principle of Virtual Work 

The principle of vi rlual work slales Ihal if a body is in e([uilibrium. Ihen 
the algebraic sum of the virtual work done by all the forces and couple 
moments ;Icling on Ihe body, is ;(ero for ;Iny \'irtu;,l tlisplac(:ment of the 
body. Thus.. 

W = o ( 11- 3) 

For example. consider the free-body diagram of Ihe particle (ball) Ihal 
rests on the floor. fi g. 11- 3, If we "imagine" the ball 10 be displaced 
downwards a \'irtual amount 8.1', then thc weight docs positi\'c virtual 
work. IV 8),. and lhe normal force docs negative \irtual work. - N iJ)'. 
For e([uilibrium Ihe tolal virt ual work must be zero. so Ihal 
W = lV iJ)' - NiJy={IV- N ) l})' ", O. Sin~-e l}y '¥- O. then N = IV as 
re([uiTed by applying :£ F, '" O. 

w 

j 
." 

f 
N 

.it:. II-3 
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In a similar manner. we can also apply the \'irtunl-work equation 
W :0 0 to :\ rigid body subjected 10 a coplanar force system. Here. 
separate virlllal translat ions in the .I" and y directions and a virtual 
rotation about an axis perpendicular 10 the x-y plane that passes through 
an arbitrary poin! O. will correspond to the three equi librium equations.. 
"f.F, = O. ~Fl = O. and ~Mo = O. When writing these e(luations.. it is 
110/ I1frl'SSllTY to include the work done by the ill/emu/ fo,ces act ing 
within the body since a rigid body dol'S 1101 (Iltform when subjected to an 
extcrnal loading. and furthermore. when the body mo\'es through a 
vi rtual displacement. the internal forces occur in equal but opposite 
collinear pairs. so that the rorresponding work dOne by each pair of 
forces will cancel. 

To demonst rate an application. consider the simply supported beam in 
Fig. 11-41,. When Ihe beam is gi\'ell a virtual rotation W about point B, 
Fig. II-4b. the onl)' forces that do work arc I' and A,.. Since 0)' c I W 
and oy' = (1/2) &I. Ihe \'irtual work equation for this casc is 
W = A .(IW) - P{I/ 2) &I = ( 11 ,1 - 1'1/ 2) 00 = O. Sincc{j() -;" O. then 
" >' = 1'/2. Excluding W. notice that the terms in parentheses :Ictually 
represcntthc application of"f.M 8 = O. 

As seen from the abo"e IWO examples.. no added :Idvantage is gained 
by solving particle and rigid-body equilibrium problems using Ihe 
principle of virtual work . This is because for each applic:llion of the 
,'irtuaf-work equation. the virtual displacement. common to evcr)' tenn. 
factors out. leaving an equation that could havc becn obtaincd in a more 
direct "'/l1m', by simply applying an equation or equilibrium. 

, 

! 
A 8 

___ .L , , 
,.j 
, 

.. 
'll' '-

.L .L , , 
"l 

Fig. I ' ..... 
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11.3 Principle of Virtual Work for a 
System of Connected Rigid Bodies 

The metllot! of \; rtual work is particularly cffcctiw for solving equilibrium 
problems that involve a system of severnl COlIIII'C/l'tI rigid bodies. such as 
the ones shown in Fig. 11- 5. 

Sieh of these systems is said to ha\'e only one degree of freedom since 
the arrangement of the links can be completely specified using only one 
coordinate O. In olher word~ with this single coordimlle and the lenglh of 
the members.. we c:m locate the position of the forces F and P. 

In Ihis text. we will only consider the application of the prinCiple of 
\inual work to systems conillining one degree of freedom -. Because they 
life less complicated. they will servc as a way to approach the solution of 
morc complex problems in\'oh'ings),slems with man)' degrees of freedom. 
"I'hc procedure for solving problems in\'ohing a system of frittionless 
connected rigid bodies follows. 

Important Points 

• A force docs work when it moves through a displacemenl in the 
direction of the force. A couple moment docs work when it 
mOlles through a collinear rotation. Specifically. posith'e work is 
donI.' when the force or couple moment and its displacement 
have the same sense of di rection. 

• The principle of \;rtual work is generally used to dete rmine the 
t.:qu il ibrium configuration fo r a system of multiply connected 
members. 

• A virtual displacement is imaginary: i.e .. it docs not really 
happen. It is a differential dL~pJaccmenl that is gh'en in the 
posi th'e direc tion of a position coordinate. 

• ForteS or couplc momcnts that do not virtually displace do no 
virtual work. 

.",Is mtlbod of .wlyin, ,Il.!: I'rincipl~ of ,irm~1 "'<)f~ i< somclim.u ~allcd 'he m~rh",1 
Qf .'/""IJI ,lupitIt'NtlnUI bttause a ,'i"\1.11 displ:>t"'rncnl ;. 3pplitd. resullin, in Ill.!: 
",kul'li"" of a rul force. AU""",h It ;' IKlI u",d he.c. we c:ln also apply lhe principle of 
,mu.1 , ... ."k '" amrlhod "f'·i,rualf",~~. l"" ""'thod" oflen used ", awtya ,'im.,,1 10«< 
and Ihcn delernllne lite dLSp/:KCmtnr, oCPOlllt< on defomublc bodi ..... Set: R. C. t tibN:I ... 
M«lumio of Malr,illis. 71h edmon. l'e.B<>nII'fenll« Hall. ZOO7. 

, 

tl~ 11-5 

Thi, ~' .. olS I,ll has One d.:vce of 
freedom. W;.hout Ihe lIeed for 
di.mcml>crillK the ",eehalllSlI' . Ihe 
fOK" in Ihe h)-dtaulic cylinder 118 
required 10 pr,,\ide Ihe tifl can be 
delermined 1I,,«lIy by u~in, Ihe 
principle of "irtu~1 work. 

" 

, 
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Procedure for Analysis 

Free-Body Diagram. 

• Draw the free-body diagram of the entire system of connected 
bodies amJ define the coor<iill(lIe 1/. 

• Sketch the "deflected posi tion" of the system on the free-body 
diagram when the system undergoes a positil·t virtual 
displacement Sq. 

Virtual Displacements. 

• Indicate poSilioll cmlf(finoles s. each measured from a/hel/ poilll 
on the free.body diagram. These coordil1<lles arc directed to the 
forces that do work. 

• Each of these coordinate a.xes should be portillFl 10 the line of 
uClion of the force 10 which it is direclt:d. so Ihatlhe virtual work 
along the coordinate axis can be calculated. 

• Rdatc each of the posi tion ,oordinates J' to the coordinate q: 
then /lillerell/itllt' these expressions in order 10 express each 
virtual displacement os in terms of Sq. 

Virtual-Work Equation. 

• Write the I'irwn/-work equation for Ihe system assuming that. 
whether possible or not. each position ,oordinnte r undergoes a 
IJO.~iti,'(' virtual displacement os. I f a force or couple moment is in 
th<: same direction as Ihe positive virtual displacement. the work 
is posilive. Otherwisc. it is negative. 

• Express the work of e(lch force and couplt: moment in Ihe 
equation internls of (jq. 

• Faclor out this common displacement from all the lenns. and 
solve for the unknown forct;, couple moment. or equilibrium 
position q. 
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EXAMPLE 11 .1 

Determine the :mgle f) for equilibrium of tllc two·member link.ege 
shown in Fig. 11--&1. Each member has a mass of 10 kg. 

SOLUTIO N 
Free.Body Diag ram. The system hles only one degree of freedom 
since the location of both links can Ix: specified by the single 
coordinate (q :) fl. As shol.m on the free-body diagram in Fig.ll-6b. 

c 
'"' 

.... hen /} has a IlOsil;I'e (clock .... ise) vinual rotation 08. only the force F _,~ ~ 
and the two 98.I -N weights do work. (The rC:lctive forces D.> and DJ, r " . 

I) , D Hf· .. 2!iN 
arc flxcd. and Rydocs 110t displace along Its Ime of action) ). . ·f,' ~..:.;;i;;f~1'-'-~ 

6y. . ~ . 6y .. t 
Virtual Displacements, If the oTlgln of coordmal.;s IS established 31 0 , liiJ 8 , 

the fired pin suppOrt D. thcn the position of f.' and W can be specified 1\' .. 'Il!.! N W .. 'JII. t N 
by the pOl'ili(}1I co(}rdillll/I'S '\ /J and y",. ln order to determine the work. (b) 
note that. as required. these coordinates arc paralld to the lines of 
action of their associated forces. Expressing these position 
coordinates in terms of 0 and taking the derivatives yields 

x8 = 2( lcosO) m liX8 =-2sin O/Wm 

y ... :!( lsin O) m liy ... : O.SeosOlX/m 

( I ) 

(2) 

II is scen by the siglls of these e(juations. and indicated in Fig. 11-61>, thm 
an im::rl'llse in /} (Le..ISO) eauses a dffrt'llsc in XI! <Ind an illtrl'lISc in y~_. 

Virtual-Wone Equation. If thc virtual displ<lecments li.fS and 0YK 
were bor" POSilil·t'. then Ihe fom:.'S W and F would do positivc work 
since the forces and their corresponding displacemenls would have the 
So1mc sense. Hence. the vinual·work equation for Ihe displacemenl Q() is 

QU : 0: IVliy ... + IV li), ... + Flix8 : 0 (3) 

Substitut ing Eqs. I <lnd 2 into Eq. 3 in order to relm,' the virt ual 
displacements to the common virlual displaccmentlX/ yields 

98.1 (U.5cosOISO) + 98.1 (0.5 cos QISO) + 25(-2sinOISO) = 0 

Notice that the "ncgalive work" done by F (forcc in the opposite 
scnsc to displacement) has actually been II{"COIII/It'd for in thc abovc 
cquation by the "negative sign" of Eq. I. Factoring out the comll/Oll 
dislJfilCl'memlX/ and solving for 8, noting thnt Q() 'I' O. yidds 

(98.1 cos 8 - 50sin 8) MJ = U 

All$. 

NOTE: If this problem had Ix:cn solved using the equations of 
equilibrium. il would be m:ccssary to dismember the links and apply 
thrcc scalar equations to ('a{"it link.llle principle of virlual wurk, by 
mcans of calculus, has eliminated this task so that the ;U\slI'cr is 
obtained directly. 
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EXAMPLE 11 .2 

,., 

'" 
HI:. 11- 7 

Determine the required force P in Fig. 11 - 7/1. needed to maintain 
equil ibrium of the scissors linkage when 0 = 60". The spring is 
ullS lrClched when 0 = 30°. Negleetlhe mass of Ihe links. 

SOLUTION 

Free-Body Diagram. Only F, and P do work when 0 undergo.:s a 
(}(Isi/h'e lIirtual displacement 80. Fig. 11- 7b. For Ihe arbitrary position 
O. the spring isstrelchcd (0.3 m) sin 0 - (0 . .1 10) sin 30°. so that 

F, = ks = 5000 N/m 1(0.3 10) sin 0 - (0.310) sin 300 J 

= ( ISUO sin 0 - 750) N 

Virtual Displaument5, The position ooordinah.:s. x/j and .lD_ 

measured from the fixed 1I0illl A. arc used 10 locale F, and I' . These 
coordinales arc parallel to the line of aclion of thei r corresponding 
forces. Expressing X/j and Xo in lerms of the angle 0 using 
trigonometry. 

X/I = (0.3 m) sin tJ 

Xv = 3[(0.3 m) sin OJ -= (0.910) sin 0 

Differentiating. we oblain Ihe "irtual displacements of points Band D. 

6),'8 = 0.3oos080 

6xo = 0.9cosOoo 

(\) 

(2) 

Virtual-Work Equation_ Force I' docs posilille work since il acts in 
the posilille sense of its "irlual displacement. The spring force F, docs 
negalille work sine<: il acts opposite 10 ils posi live virlual 
displacement. ThUs. the virtual-work equalion becomes 

6U = 0; 

- [1500 sin /1 - 750] (0.3 cos /1 00) + P (0.9 cos 0 liO) = 0 

IO.9P + 225 - 450 sin 01 cos 008 = 0 

Since cos II 80 '" O.then this equation requires 

P = 500sinO - 250 

When 0 = 60". 

f' = 500 sin 60" - 250 183 N tlm~. 
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EXAMPLE 11 .3 

]f the box in Fig. J]--8u has ~l mass of ]U kg.dctenninc the couple 
moment M needed to maintain equilibrium when 0 = 60". Neglect 
the mass of the mcmber$. 

(2m: , OA m 1 
to(9.11t l N 

~, I 
liYI. 

t 

~/ )'r. 

-z " 0.4S m 

" " 
L 

" f 

0 , ,.) 
'>I 

SOLUTION 

Free.Body Diagram. Whcn II undcrgocs 3 positive virtual 
displacement 08.only the couple moment 1\1 ,md the weight of the box 
do work. Fig. ] 1-811. 

Virtual Displacements. The position coordinate Yt. .measurcd from 
the fixed point B.loclLtes the weight. 10(9.81) N. Here. 

Y£ = (0.45 nl) sin e + b 

where b is a const ant distance. Differentiating this equation. we obtain 

~Yt: = 0.45mcosfJ&J 

Virtual·Work Equation. l be \'irlUal·work cqu;Ltion becomes 

~u = 0; MOO - 110(9.81) NI~)'£ = 0 

Substituting Eq. l into this cqufltion 

M&J - 10{9.81) N{O.45m cos 0 08) = 0 

&J(M - 44.145coslJ) "" 0 

Since MJ "#. 0, then 

At - 44.14500s0 = O 

Since it is requi red thill 0 '" 60°. then 

AI = 44.145 cos 60" = 22.1 N'm 

(1 ) 

AilS. 

, 
C/ 
~ .. 
~ D, 

D, 
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EXAMPLE 11 .4 

,.) 

,>I 

f.i l:. I I-9 

The mechanism in Fig. 11-911 supports tht.: S(Hb cylinder. Determine 
the angle 0 for e<luilibriunl if the spring has an unstretched length of 
2 ft when 0 = 0°. NegleCllhe mass of the members. 

SOLUTION 

Free.Body Diagram. When the mechanism undergoes a positive 
vinual displacement &I. Fig. 11- 9b,only f.', and the SO-Ib force do work. 
Since tht.: final It.:ngth of the spring is 2(1 ft eos 0). Ihen 

Fs = h = (200lb/ft)(2fl - 2ftcosll) = (400 - 400cosO)lb 

Virtual Displace ments. The position coordinOi tes .1 0 and x l: arc 
1,:slablished from Lhe fixed paim A to IOCOI Le F, al D and at E. 
The coordinate YB, :llso measured from A. sptcifics the position of lhe 
50-Ib force :II B. TIle coordin:l tcs can be expressed in lemlS of 0 using 
lrigonometry. 

Xv """ (I fl) cos 0 

.r £ = 3[( 1 fl)cosO] = (Jrl) cos 0 

)'/1 = (2fl)sin O 

Differe ntiating. we oblain the virtual displacements of points D. E. 
and B as 

5xo = - I sin 0 IlO 

5.1£ = - 3 sin 0 50 

oYlJ = 2cosOao 

() ) 

(2) 

(3) 

Virtual-Work Equation. l be l'inu;11-work equation is wrillen as if 
att virlual displacements arc posi tive,lhus 

au = 0: 

(400 - 400 cos 0)( - 3 sin 000) + 50(2 cos 0 50) 

- (400 - 4ooe050)( - 1 5inOOO) = 0 

80 !SOO sin OoosO - SOOsin 0 + 1000050) "" 0 

Since IlO #- 0, then 

BOO sin 0 eos 0 - 800 sin /J + 100 cosO = 0 

Solving by trhl1 and e rror, 

Ant 
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• FUNDAMENTAL PROBLEMS 

1'"11- 1. D.::t.::rmine tlle required magnitude of force " to 
main tain equilibrium of the linkage at 0 .. 60·. Each link 
has a mass of 20 kg. 

, 

FI I_I 

1'"11- 2. Determine tlle magnitude of force P r.::qui r.::d 10 
hold Ihe SO-kg smooth rod in equilibrium m (I .. 60", 

"' 11- 2 

FII - 3. The linkage is subjected to a force of I ' .. 2 kN. 
Determine the angle (I for equilibrium. ' I"he spring is 
unstretched whcn 0 .. 0'". Negle.:t thc mass of the links. 

/' _ 2 kN 

k _ IHN /m --O.6m 

ei-=-=--;;-"",,=:j c 

)-

1-". 
FII- J 

""11_1. The linkag.:: is $ubjceted to a force of I' .. 6 kN. 
Determine the angle Ii for equilibrium. The spring is 
unstrctched 3t /J .. 60". Negll'C'I the mass of the links. 

FlI-4 

'-'1- 5, Determine the angle (I where th.:: SO-kg bar is in 
equilibrium.l he spring is unstrelehcd al 0 .. 60". 

f'l1 -6. The sciMOfS linkag.:: is subjected to a force of 
I' .. 150 N, Determine Ihe angk (I for equilihrium. The 
spring;s uru;trelehed at (J .. 0". Neglcctthe mass of Ill.:: links. 

k .. IS 

FII-6 
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• PROBLEMS 

oIl - I. The 200-kg cratc is on the lift table at the position 
/1 - 30". Determinc the force in the hydraulic cylinder AD 
for equilibrium. Negle~t the mass of Ihe lift table 's 
componenls. 

" rob. 11- 1 

1.1 - 2. 'Ille uniform rod 0 ,1 has a weight of !O lb. When tIN: 
rod i~ in a l"Crtieal posilion.O .. O" , thc spring is unst rClclN:d. 
Determine Ihe angle (} for equilibrium if the end of the spring 
"Taps around the periphery of Ihe dis~ as the dis~ IUrns. 

k - 30 Ib/fl 

l'rob. II- 2 

11- 3. The "Nuremberg scissors" is subjected 10 a 
horizontal force of P - 600 N. Determine Ihe angle (} for 
equilibrium. The spring has a stiffness of k - ]S kN/ m and 
is unstre tched "hen 0 .. ]S~. 

· 11-4. The "Nuremberg SC ISSOrs" is subjected 10 a 
horizontal force of P .. 600 N. Determine Ihe stiffncss k of 
the spring for equilibrium " hen II - 600. The spnng is 
unstretchcd " 'hen (} .. ]S·. 

Prok 11- J/4 

011- 5. Determine the force dC"cloped in the spring 
required to keep Ihe 10 Ib uniform rod AB in equilibnum 
whenO _ 35". 

, 

Prob. 11- 5 
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11-6. I f D force of I' '"' Sib is applied 10 Ihe handle of Ihe 
llIechanism.delCnnille the force the screw exerts on the eork 
of Ihe bottle. The s<:rcw is al1a<:hcd to tbe pin at , \ and passes 
Ibrough Ihe collaf tbat is auachcd to Ihe botlle ncrk 81H. 

l'mb. ll-6 

11- 7. The pin-connC;:led mechanism is consl rained m A by 
a pin and at 8 by a roller. If /' - 10 lb. determine the angle 
II for equilibrium. The spring is unstretched when IJ - 45". 
Neglect the ,' .. eighl of the members. 

' 11-8. The pin'COllnecled mechanism is constrained by a 
pin at , \ and a roller al 11. Determine the force P thm must 
be applied 10 Ihe roller to hold tbe meChanism ;n 
equilibrium when (J - JO". The spring is unstretched when 
I) - 45". NegleClthc weighl oflhc members. 

~"""=" 

0.5 11 

OOS f1 OOS 11 

Prt)k 11- 7/X 

· 11- 9. If a force P '"' 100 N is applied \0 the ICI'Cf arm o f 
Ihe loggle press.delcrmine the clamping fom: dC\'elopcd in 
the block When (J • 45°. Neglect the weight of the block. 

1'rob. I I- 9 

11- 10. When the fOfces arc applied to Ihe handles of Ihe 
boule opener. determine the pulling force developed on 
lhe cork. 

" rob. I I- III 
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I I- I I. If the spring has a stiffness k and an unstrNched 
length I".. dctenlline the force I' when the mechanism is in 
the position shown. Neglect the weight of the members. 

- '1- 12. Sol\'e !'rob. II-I] if the force P is applied 
\"crtieall)' downward at H. 

" 

,_---"8~ 

c 

01l_ IJ. De termine the angles fJ for equilibnunl of the 
4·Ib disk using the principle of \/irtual work. Neglect the 
" 'eigh t of the rod. The spring is unSl relched when (j '"' O· and 
alwa)'s remains in the \'er1ic-a1 position due 10 lhe roller guide. 

k '"' S111>/fl 

I'rub. ll- IJ 

11- 14. The truck is wcighcd on the highwa)' inspection 
scale. If a known mass III is placed a distance s from the 
fulcrum H of the Kale. determine lhc mass of the Huck IU, if 
its center of grav;l)' is located at a distance d from point C 
When the scale is empty. lhe weighl of the le"cr AHC 
balan~ the scale COl:."". 

"rob. 11- 14 

11- 15. lhe assembly is used for exercise. It consists of four 
pin-conneeted bars. each of length L and a spring Of 
sliffness Ii and unstrelehed length 11« 2L). If horizontal 
forces arc applied to Ihe handles so lhat " is slowly 
decreased. determine the angle (j at "'hich the magnitude of 
P becomcs a muimum. 

A 

, -, 

c 

"rob. 11- 15 
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- " - 16. A H.:g unifornl ser.·ing table i~ supporled on each 
side by PlUrs of 1"'0 identical linlts. AH and CD. and springs 
Ct.' . If Ihe howl has a mass of 1 kg, determine Ihe angle 0 
where the labll.' is in equilibrium. The springs each have a 
stiffness of k - 200 N/ m and arc unstretched when 0 - 90" 
. Neglccllhc mass of Ihe links. 

·11- 17. A 5'kg uniform se rving table is supported on each 
side by two pairs of idr:nlicallinks. 118 and CD. and springs 
CEo Iflhe bowl has a mass of I kg and is in equilibrium when 
o - 4S· .delerminc Ihe sliffness k of each spring. The springs 
arc unstrctdlCd when 8 - 90". NegleClthc mass oflhe links. 

r '''' om, r' m"l 

. A 

'""''!B--T'" 

"robs, 11- 16117 

11- 111. If a vertical force of I' - SO N is apphed lQ the 
handle of Ihe IOggle clamp. delennine the clamping force 
uerted on Ihe pipe. 

tOOnHn 
0.....-'. 

A 
o 

300 nu" -T--50) nl", -_. 

C 
o 

I' rub. II_ Iii 

11- 19. The spring is unstretched when 0 .. 450 and has a 
sliffness of Ii • 1000 lbl ft. Delermine the angle 8 for 
equilibrium if each orlhe cylinders weighs SO lb. Ncg1cClthc 
weigbt of the members. The spring remallls horizonlal at all 
limes due 10 the roUe r. 

i'rob, I I- 19 

- II- 20, The machine shown is used for fonning melal 
plales. It consists of 1"0 toggles ABC and DEF. which arc 
operated hy the hydraulic cylinder. The loggles push Ihe 
nlO"cable bar G forward. pressing the plMe inlo Ihe ca,·ity. 
If Ihe force which Ihe plalc nerts on Ihe head is " - 11 kN. 
determine the for(e F in the hydrauli, cylinder when 
(j . 30". 

piau' 

, 
" , 

-,. 

I'nlb. 11- 2\1 
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011- 11. The \'cnl plate issupported at 8 b)' a pin. If il weiglls 
15 Ib and IL15 a center of gm\'ity at G. determine the 5tirfncS!; 
k of Ihe spring so lha l Ihe plaIC remains in equilibrium at 
f '" 3O".·1lIe spring is unstretebed "'hen /} '" 0". 

I' roh. II- !J 

I I- H. Dctermine thc weight of block G required to 
b.llanct: the differential Ie,ocr wllcn the 2G.lb load f is 
placed on Ihe pan.The le\'er is in balance whe n Ihe load and 
block arc not on thc levcr. Take .J .. 12 in. 

11-lJ. If the load F weighs 20 Ib and Ihe block G " 'eighs 
2 lb. determine its position .( for equilibrium of the 
diffe rential Ie'·er. The Ie"cr is in balance ,,-hen Ihc load and 
block are nOI on IIII.' lewr. 

4In. · _ 4;n ..... ___ .' 

G 

, '" 
F 

('rohs. 11- 2U13 

°ll_U . Determine tbe magnitude of tbe couple moment 
M required to support Ihe 2().kg cylinder in the 
ronfiguralion shown.lbe smoolh pcg al 8 can slide freely 
"llhin the slol. Ncgleet lhe maS!; of the members. 

I'roh. II - U 

01J_15. The nankshafl is subj~tcd 10 a torque of 
.II .. 50 lb · fl . Determine Ihe vcnical oompre5Si,oc force F 
applied 10 Ihe pislon for equilibrium when f - fIY'. 

F 

r 
5 in. 

.( 

" roh. 11- 25 



*11.4 Conservative Forces 

U the work of a forc.::: only depends upon its initial and final positions.. and 
is ill/lt'I'l'm/l'iII of the path il Ir:lvcls. then the forcc is referred \0 as a 
cOJlseYl'(l/iI',. /or(t. l'hc weight of a bOO~' and Ihe force of a spring arc 1100'0 
examples of conscTvali\'c forces. 

Weight. Consider a block of weight W Ihal trlwels along the path in 
Fig. II - lOtI. When it is displaced up the path b)' an amount tlr. then the 
work is /IU = W ' lfr or //U = - 1V(llr cos 0) "" - lVlly, M shown in Fig. 
II- lOb. In this Colse. the work is lIt'glilil'#' since \V aCls in the opposite 
scnse of II)'. Thus.. if the block rno\'cs from II [0 8, lhrOllgh the ve rtical 
displacement 1I.lht work is 

U = - fo~ IV 1/)' .. - 11'11 

111.: weight of a body is therefore a conservati ve force. since [he work 
done by thc weight depends only on the l'fT/ieal displUCfmflll of the 
body. and is independent of the palh ;I long which Ihe body travels, 

Spring Force. Now consider Ihe linearl)' cl:aslic spring in Fig. I I- II . 
which undcrg~s a displacement lis. The work done by the spring force 
o n the block is dU = - F, tis = - ks ds, The work is 111'811111'1' i>ec;ausc F, 
aCls in Ihe opposite sense to th :11 of (II;, Thus. the work of fo", when the 
block is displaced from s = .I'J 10 S = J't is 

I'!cre the work depends onl)' on the spring's inilial and final posilions. St 

and l '!. measured from the spring's unstretched ~ilion, Since Ihis resull 
is independent of Ihe palh laken by the block as it moves. Ihen a spring 
force is also a C()IJSl'fI'(Jlil'l: [Utrl'. 

M~'(:'~ 
I III 

U"ddOfm~ 
POSUIO<l 

~lg. 11- 11 

11 ,4 CONSWATMFO!tC€s 579 

,.) 

") 

~lg. 11- 10 

w 

H • 
~ 

" 
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'r "D",31",.mL __ C __ - V,·O 

. il-~- V,. - II'>' 

Friction . In contrasl 10 a conser\';!li\'c force. consider the force of 
f,ic/iull exerted on a sliding body by a fixed surface. The work done b)' 
the frictional fo rce depends on the path: the longer the path. the greater 
the work. Conscquently. frictional forces arc '/oIIC()llSt'ro 'atil'~. and most 
of the work done b)' them is dissipated from the body in the form of heal. 

*11.5 Pote ntia l Energy 

When a con~rvati\'e force acts on a bod)'. it gh'es thl' body the eapltcity 
to do work. This capacit)'. measured as PQ/ent;tll ellersy . depends on the 
location of the body relative to a fixed reference position or datum. 

Gravitational Potential Energy. If a body is located a distance 
y III>m'e a fixed horizontal reference or datum ,IS in Fig. 11- 12.lhe weight 
of the body has positi,'/' gravitational potential energy V, since W has the 
capacity of doing positive work when Ihe body is moved back down 10 

the d'ltllm. Likewise. if the booy is located a dis tance y b/'Iow the dmulll. 
V, is "/'g(l/iI'~ since the weight docs negative work when Ihe body is 
mO\'cd back up to Ihe datum. At the datum. V.r '" O. 

Measuring)' as positi.,/, up ... ard. the gral'italional potential cnergy of 
thc body's wcight W is therefore 

(11-4) 

Elastic Potential Energy. When a spring is ehher elongated or 
comprcssed by an :11I10unt s from its unstre tched position (the datum). 
the energy stored in the spring is called I'lIl$1ic l'(JIl'II/illl 1'111"8)" It is 
dctermined frOIll 

( 11- 5) 

This energy is :llways a posi ti\'c quantity since thc spring force acting on 
the auached body docs (IOsitil'l' work on the body ,1$ the force returns 
the body to the spring's unSlrctched position. Fig. 11- 13. 

Undcformcd 
J'Ol'i1ioo 

f1J(. I I- B 



 

Potentia l Function . In the gcncr~J casc. if a body is subjected 10 
bOIl! gravitational and clastic forces. the pOlellliall'lIergy or pOlelllitt! 
[rUlClioll V of tIll; body can be expressed as the lligebraic sum 

( 11-6) 

where measurement of V dqJcnds on the location of thc body with 
rcspectto a selccted datum in accordancc with Eqs. 11-4 amI 11 -5, 

In particular, if a splellJ of frictionkss connccted rigid bodies has a 
single degree of freedom, such that its \'cT1ical position from the datum is 
defined by thc coordinate q, then the potential functiOll ror the system 
can be expressed as V = ,,(./), 11Ie work dOlle by all Ihe weight and 
spring forces acting on the system in moving it from " I In '/2. is measored 
by the ,fiffaellce in V; i.e .. 

( 11- 7) 

For example. the potcllt ial fOllction for a system consist ing of a block of 
weight W suppmtCd by a spring. as in Fig. 11 - 14. can be expressed in 
terms of the coordinate (II =) y. measored frolll a rixed datum located at 
the onst rctched length of the spring. Here 

,, = v~+ v,. 

= - Wy + lkl (11-8) 

I f the block mo\"cs from )'\ 10 n . then applying Eq . 11- 7 the work of W 
and FJ is 

,.) 
Fig. 11- 1-1 

11.5 POTENIlAl ENEII(;Y 581 
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(.J 

,.~ - kr ... 

(OJ 

*11 .6 Potential-Energy Criterion for 
Equilibrium 

If a frictiunless connected system h;.s one degree of freedom. and its 
position is defined by the coordinate q. then if it displac~'S from (I to 
If + (1(/. Eq. 11- 7 becomes 

dU '" V(If ) - V(1f + (/(/) 

., 
dU ,= - (IV 

If the s)'stem is in eqUilibrium and undergoes a "iTlllal (/ispIIlCt:II/('1lI 8q. 
rather than;m actual displacement rlq . then the above equation becomes 
W = - 8V. However. the principle of ... irtual work requires that W = O. 
and therefore. 8V '" O. and so we can write 81' '" «(lVld(!'}~1J = O. Since 
Otl 'f.. O. this expression becomes 

( 11- 9) 

li ence. wllt'll a Iric'/ioll/ess C'O/IIIt'cfl.'d S)'S/t'1II 01 rigill bmJit's is ill 

ellllilibrilllll. IIII' firsl tlt',il'luil'c 01 ils pOlt'll/illl lillle/iOlI is ze,o. For 
example. using Eq . 11-8 we can de termine the equilibrium position for 
the spring and block in Fig. 11- 1411. We have 

<IV 
- = - w + ky = 0 
<ly 

Hence. the equilibrium posi tion)' = y~ is 

IV 
Y.q = k 

Of course. this Sllllll.' 't'511It c<ln be obtained by applying ~ F v = 0 to the 
forces ac ting on the frec·body diagram of the block. Fig. 11 - 14b. 
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*11 .7 Stability of Equilibrium 
Configuration 

The potential function Vof a system elm also bl! used to in,'cstigate the 
stability of the equilibrium configuration. which is classified as s/a"/~ . 

I/('Il/wf. or lUu/ahk 

Stable Equilibrium. A system is s.1id to be sw/J/(' if a system has a 
tendency to retuTil to its original position when a small displac.::menl is 
givcn 10 Ihe syslem. The polenlial enl! rgy of Ihl! syslem in Ihis case is OIl 
ils lJIillimum. A simple example is shown in Fig.. 11- 1511. When Ihe disk is 
gil'cn iI sma1i displac.::menl. ils eenler of gnwil)' C \Iill always move 
(rolale) back 10 ils equilibrium posilion. which is al Ihe IOll"u/ poilU of its 
palh. This is where Ihe polenLial energy of Ihe disk is al ils millimllm. 

Neutral Equilibrium. A syslem is ~id 10 be in '/ell/rill t(/Ili/ih,irmr 
if Ihe syslem sliII remains in equilibrium whcn the system is gh'en a 
small displacemenl away from ils original posilion. In Ihis case. Ihe 
polenlial energy of Ihe sysl~'m is (Oils/mil. Neulral equilibrium is shown 
in Fig..I I- ISb. where a disk is pinned OIl C. Each time Ihe disk is rOlaled. 
a new l!quilibrium posilion is eslablishl!d and Ihe potenl ial l!nergy 
remains ul1changcd. 

Unstable Equilibrium. A S)'Slem is silid 10 be mrsw/)Il'. if it has a 
tendency 10 be riispfil(eli FIr//ra a ... o), from ils original equilibrium 
posilion when it is given a small displacement. The potenlial energy of 
Ihe s)'stem in Ihis case is a /lIluimrmr. An unslablc equilibrium posilion 
of the disk is shown in Fig.. 11- ISc. Here Ihe disk will rOlate ;lway (rom its 
equil ibrium posilion when ils eenler of gral'il), is slighll)' displ;tced. AI 
Ihis /right's/ !,villl. its pOlenlial energy is al a moximulII. 

Stable equilibrium Neutral equilibrium Unslable equilibrium 

,.) ,» ,,) 

~1g. II- IS 

Th~ coumelwdgh, a, A balana:s th~ 
weigh' of ,he deck 8 of this ~inlplc lift 
hridge . By appl )'ing .he "",.hod of 
poIenli:r.l enell)' " " can",udr rhe sr3bilil)' 
of rhe srructufe for ,""riou~ cquihbrrunl 
rositions or the deck . 
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v 

\. ~>o / 

~ 
L-______ ~-------q 

'. 
Slable cquillbnum ,.) 

Dunng high winds and when going around 
acurw. \hcsc sugar-<'ll.ilC ItlICks can become 
unstable and lip o,-cr ~il>Cc lhcir oxnlcr of 
gr.,·ily is high off lhe ,oad when lhey arc 
fully'o;,dcd. 

L.. ____ :-_____ 
q '. 

Un<labl ~ cqui1'briun' 

") 

Fi~. 11- 16 

v 

d'V 
Jq' - II _

_ --'-, __ J V .. 0 

" 
L-______ ~ _______ , 

'. 
Nculral equilibrium 

,<) 

One-Degree-of-Freedom System. If a system has only onc 
degTl'C of freedom. and its position is defined by the coordinate q. then the 
potenli.ll function V for the systcm in temlsof IJ c:m be pIOltcd.Fig. I 1- 16. 
Provided the $)'s[em is in 1'1J"ilibriufII . then dVMIJ. which represents thc 
slopt.: of this function. must be equal to zerO. An invcstigmion of slability 
at lhe cquilibrium configuralion Iherdore requires Ihal the S(.'Cond 
derivative of the potential fUnction be evaluated. 

If IIl V /11,f is greater than ".ero. Fig. 11-16(/, the potential energy of !hc 
syslCm will be a mi"imum. This indicates Ihm the equilibrium 
configuration is .fllfble. Thus. 

<IV 0 Il lV 
- = -- > 0 stable equilibrium (1 1- 10) 
lill' dq 2 

If 11 2V/ dq 2 is less than zero. Fig. 1l-IOb. the potential energy of the 
system will be a 1t11Ll"imullt . This indicates an um"llIbll' equilibrium 
oonfiguralion. lbus. 

dV -; 0 
11(1 • unslahle eqUilibrium (II - II) 

Finally. if tl 2V/(f(/ ~ is eq ual to zero. il lVill be neC<!ssary to investigate 
the higher order dcrivutives 10 detemline Ihe stabili ty. The equilibrium 
oonfiguralion will be sit/ble if the first non·zero derivative is of an ," 'CII 

order and it is pm'ilh''' . Likewise. the eqUilibrium will be ItIwt/bl" if this 
first non·~cro derivative is odd or if it is even and negalil'e. If all the 
higher order deriva tives arc ~CrtI. the system is said to be in /leulrIIl 
t'quilibriult1. Fig 11-1&. ThUs. 

dll (f !V II lV 
=--= ·· · = 0 

dq 
neutra l equilibrium (11 - 12) 

This condition occurs only if the potential-energy function for Ihe 
system is constant at or around the neighborhood of C/c~. 
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Procedure for Analysis 

Using potential-energy methods, the equilibrium positions and the 
stability of a body or a system of l'Onoccted bodies hilving a single 
degree of freedom can be obtained by applying the following 
procedure. 

Potential Function. 

• Sketch the system so that it is in the arhitrary PQ.>"ilioll specified 
by the coordinate q. 

• Establish H horizontal dU1II11I through H fixed poi,,,· Hnd express 
the gravitational potential energy Vg in terms of the weight IV of 
each member and its verlical distance}" from the datum. 
V, = W y. 

• Express the c];lSIic potential energy V, of the system in terms of 
the stretch or compression. s. of any connecting spring. 
V, = ~ ks l. 

• Formulate the potential function V t V, + V, and express lhe 
POSilio ll ("(Jori/i/rates y and s in temls of the single coordinate q. 

Equilibrium Position. 

• 111.e equilibrium position of the system is determined by taking 
the first derivative of Vand sctling it \!quaJ to zero, <IV f llq = O. 

Stability. 

• Stability althe equilibrium position is determined by evaluating 
the second or highcr-order derivali\'es of V. 

• If the second derivative is greater than lero. the system is stable: 
if all deriva tives arc equal to 1.cro. lhe system is in neutral 
equilibrium: ;lOd if the second deriva tive is less than zero. Ihe 
system is unstable. 

'"lbc 1oc:~li(l(\ of rhe dalum is ",hlt",r),. s.i1K<l only lhi: t /wl,Kf'S or d,lfe...,nl iab 01 
V are ""Iuin:d for m,""slIgo, !ion 0/ Ihe C<juilibr;um posillon and liS siahilitr. 

585 
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EXAMPLE 11 .5 

" - 200N/m 

1') 

1>' 

"ig 11- 17 

The uniform link shown in Fig. I 1- 1711 has a mass of 10 kg. If the spring 
is unstretched when IJ = 0'. deh::mline the angle 0 for equilibrium and 
im·estigate th(: stability al the equilibrium position. 

SOLUTION 

Potential Function. The datum is established at the bottom of the 
link. Fig. I 1- 17b. When Ihe link is located in the arbin ary posi tion I). 

the spring in~Te;lsc5 its potential energy by stretching ano the weight 
decreases its potential energy. Hence. 

1 , 
V '" v;. + V, "'"2kr+ IVy 

Since I = s + I cos I) or s = 1(1 - oosl), anJ y = (// 2) cos O.then 

1 , '(' ) V '" 2"kl"(1 - oosO)" + IV "2cosl) 

Equilibrium Position. lliC finn derivmive of V is 
dV , IVI do '" kl-(l - oosO)sinO - T sino = 0 

0 ' 

[ IV 1 . Ikl ( l - OOSO)-T smO = O 

l liis equation is satisfic<i pru\'ided 

sinQ = O AilS-

- .-, ( - -"') - -,[ - 10(9.81) 1 ~ • 
o - cos 1 2kl - cos 1 2(200)(0.6) 53.8 AIlS. 

Stability. The second derivative of V is 

c11V , . . IVI 
--, "" kl-(1 - cos 0) cos 0 + kll sm I) Sin fJ - - 'lli 0 
({If" 2 

, IVI 
= kl-(cos II - cos 20) - T COS 0 

Substituting values for the constants. with 0 "" O~ andO = 53.8". yic!ds 

dlV I ' 10(9.8 1)(0.6) 
-. = 200(0.6) -(cosO~ - cos~) - cosO· 
(/(1'" ,_u 2 

= - 29.4 < 0 (unstable equilibrium at 0 '" 0") .'Ins. 

r/2V I' 10(9.81)(0.6) 
-. = 200«().6t(oos53.8° - cos 107.6") - cos 53.8" 
dO" , ~~.U 2 

= 46.9> 0 (stable equilibrium at fJ "" 53.8") Am. 
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EXAMPLE 11 .6 

]f the spring liD in Fig. I ] - ]&, has a stiffness of ]& kNlm and is 
unstretched when (J = 6()". dete rmine the lIng]e 0 for equilibrium. The 
load h~15 a mass of 1.5 Mg. ]nvestigale the stability at the equil ibrium 
position. 

SOLUTION 

Potential Energy. 'Thc gravilatiollill pulcmial ..,nergy for Ihe load 
with respect to the fixed datum. shown in Fig. II- ISh. is 

V, = IIlg)' = 1500(9.81) N[(4 m) sin (} + III = 5& 860 sin IJ + 1471511 

where II is a constant dist:mcc. From the geometry of the system. the 
elongation of the spring when the load is on the platfoml is 
s = (4m)cosO - (4m)cos60o = (4m) cos(J - 2 m. 

ThUs. the elastic potential energy of the system is 

V. = }b Z = i(18000N/m)(4mcosO - 2m)l = 9000(4 cos 0 - 2) ~ 

The potential energy function for the system is therefore 

V = V, + V.= 5886Osin O + 1471511 + 9000(4 cos 0 - 2)2 

Equilibrium. When the system is in equilibrium. 

dV " 
- = 58860 l'ostJ + 18000(4 cos 0 - 2)(-4 Sill 0) "" 0 
dO 

58860cosO - 2R8 000 sin 0 COS 0 + 144{)OU sin II = 0 

Since sin 20 = 2 sin (I cos O. 

58860 cosO - 144 (100 sin 20 + 144 000 sin (} = 0 

Solving by trial and error. 

0 = 28.18° and 0 .: 45.51 ° 

Stability. Taking the second derivative of Eq. I. 

d 2V 
--, = - 588605iIl 0 - 2SS ()()() cos 20 + 144 000 cos 0 ,'0' 

Substituting (} = 28.18° yields 

d1V 
flO'" = - 60 409 < 0 

And for 0 = 45.51 °. 

t/2V 
- = 64 073 > 0 
"Ii' 

Unstable 

Stable 

( \ ) 

AI/s. 

AIlS. 

(. ) 

r 
'" 

- -_4 m <:01.6 

'"' 
fig ll- IK 
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EXAMPLE 11 .7 

R 

(., 

_ ...... ""all!!!L 

\ (R + f )""" 9 
(>, 

tIl! 11 - 19 

The unifoml block having a mass III rests on the top surface of the half 
cylinder. Fig. 11 - 19l1. Show thilt this is a condition of unstable 
equilibrium if II > 2R. 

SOLUTION 

Potential Function. The dlltUIil is established at the base of the 
cylinder. Fig. 11- 19b. If the block is displaced by an amount 8 from the 
equilibrium position. the potcnti;!l functi on is 

V = V,+ Vt 

'" U + mgy 

From Fig. II - ISh. 

Y=(R+ %)COSO+ROSinll 

Thull. 

Equilibrium Position. 

'~~ '" mg[-(R + ~)Sino + RsinO + RO cos 0] =() 

'" mg(-iSino + ROCOS/)) '" 0 

Note tha t /) '" 0" satisfies this equation. 

Stability. Taking the second derivative of \' yields 

d'v (" ) dfil '" mg -"2c0511 + R cos() - ROsinfJ 

AtO = OO, 

hi (") (UjZ '_0"" '" - mg "2- R 

Since all the constants arc positive. the block is in unstable 
equilibrium provided II > 2R. beeause th~'n (/1VI,/o2 < O. 



• PROBLEMS 

11- 26. If Ihe palentia! energy for a conservative one­
degree-ol·freedom system is cxprc~d by the Telalian 
I' _ (4"'; - x! - 3x + 10) fl'lb. where x is given in fecI. 
de lenninc Ihe equilibrium positions and investigate Ihe 
slobill,}' al clKh position. 

11- 27. If Ihe potential cnerg)' for a oonser\'31;\'C one­
degree-or·freedom s)"Slcm is expressed by the Tela,ion 
V _ (24 sin II + 10 COli 26) fl · lb. 0" :5 (J ::5 90", determine 
Ihe cqumbrium positions and in\'cSligatc the slabilil)' al 
each position. 

*II - ZS. If Ihe pou:n lial energy for a conservative onc­
degree·or-freedom S)'lll('m ;$ expressed by the relation 
I' - pyl + 2)': - 4y + 50) J, where ), is gi\'cn in meters. 
de termine the equIlibrium positions and investigate the 
stability 8[ ca.:h position. 

.11- 211. lhe 2·Mg bridge. with cen ter of mass at point G. is 
lifted by 1\\"0 beams CD. l()(3Ied at each side of the bridge. 
If the 2·Mg counterweighl E is 3u3ched to Ihe beams as 
sho"-n. determine the angle (J for equilibrium. Neglect the 
" 'cight of the beams and Ihe lie rods. 

"- 'm 
"' 

I'roh. 11- 29 
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11- 30. The spring has 3 stiffness k .. 600 Ibl ll and is 
umtrctched when 0 .. ·uo. lftbe mechanism is in equilibrium 
when (J .. fIJ". determine lhe weight of C)'~ndcr D. NegltCi 
lhe weighl of the members. Rod A8 remains hori;.:ontal al all 
times since the rollarcan slide free!yalong the vertical guide. 

c 

I'rllb. 11- 30 

11- 31. If the springs at A and C have an unslretched 
lenglh of 10 in. while the spring at tJ has an unslretched 
lenglh of 12 in .. determine the height Ir of the platform 
when the system is in equilibrium. Investigate the stability 
of Ihis equilibrium configuration. The pachgi.' and the 
pl:ttfoml have a lotal weight of 150 lb. 

kr - 20lbfln. k: '" .10 Ibfon. 

PtIlb. 11- 31 
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° l l- J!. the spring is unstretehed " 'hen 8 .. .15° and has a 
stiffness of k " 1000 Ib/ fl. Determine thc anglc 8 for 
equilibrium if cach of the cylinders .... eighs 50 lb. Ncglcctthc 
"'eight of the members. 

rrob. II -3Z 

· ll_J.t A 5·],;g uniform ser.·ing table is ~upporlcd on cach 
side by P'lirs of t"'O identical link$, AH and CD. and $prings 
CE. If the 110"1 has a mass of I kg. delermine thc angle 0 
.... here the table is in equilibrium. lhc springs each h3''e a 
51iffllCss of k .. 200 N/ m and arc unstretched .... hen 0 .. 90". 
Ncglc(1lhe mass of the links. 

250mm 150 mm 

~~,£ <A 

, 
, 
150 111m 

"rob. 11- 33 

11-3.l. If a Io-kg load I is plac.'d on the p:an.detcrmine 1110: 
position .fofthc 0.75-kg block 1/ for equilibrium. The $Calc is 
in b31alll:e wben the "'Cight and the Io.,d arc nOI on Ihe scale. 

~Imm_,"oo""mem",,:oo""mem~, _____ • __ ___ 

I'rob. II - J.I 

11- 35. Dctcmline the angles /J for equilibrium of the 
200-lb c)'linder and in\'estiga1e the stabilityof each position. 
lbc spring has :I stiffness of k .. JOO ]b/ ft and an 
unslretched length of 0.75 II. 

• 

I'rob. 11- 35 

· 11- 36. Determine Ihe angles 8 for equilibrium of the 
5O-kg cylinder and in"cstigate thc stability of each position. 
The spring is uncompresscd wilen 8 " 60". 

Proll. II - 36 



 

·11- 37. Iftltc mceltanism is in equilibrium \\hen 0 .. 30". 
dc tcnninc tlte mass of the bar HC.Thc spring Itas 3 sti llness 
of k ... 2 kN/m and is uncompresscd \\-Iten q - 0·. Neglect 
Ihc mass of Ihc link$. 

A 

c 

I'roh. 11- 37 

11- 311. The unifonn rod 0.11 \\'eighs 20 Ib.and \\hen lite rod 
is in Ihe ,'crtieal position. lite spring is unstrctcltcd. 
Determine the position 0 for equilibrium. In"estigale lite 
stabjlil~ allhe equilibrium position. 

k .. 21bJin. 

I'rol,. 11- j8 
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11- 39. The Ufliform link /Ill has a mass of 3 kg and is pin 
conncrled at both of ils ends.11Ic rod liD. ha"ing negligible 
,"eiglil. pas5C$lhrouglt a swj,'c1 block al Clf Ihe spring has a 
Sliffness of k ... 100 N/ m and is unslr~lched when II '" 0". 
delenninc Ihc angle 0 for equilibrium and in''l:slig:ne the 
slability al the equilibrium position. Neglcctlhe size of thc 
s"'i\'C1 block. 

r 
""mm 

D 

k _ \OONjm 

/ 

rrnb. I1-39 

"11-40. The truck has a massof 20 Mg and a mass center al 
G. Delenninc the steepest grade 0 along which il can park 
\\;lhol,lt owrturning and invC$tigate the stability III Ihis 
position. 

• '(" I..sm 

l'rolo. II-'O 
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·11-4 1. The cylindcr is made of two malcrials sud\ Ihal il 
has 3 mass of III and a cenler of gra"il}' 31 poinl G. Show 
Ihal when G lies 300\"C Ihe I,"enlroid C of the cylinder. Ihe 
equilibrium is urulablc. 

q 
C 

, 
• 

Proll . II -4 1 

1.1-42. The cap has a hemispherical b1mom and a mass III. 
Determine the position II of the cenlerof m~ss G so Ihal the 
cup is in neutral equilibrium. 

Proll. 11-42 

11-43. Determine the heighl" of Ihe cone in lerms of Ihe 
radius, of the hemisphcre so Ihallhe assemhly is in nculral 
equilibrium. BOlh Ihe cone and Ihe hemisphere arc made 
from the same material. 

1 

l 
I'rob. II-O 

°1l-4.t A homogeneous block rests on top of the 
cylindrical surface. Dcri"e Ihe relationship between the 
radius of the cylinder. r. ~nd the dimension of the block. b. 
for stable equilibrium. 111m: Establi~h Ihc polential energy 
funclion for a small angle 6. i.e .. appro~imat c sin Ii .." O. and 
cO$Ii ~ 1 - ';/ 2. 

> , 

Prob. 11--401 



011-45. The homogeneous tone has a tonital cavil}" CUI 
into it 3S shown. Determine the depth 11 of the cavity in 
terms of II so that the rone balances on the pivot and 
remains in neutml equihbnum. 

" rob. 11-45 

11-46. The assembly shown consists of a semicylinder and 
a reelangular bloo;l;:. If the bJod:: weiglls 8 Ib and the 
scmieylinder weighs 2 lb, investigate the stabilily when the 
assembly is resting in the equilibrium position. Sci h - 4 in. 

11-47. The 2· lb scmicylinder supports the block which has 
a specific weight of 'l' ., 80 Ib/ fll . Dctcrmine the height II 
of Ihe hlIKk which will produce neutral equilibrium in the 
position shown. 

1 
" 

!'rolls. 11-46147 
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· 11-48. Th~ assembly shown ronsists of a scmkireular 
cylinder and a triangular prism. If the prism weighs Sib and 
the cylinder weighs 2 Ib. ill"estigale the swbilit}" when Ihc 
assembly is resling in the equilibrium position. 

". 

!'rob. II -I.II 

011 -4';1. A conical hole is drilled into the bottom of Ihe 
cylinder. and i1 is thcn supported on the fulcrum at A . 
Determine lhe minimum distanc" II in order for iliO remain 
in stable equilibrium. 

!'rpb. 11-4'1 



594 C",APTER 11 V,RtU .... l WORK 

CHAPTER REVIEW 

PrincipiI.'- or\'irl ual Work 

The forces on a body will do l'irlllal ... ork 
when the body undergoes an Imagil/ary 
differential displacement or rolntion. 

For equilibrium. Ihe sum of the lirtual 
"-orl; done by all the forces aCling on Ihe 
body muSI be equal 10 lero for any virtual 
displacl.'mcnl. This is referred 10 as Ihe 
pr;nc;'llf o! ,·;mullwork. and it is useful for 
finding the I.'quilibrium configuration for a 
mechanism or a reacti"e force acting on a 
series of connected members. 

II Ihe sys!Cm of connected members has 
one degree of freedom. then its position 
can be specified by one independent 
coordinate such as O. 

10 apply the principle of Virtual work. it is 
fi!"!;! necessary to usc JlOS;';u/J morililllllfJ 
to locall: all the forces and moments on 
the mechanism lhal will do ,,-ork when 
the mechanism unde rgoes a virlual 
mO"COlCIlI MJ. 

The coordinales are rl.'bled tn .hl.' 
independent coordinale 0 and then these 
expressions arc differe ntiated in orde r 10 
relate the ";m",1 coordinate displacements 
to the ,irtunl displacement 06. 

Finally. the eqUal ion of ,; rtual work i!; 
... riuen for Ihe mechanism iII terms of the 
common vinual displacement MJ. and Ihen 
;1 is SCt equallolcro. By factoring 68 0111 of 
the equation. it is thcll possible todetermine 
eilher the unknown force or couple 
moment. or the equilibrium position O. 

oy. oy' - \'irtual displacements 

llO- virtual rOlation 

, 

aYLf j " h 
' i t., 0 , 

", 

, 

, 



" .... 'en. ii l·Enugy Criterion ro r I::quil ibr;' .. n 

When a system is SUbjcC1Cd only 10 
ron.'lCn'R';VC forces.. such as weigh' and 
spring forces. then Ihc equi librium 
configuration can be determined using the 
fXlII'm,u/~nrrg)' /linClilm V for the system. 

Thc potcnlial-cncrgy function is established 
by expressing IIII' ".eight and spring 
potential energy for Ihe system in terms of 
the independent coordinate If. 

Once the polcnliaJ-cncrgy funclion is 
fomlUlaled, its fin;\ dc riva!i\'c is set equa l 
to tero. The solution yields the equilibrium 
position 1J<1l ror the system. 

The stabilit)' of the S)'Slcm can be 
inl'csligalcd by taking the second derivative 
of V. 

Datum 

" L 1 

,IV -- u /lq • 

dV -- u 4(1 • 

, .. 

~ - o 
dq 

59S 

stable equilibrium 

unstable equilibrium 

. .... 0 neutral equilibrium 
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• REVIEW PROBLEMS 

II_SO. 'l1Ie punth press consists of the r~m R. ronnectlng 
rod AH. and <I n)'whecl. If a torque of M '" 50 N· m is 
apphed to the nywhecl.detennine the force "' applied at the 
ram to hold the rod in the position (J .. 60". 

, 
, ----II OA m 

tl~"9 
~ ' 

R 

f 

.. A 

I'rob. II -SO 

II - 51. The uniform rod has a weight IV. Dctemline the 
angle (J for equilibrium. The spring is unromprcssed when 
8 .. 1JlJ'. Neglect the weight of the rollers. 

. " 

Prob. II - 51 

+lJ- 5.2. The un ifonn links IIH ~nd He each .... ·tigh 2 lb 
and the eylinder weighs 20 lb. Determine the horizontal 
force P required 10 hold the mechanism at (} .. -ISo. 111e 
$pring has an unstretched length of6 in. 

I' 

I' rob. II-S! 

011- 5.1. 111c $pring ;utaehcd \0 the mtchani$m has an 
un,t rctchcd length when (} '* 90". Determine the posi tion (J 

for equilibrium and investigate the stabilit)' of the 
mechanism at Ih'$ position. Disk II is pin connected \0 the 
fmme 3t H and hM a weight 0(20 Ib. 

!'rob. I I- 53 



11- 54. [klermine Ille force I' Ilial mUSI ~ applied to tile 
cord wrapped around tile drum m C w'hich is neees.."ar)· 10 

lift tile bucket ha";ng ;I mass m. NOll' that as Ihe bucket IS 
lifted, the pulley rolls on a cord Ihal winds up on shaft IJ and 
unwinds from shaft A. 

I'roh. II - 54 

II-55. The uniform bar All weighs 100 lb. If both springs 
DE and 8C nre unslretched when it .. 90". delermine the 
angie 11 for equilibriom using Ihe principle of potential 
energy. ln~eslig3te the stability at the equilibrium position. 
Both springs always remain In Ihc horizontal posit ion due 
10 the roller guides 3t C and E. 

k - 4Ib/in. 

c 

" " Zlb/in, 0 , 
l 

'" 

I'rob. 11- 5S 

S97 

°11- 56. The ulllform roo Ab' lias 11 weight of 10 III. If Ihe 
spring DC is unst relched when (J .. 0". determinc the angle 
(J for equilibrium using Ihc principle of "Inual work. Thc 
spring always remallls in the lIorizolllal pos,tion due 10 Ihe 
rolle r guide al D. 

oil-57. Solve !'rob. II - 56 using IIII.' principle of potential 
energy. In"esligate the slabili1)' oflhe rod when il is in Ihe 
equilibrium position. 

D~lbjfl riC /. 

'" A ' , 

I'robs. 11-56157 

II-58. Detcnninc Ihe heighl " of block 8 so Ihal the roo 
is in ncutral equilibrium. The springs arc unstrelehed when 
tile rod is in the "cnical position. The block has a weight IV. 

, 
, , 

A 

I' rob. I I- SJI 
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Mathematical Review 
and Expressions 

Geometry and Trigonometry Review 
The angles fJ in Fig. A- I arc equal between the transverse and 11'1'0 
p;!ral1c11incs. 

I!!O' - B • 
• 
• --/-~''-------' , • 

Fie. A- I 

For 11 line and its nonnal. the angk$ (J in Fig. A-Z arc equaL 

• 
fig. A- 2 
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For the circle in Fig. A- 3 s = 0,. SO that when 0 = ]600 = 211" rad then 
thc circumfcTclice is s = 2",. Also. since 180" '" 11" rad. thcn 
o (rad) = (,"/ 1800 )IIO.The area of the circ1cis A = ,",!. 

" 
" . " 

The sides o f a similar triangle can be obtained by proportion as in 
Il b c 

Fog A-4 where - '" - = -.. ABC' 

For the right triangle in Fig. A-5. the Pythagorean thcorem is 

/I = V(0)2 + ((,)2 

The trigonometric fund ions arc 

sin O='£ 

" 
" cosO = -

" 
" tanO = -

" 
This is easily remembered as ··soh. cah. loa··. i.e .. the sine is the opposi tc 
over the hypotenuse. ClC. The other trigonometric functions follow 
from Ihis.. 

I " cscO = -- = -
sin 0 Q 

I " sccO = -- = -
CO$ 0 II 

I " l"OIO = -- = -
tan 0 Q 

, , 

5.1 
h (hnlOlcnlOSC) 

Q(otlf!"l'l1t) 

, 
1I(a<ll~n!) 

tlg.. '\- 5 
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Trigonometric Identities 

5in(0 ± dJ) = sin o cos 4> ± cos Osin 4> 

sin 20 = 2sin Ocos O 

cos(O ± d» = cos II cos <P 'F sin I) sin </> 

sin I) 
lan O =-­

cos (j 

Quadratic Formula 

~bC±~v''!j''~' :=::'~' ";£, If l/x ! + bx -+ c = O. Ihell .t =.:: 
'" 

Hyperbolic Functions 

e' - 1:-' 
sinh .r = --,--, 

c ' + e-" 
cosh x "'" --­, ' 

sinh x 
tanh x = -­

cosh x 

Power-Series Expansions 

···.cQSx = 1 x' - - + 
2! 

,,' 
sinh x = x + 3! + ·· · . cosh x "' J x' + - + 

2! 

Derivatives 

d ( ") -,, - I till - II = /11, -
IIx dx 

,I IIv ,III 
- (rw) = 11 - + v­
dx dx (fx 

" (") d.t -; = 

till ,fv 
V - - II ­

dx d.l· 

i 

" - (':'"0111) = 
dx 

, till 
-!;SC- II ­

dx 

If rill 
- (sec II ) '" t:ll\II SCC U­
d.t d.t 

(I till 
- ( t'SC II ) = - CSC 11 CO l 11 -
tlx dx 

II . till 
- (smll ) = COS 11 -
d.l d.t 

,I till 
- (cosu) = - 5ioll ­
rlx ,'.r 

II l dll 
-, (Ian 11 ) '" sec 11 -, 
IX I X 

il til' - (sinh II ) = cosh li ­
d ..: dx 

" - (cosh 1/) 
Il x 

. till 
= smhll­

dx 
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Integrals 

I ,..·' x" dx = --, +C,"'F - I ,, + 

I dx 1 
--h- " -bln(a + bX) + C 
/I + X 

I ~ =: __ '_ ,"[11 + x~l + C 
1/ + bxl 2v:bt; «- x~ , 

I xdx I , 
---, = - In (br + II) + C 
II + br 2b 

lib < 0 

I xl ii/( x II IXv;;i; C --- = - - --tan- -- + lib > 0 
/I + bi! b by;;{, II • 

f V« + bxd.{ = ~} V(<< + bx)} + C 

~~ 

I ~ ---2(211 - 3hx)Y(11 + hx )J 
of /I + h.III.1 - 15/; + C 

fxl~dx = 
2(&1~ - 12«bx + 15//x')V( << + bx)l 

+c 
105b·1 

I VII' - x'dx = i [·t Y II2 
- Xl + "'sin-I ~ ] + C. 

11 > 0 

"' ( . ,rz----; , . -I x) + - fVa"-.r-+lrsm - + c (1 ) 0 8' . II ' 

l~dX = 
,[.r;---; '( 2" xvr ± 11- ± a" ln .f + 

, , 
n' . ,,---; "( . r;---;) 'l'gxVx"±u--gln .r+ vr±lr +C 

I dx _ 2~ +c 
~- h 

I --;;,;x,~'., 
Vx

' 
± tIl 

Yx' ± 1,2 + C 

I fix 1 [V ' V. ,=: . r ln a+bx+ex-+ 
II + b.{ + er VC 

XVc+2~]+ C.C > 0 

, (-,ex -b) 
=: • --=--: sin- I V. ' + C. C < 0 

v-c b" - 4I1C 

I
I sin x If.\· = -oos X + C 

oos .rdx = ~in x + C 

I xcos(llx)dx =: 2. cos(a.f ) + !.sin(ax) + C 
II" II 

I 2x ,,2xl_2 
X l eOS(II.f ) lix =: , cos(a.r) + , sin(lI.f ) + C 

U- II 

I ~AIIX =.!.""'+ C 
" 

I >" 
xcaA Ilx =: -;1(IIX - \ ) + C 

J sinh xdx = eoshx +C 

I coshx dx = sinhx + C 
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Fundamental Problems 
Partial Solutions And Answers 

Chapter 2 
F"_ I. 

F. - (2 tN) ... (6 kNf - 2(2 kN)(6 tN)!.'OS lOS' 

- 6.7<18 kN - 6110 kN A,I.,I. 
sm. Sin lOS' " 
6 kN 6.7'9810:1'''' .. ... sa. 'I" 
6 '" -ISo + .. _ 45' + 58.49" ... 100· ~"L1. 

t'J.-l. F. - v'Zf:1i + soo: - 2(ZOO)(jOO)cos 140" 

... 666 1'1 A'11 

1'2-.1. F 1/ ... v6O)I + lIl.'Xr - 2(600)(800) (05 (IJ" 

."-'. 

.'2-5. 

F2- 7. 

- 721 .11 N - 121 N A"s. 

sin 0 '" sin «f' . '" 7390" 
800 721.11' 0 . 

tb ... n - 30" - 73.90" - JO" - -13.9" 
f .. JO 

sin 45" ... ~: I-~ '" 22.01b 

f~ 30 
sin JO '" sin 105' : f"'''' IB Ib 

F.t. 4SO --0--
sin lOS" sin 30" 
fAil '" !!69 lb 

...§r ,_ -ISO , 
som "5' sin JO" 
f:.c ... 636lb ,. , --0-- F - J.llkN 
sIn 30" SIR It)5° 

F. , 
F. '" J.J9 kN 

sin -IS' Sin lOS' 

(F" , '" 0 (F,l, '" 300N 

(1,. '" - (4SON)ros·W '" - JI8N 

(F!1 . '" (4SO N) sin 4.'i° '" JI8 1'1 

(F, ), 0 (I}600N 0 lOON 

11115. 

A.¢ 

A.¢ 

A.¢ 

(F), '" (t)600 N ... 4!10 N AI.$. 

f~. '" 300 ... 400 cos JO" - 250(;) ... 4.16.4 N 

1' •• - 400 sin 30" ... 250( t) '" JSO N 

"'/1 .. V(446.4)l ... Js02 '" 567 N Ails. 

9 ", t3n '1:.. '" )g" o", A.¢ 

n.-9. 
':'(F.), '" ~F,: 

(F.), '" - (700 lb) cos 30" + 0 + m (600 lb) 

.. - 2.\6.22lb 
+ l{F.) , '" ~F,: 

(FII ), '" - (100 lb) J.ln J00 - 400 Lb - W (600 Ib) 

... - 1230 lb 

FII .. V(2~.22 IW -:; (12.30 IW .. 1250IIb AIls: 

'" .. Ian I(~':.) .. 78.611· 
6 " 1110* + ", .. 1110* + 78.68" .. 259" ~t,1s: 

F2- IO. ':'(fll ), " '£F,: 

750 N .. f cos 8 + mOll N) + (600 Njros.IS" 

+ I(I-ir), - ,£1-;: 

o .. F sin 8 + (~)(J25 N) - (600 N}sin ·W 
lan8 - 0.6190 8 - 31.76· _ 31.S·"" AIls: 

F - 2361'< AIls: 

t"'2- lI . ':'(FII), _ '£F, : 

(SOO Ib) cos 4S" .. F cos (J + 50 Ib - W90 Ib 

+ I(f.), - '£F,: 

-(1l1J Ib) 51n45" .. F Sill II - (;)(90 Ib) 

tan' " 0.2547 8 " 14.29"" 14.3·"" A,1s: 
F " 6~lb A,1s: 

f2-1l. (F.), " ISOl + 0 + ISO) - 24 kN ..... 

(FII ) , - ISm + 20 - IS m .. ZOkN f 
F . .. 31.2kN A/I.I. 

8 .. 39.8" A,1s: 

1'"' __ 13. F, " 75 cos 30" Sill 4S" .. 45.\l3 Ib 

F • .. 75 cos 30" cos 45" .. 45.9] Ib 

,.~ .. - 75$in3O" _ - ]7.5 lb 

.. .. cos 1{-4.It?) _ 52.2" 

fJ .. (OS 1(4W) .. 52.2· 

1' '' cos I{"W)" 120" 

Am: 

A.¢ 

AIls: 

603 
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F2- 14. cos IJ '"' V I .. ms! 120* .. cos! tIf - ±0,707 1 

Require (j - 135°. 

f - F Uf - (5OO N)(- 0.5 i " O.7lJ71j + 0.5k) 

'"' 1- 2.5Oi .. 354j + 250Itl N 

P..-I5. cor .. +- cosl l35· + cor 120" '"' I 

" -'" 
t' - F Uf '"' (500 N)(O.5i - 0.107Ij - O.5k) 

'"' (2.5Oi -- 35-1j - 25Olo:1 N All$. 

tn..- lfi. F, '"' (50 Ib) sin 4S" '"' 35J6lb 

,... '"' (SO lb) cos 45° '"' 35.361b 

F, '"' m(35.J6lb) - 2L211b 

F, - W{3.D6 1b) '"' 28.281b 

F '"' ( - 21.2i + 28.3j + 3S.4k llb 

';2- 17. F," (750N) sin"5~- SJO.3JN 

r - (7SO 1'1) eos 45° '"' 530.33 N 

F, - (530,33 N) cos (if' '"' 265.1 N 

F, - (530 .. ~3 Nl 5in (if' '"' 459.3 N 

f : '"' {26S1- 459j + S3OI.:} N 

..-z- 11I. t'1 -(j)(5OOlb) J +W(SOO lb)k 

'"' (..ulj + .3OlJk) lb 

F~ '"' [(800 lb) COS 45°1 cos 30" i 
+ [(SOO lb) COI·WI sin 3O"j 
+ (SOO lb) sin 4S" (- k) 

'"' (4lW.901 + m.!I4j - S65.69k ] lb 

AilS. 

F" _ t'l + f 1 .. {49Oi + 683j - 266k ) lb A,IS. 

t"'2-19. T". '"' ( - 61 + 6j + Jk) m AIlS.. 

r". '"' Vt-6 mIl + (6 m)! + (3 m)! '"' 9 mA,l(. 
<l '"' 132". fJ - 48.2". l' - 70.5" AtU. 

t"'2-20. T". '"' ( - 4i + 2j + 4k) fl AIlS. 

r". - ( - 4 f1)!+ (2ft)! + (4ft )1 _ 6ft I I II$. 

n '"' COS I( .... 11) _ 131.8" 

11 _ 180" - IJl.iI '"' 48.2" 

t'l- 21 . ' $ '"' (2i + Jj .. 6k j m 

f R '"' "Hull 

'"' (630N)(~ i +; j - ~ k ) 
'"' pliOl + 27{Jj - .S4Ok ) 1'1 

A//s, 

):1- 22. t· '"' FU"R '"' 9OON(-: 1 + H - i t ) 
.. ( - 400 + 100j - <lOOk ] N 

'"' (840N>U ; - iJ - ' k) 
'"' IJ60i - 2;jQj - 72Olr;) 1'1 

'"' (420N>{{ i + \j - ; k) 
- (!Wi + !l!Oj .. J6Ol,: ) N 

F" - V(4tIO N)! + (-60 N)! + ( - 1080 N)l 

'"' 1.18 kN I t ll( 

t"'2-24. F 8 '"' F8U II 

'"' (600lb){ -l ' + i; - ik) 
'"' {- 200i + 400j - 400k jlb 

Fe '"' feuc 

'"' (490 lb)( -~ i + ~ j - ~ k ) 

'"' (-42Oi + 2\Oj " l4Ok) lb 

t'/I '"' F" + .c '"' (-6201 + 610j - S4Ok) Ib I I II$. 

t"'2-25. u ....... - -1 ' + iJ - i k 

U ~' - - 0.5J..15i + 0.8018j + 0.26731.: 

9 _ cos L (UM) • _ ,-) _ 57.7" 

f2- 26. U"" '"' -~ J + 1k 
u, - ~ i - H 

9 - (OS 1 ( _ ". , uf) " 68.9" 

f"2-!7. uQ" '"' ~ i + ~ j 

ua,,' j '"' u/M{ II cos 0 

«115 0 '"' I'j: 9 '"' 67A o 

P..-2!l. 110" ali i + I~ j 

t' - /0"11,- '"' [65OJI N 

F(M '"' t" UQ" '"' 2SON 

f o" - Fo" llQ" - 12Jl i + 96.2j) N 

All$. 



{4 1+ l j - 6 k)m 
F .. (.JOO 1'1) ~- ',-'--'--'-c 

V(4m)~ ... (I mr + (-6m)1 
.. (219.78i ... 5-I .9-Ij - 329.671o; ) N 

{ - ~ j - 6 k lm 
1I110 ... . ~- -

v(- .j mr ... ( _ 6m)l 

.. - 0.5547j ... 0.832] 10; 

(F ..w>r,oi ... F· II"" .. 244 N 

f/l-JO. f .. 1(- 600 lh) cos 6O"15in JO"I 

All£. 
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. 1':::1', - 0: T/I"sinI S·- 10(9.8I)N - O 

T .. ,,_ 379.031'1 " 3791'1 All.( 

:"' ':::1', - 0: T.c-379.QJN('(I5I.5 - 0 
T IIC .. 366.11 N .. 3M N All.( 

:" ':::1', " 0; Teo ros 9 ... 366.11 N .. 0 

+ 1':::1',- 0: T("f)sin/l - 1S(9,8I)N - O 

Tef) " 395 N AIIl" 
8 " 21 .9" AliI. 

+ j(600 lb)cos6(l' ]cosJO" j "'"3-7. :::1', ... 0: UDFJJW + 600N - Fl" 0 ") 
+ «600 Ib) sin 60'1 k 

.. ( - ISOi + 259.8lj + 519.621'1 Ib 

u .. --3 i +jj +J k 
(FA~ .. . •· .. .. - .J46Allb - 446Lb ' I/It. 

(1' .. >,.. - V (600lhf (+I6Allbr 
.. .wltb I t llS, 

Chapter 3 

n ... l . :... ':::F, " 0: ~FM" - "~.ro~3O" .. 0 

+ 1::;1', " 0: ~ FAC + F ... sIn.lO" - S50 _ 0 

1' ... - "711 Ib Am: 
FAC '" SI8 1b ;I,u. 

t'j...l. + t ~F • .. 0: - 2(1500) Sin 11+ 700 - 0 

II - U.s" 

Luc- 2(..!ih.) - lO.Jfl 

FJ-J. :"' ~F. - O: Tcos9 - Tcos<b - O . -, 
+ t~F,- o: 2Tsin(l - 4'J.OSN _ O 

8 ... Ian l(~:) _ 36.117" 

T - .,j().9N 

FJ-4. +/~F ... 0: ~ (I".,) - S(9.1I 1)lin "S" - 0 

F.,'" 4J.JS N 

F.,'" "(/ - I,): 4J..15 - 200(0.s - /0) 

'e '" om m ',~ 

t"J- 5. + I ~F, - 0: (J92.J N)sin JO" - m .. (9.81) _ 0 

'!.F, ... 0: Wr, - HnF,]W - 0 

':::1', .. 0: (;)FJ ... (U Fr - \lOON .. 0 
F)-n6N 
1'1 " 4661'1 
F:- 87<JN 

:iF, .. 0: F,wW '" \lOO .. 0 

F"n - lllSN '" l.12.'ikN 

:::1', ... 0: FM"W - 1125m-O 
Fill:" SU,7SN .. 84-11'1 

'!.F, .. 0: 1' ... - S4J.7SG) .. 0 

F.n .. 506.25 N .. 5061'1 

; 1' .. ,, - 600 - 0 
F .. ,,-900 N 

:t:F.- O: F ... cosJO" -;(900l - 0 

(2) 

,,) 
A'" 
A," 
A," 

AIrs. 

A,u: 

, IILL 

1' ... - 692.112 N .. 693 N A,'I. 

~F .... 0: 1(900) + 692.825inJO" - FAC .. 0 
I'M" - 6-16."1 N ... 6-16 N 

t'j... llI. I'AC - f:.c(-cos6O"~nJO" I 

+ cos 60" cos 30" j ... sin 60" k) 

- -O.25F.o.c i + OA3lOF"d + O.8660F.o.c k 
F"" _ F .. ,,(cos IWO i + cos 120" j + cos 45 k} 

- - O.sF.o./) i - O.sF .. " j + 0.70711' .. " k 
~F, .. 0: 0.4330FAC - O.sF .. .., '" 0 

~f~'" 0: O.l!66Of:.r + 0.707IF.o./) - JOO ... 0 
F",, '" 17S.74Ib " 176 1b ;I,rs; 

I' AC ... 202.92 Ib ... 203 1., A",f. 

~f; - 0: 1' ... - O.25(202.'J2) - 0.S(I7S.7" ) ... 0 
F .. IJ ... 138.60 lb '" 1391b "liS. 
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t>-lI. t·. _ F I!M) 
"'"''' . . { ( - 6i + Jj +21.: Ifl 1 

.. f V(-6 fl)! + (3fl)! + (HI)) 

- -tFsi + ~ fsJ + i 1'.1.: 

t'c " Fc(;~) 
,J ( - 6i - 2j +Jklfl 1 

.. 1'1 VI-6 fl)! +'(:HI)l:; tJflj i 

.. -~ Fci - ;Fd +~ fc l.: 

I'D" Fni 
W .. ( - ISOk ) ib 

'$. 1', _ 0: -, F. - 'Fc + Fn - 0 (I) 

;:;F,- o:f F. -i Fc - O (2) 

;:; F.r - o:i f:'+~ fc- I SO " O (J) f. -162 Ib tlut. 

fc" l.S(162 Ib) .. 242 1b tI,lt. 
I'D " 34li.IS lb " 34li lb tillS. 

Chapter 4 

.'-1-1. < + MO" 600 sin S<r{S) + 6OOrosS<r{0.5) 

1'4-1. 

, ..... 

t'-I-7. 

- 2.49 kIp' (I A,1.l. 

< + Mo " -W( IOON)(2 m)-(:j(IOO N)(S m) 

.. - 460 N·m - 460 N · m ) , III$. 

< + Mo .. 1(300 N) sin 3O"1IO.4m + (0.3 m) COS 4S"1 
- 1(300 N) C05 30· 11(0.3 m) sin 4so1 

- 36.7N ·m JlIIS. 

C + Mo " (600 Ib)(4ft + (3 ft }l:o$ 4So- 1 fl ) 
- J.07 kip· ft Ails. 

( +Mo '"' SO sin 60" (0.1 + 0.2 COJ 4S' + 0.1) 
- 5Oros6O"(0.lstn4S· ) 

.. I I.2 N ·m AII.l. 

C + Mo - 500 SIR 45° (J + J cos 4S') 
- SOC) COS 4 (J Sin 45' ) 

_ 1.06 kN· m 

< +(M .. )o - ;:;F,I : 
(M .. )o " - (600 N){J m) 

+ {SOO 1")13 m + (2.5 m) CO$ 45" 
- (300N)I(2,5 m) sin 4S·1 

_ 1254N ·m " 1.2S kN ·m AlIt. 

t'-I-9. 

<+(M.)o" ;:;F<1: 

(M.)o -1u)SOO N](0.425 m) 

- [WSOOlol j(O.2S m) 

- 1(600 loll ros 60"1(0.25 m) 

- 1(600 N) sin 60"](0.425 m) 

- - l 6S N· m .. 268N ·m ) 

<+(M .. >O " ;:; Fll : 
( M .. )o - (300 cos 34r lb)(6f\ + 6sin 3O" fl) 

- (300 SIR JO" Ib)(6 cos JO" h ) 

+ (200 Ib)(6 cos)if fl ) 
- 2,60 kIp , fl 

1'-1- 10. f - f '" ..... SOO N(! I - ~ j) .. {4OOi - 300JjN 

1110 " '0 .. X t' - PH m x {4OOi - JOOH I" 
- {- I"2OOtI N'm A.1.l. 

" ~to" tOil X F .. {4i l m x (4OOi - .3OOj) I" 

.. ( - llOOk ) N 'm ,1,1.l. 

1'-1-11. F .. F UIf(" 

F-I- I.l.. 

- IW I -
{ 

14 i - 4 j - H ) fl 1 
V(-Ifl)~ + ( - -Ifl ): + ( - H If 

- IIIOi - 80j - 4Ok) Ib 

I 
; j 

1II0. reX .' .. 5 0 : I 
., 

ill - 80 
.. 1200J - 400k) Ib·!t 

-., 

I 
; j 

~ tQ_ r.X r oo 1 4 
go - OJ 

- (2OOj - 400k ) lb ·ft 

FIf " F, + .': 
.. ((100 - 2OO)i + (- 120 + 25O)j 

+ (75 + 100)k}lb 

.. {-100i + IlOj + I75k ) Ib 

I
; j , I 

(1II 1flt, " r" X ~'II " 4 5 3 
- 100 UO m 

- 14851 - IOOOj + IOZOk } lb 'fl 

Am .. 

, III.l. 



F4-U. M , - I·(ro.xt) - I~ 
- 20N'n! 

o 
0.' 

- 200 

r" 10031 + OAj} m 
"0 ---" '" V(003 m)1+(0.4mf 

- - 72N'm 

t· .. (ZOO /'II) cos 120" I 

0> 
o 

- 200 

+ (ZOO N) tOS 60" j + (200 N) ros·W k 

- ( - 1001 + 100j + 141.421t1 /'II 

M o - \· (r" x F) _ I ~ 0°3 ()~ I 
- 100 ]00 141.42 

- 17A/'II'm 

10 ~~ ~:21 M,.- J·(r,. X f) - ;: ~: eN 

- 210N'm A ll>; 

r". (- 4\ + .1j)f. 11 ... ___ - -0.si+06j 
'... V(--I fI)l + (3 fli . 

M". - 1I".·(r ... X t·) 

50 

j 
0.6 
o -., 

, 
o 

.. - "Ib·ft 
2 

'" M". - M ... II ... " 1321 - :Z.4n Ib·fl 

F, -IW500Nlm - 240N 

F, - [(;)5OONI(;) - )20" 
F, - (500 N~n - JOO N 
M , - .300 N(l ml - 320 N(3 m) 

- - 360N·m 
M, " JOON(2m) - 240 1'11(3 m) 

.. - 120N'm 
M , .. 2401'11(2 m) - J20 N(2 m) 

- - 160N'm AnJ. 
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F4-I9. (+ M" ... ~M .. .. 400(3) - 400(5) + 300(5) 

+ 200(0.2) .. 740 N · m ,'liS. 
AI~ 

(+ M" • .. 300(5) - 400(2) + 200(0.2) 
_ 740N'm 

.·4-ZO. (+Mr • - 300( .. ) + 200( .. ) + I~") 
.. 2600lb·f, 

. '4-21. (+(M.) . .. ~M. 
- 1.5 kN'm .. (2 kN)(OJm) - F(0.9m) 

F - 2,3JkN 

(+ M" .. 10( 1)(2) - J()W(4) - -20 kN'm 
.. 2OkN·m) 

r, [- 21 + 2j + J,n ) f' II , .. -._ ., 
" Vf- 2 fl)l + (2 f,f + (J.~ ft)l 

.. -t.s l +}, j + ~J k 
111" - I.: 

II] " HI - &J 
(lU ,), .. (0\1.), 11 , 

- (450lb·f'){-.~ i + ~ j + Uk) 
.. { - lOOi + 200j + Jnllb·ft 

(lU,)l .. (M,):II : - (250 Ib'fl)(- I.: ) 
.. {- 25OI.:)lb·f\ 

(M,» " (M, h ll]" (JOO lb'fl)(U I - fs j) 
.. {18OI - 240j Ilb·f, 

(M,). " ~M,: 

(M,). " 1- 2Oi - 40j + lOOItl lb·ft AIlS. 

t' . .. O1("50N)J - (1)(4501'11) 1.: 

.. P60j - 27(1;; I I'll 

M,- r ... X t'."lo~" ~ o 360 
.. p(lgj + 1441.: ) N'm 

AI~ 

M," (r" x t',,) + (r. X f .) 

II j 'I I' - 000 .. 1+0.4 
o - 360 270 0 

.. !lOllj + I .... k) N'm 

o 
J60 

, I 0.3 
- 27<1 
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:" 1'". - 'iF.; f .... - ZOO - ~ (IOO) " 140lb 

+1 F., .. 'iF,: Fft. - 150 - t (100) - 70 Ib 

Fft " VI,w ... 1(j .. 1571b ,IllS. 
9 - Ian lh~) - 26.6" r 

(+M", - 'iM A; 

M". - WOO)(4) - ~ (IOO){6) + ISO{.H 

Mil .• " 2101b·n Am:. 

~'",-16. :' FII. - 'iF.: 1'11. -1 (50) - 401" 

+J FII, _ 'iF;. I'll, " 40 + 30 + 1(50) 

.. 1001" 

I' ft - V~(40~l'~+-(~IOO): - 108 I" All.l. 

9 .. Ian ,(c:) .. 68.2" "'C 

(+ M". - 'iMA: 

MA, - 30(3) + ~ (50)(6) + 200 

- 470N'm 

f",-27. :. (1',,) • .. 'iF.: 
(Fft), .. 900sin 30" .. 450 N 

+ W· ... ), .. 'iF,: 

(f",), " -900ros3O" - 300 

- - 101'9.42 N - 101'9.42 N I 
F" - V 4SO: + 101'9.42! 

.. 1169.47 N - 1.I7kN 

Alts. 

Am. 

9 _ Ian '(~C) _ 67.4" "'C I'"S. 
< +(M ft)A - 'iM ,,: 

(M Rl" - 300 - 900 cos.W (0.75) - .300(2.25) 

- - 95957 N'm 
- 960N'OI ) 

.-"'-28. :.. (1',,). - :t.F.: 

(1',,). - lso(~) + 50 - 100(;)" 601b­

+IV ',,), '"' 'iF,:. 

(Ii). - - lso{D - loo(i) 
- - 180lb - llIOlb I 

Ii - v«i + 18& .. 189.741b - 190 lb , I/ls. 

9 _ Ian '(:') _ 71 .6" ""1:;; AlIl. 

<+(M" ),, .. :t.MA: 

(MN),, " loo(J)(I) - lOO(H(6) - l so(:)(.H 

- - 640 - 640 lb'ft ) AI1.1. 

F"",-JO. 

F" - :t. F; 

1',,- ~-1 + F: 
_ ( - 3001 + lSOj + lOOk) + ( - 4SOk) 

.. I - JOOi + lSOj - 250k) N AII.t 

fO"" (2 - O)j - {2jJ m 

'0.- (- 1.5 - 0) i + (2 - Oli + (l - 0)1t 
_ {_ 1.51 + 2j + l it ' m 

(M llk.t - :t. 1\1 : 

( 1\1 ,,).0 - fO. x f l + fO" X F: 

- I - :~ ~ ~ I +I~ 2 ~ I 
- 300 150 200 0 0 - 450 

.. 1- 65Oi + 375kIN·m AI1.1. 

f , _ ( - 100j ) N 

[ 
{- 0.4; - 0.31t ) m ] 

f l - (ZOON) -
V (- OAm): + (- 0.3 m): 

.. (- 1601 - 1201.: ) N 

M," ( - 751) N'm 
FN - {- 16OI - 100j - 12OtIN , IIIl. 

( 1\1 ")0 - (O.3I.: )x(-IOOj ) 

I' j ' I ... 0 O~ OJ ... ( -7st) 
- 160 0 - 120 

" !- IOSi - 4S j + 8OkIN'm AI1.1. 

.·",-J I. + 11'11- :t.F ,: 1'11- 500 +250+500 

.. 12S0lb AII.t 

(+ 1' .. 1 - :t.Mo: 
1250(.1") - SOO(3) + 250(6) ... SOO(9) 

.I" - 6fl 

t"4-Jl.. ~F,,). - :t.F.; 

(FII) , .. 1000il+ 50 Sin 30" - as Ib -

... 1(1',,), .. :t.F.; 

(I),l. .. 200 + 50 cos 30" - 100(1) 
.. 163..30 lbl 

,. ... - V8Y + I63JOl .. 184 lb 

(J .. Ion 1~ .. 62~° ..:l. AIIl. 

< +(M II)" .. :t.M ,,: 

163.30(1/} .. 200(3) - IOO(}){6) ... 5OC053O"(9) 

" • 3.12 fl 
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F4-.B. !....{ F,,) . .. ':l.F .: t"4-J7. + 1F" - 'iF r: 

(F,,) , " ISO)" 12 k.N ..... - FII. " - 6(1.5) - 9(3) - 3{I.Sl 

+1 (1'«). - 'iF,; F" - 40.5 kN j AII.~ 

(FII.)'" - 20 + Ism .. - 11 kN .. 11 kN I 
( +(MII.)" " 'i M,,: 

- 40.5(<1) - 6(I.S)(0.75) 
f'-,," vliF+l"ii .. 16.3 kN Ails. - 9(3)(15) - 3(1.S)(3.75) 

0 " Ian I(lD - 42.5~ "", AlloI: t1 - I.Z5 m AII~ 

( + (,1.111.),, " 'iM,,: F4-3II. FII. - } (6)(150) + 8( 150) - 1650 Ib A".~ 

- 11(11) - - 20(2) - IS(}J(2) + 150)(6) (+ ,11 ...... :::M,,: 

" .. 0.90') m A,r.(. 1650</ - [t (6)(IS/) [(4) + [&(150)](10) 

F4-J4. ':"(FII.), '" ::£F,: 11 ... 8.36 fl , 11/£ 

(FI<) .• '" (DS kN - 8 kN "4-39 . + iF,, - 'iF): 
.. - SkN - SkN-

- FI<" -! (6)(3) - }(6)(6) 
+ I(FI<), " ';l.F,: F~ "' 27 kN i AIf:/, 

(f 'I<), " - 6 kN - WS kN (+( ,\11<) ... " 'i M ... : 

.. - lO kN " iO kN i - 27(<1) " h6)(3)(1) - 1(6)(6)(2) 

F/I. " VS1 + 102 .. 11.2kN Am: II - 1m AII.~ 

(J ... 13n I(I,W) .. 63...17 ,1/1.1; "4-4Il. +IF" .. :::F,: 

( + ( M ~) ... " 'iM ,,: FR - }(5O)(6) + 150(6) + 500 
.5 k.N (II) - 8 kN(3 ml - 6 kN(O.S ml .. 1550lb Ant 

- [ilI"N 1(2 m) (+ M", '" :::M,,: 

- [mSkN ](4m) 1550<1 " [1 (5O)(6)J(4) + [150(6»)(3) + 500(9) 

,1 - O.2m Am:. d - S.03fl 11m:, 

t'4-3S. +) FI< '" 'if',: FI< - 4OO +5OO-100 ""-'I, +I FR - ::£F,: 

- 800N A tll. - FR - -1 (3)(4.5) - 3(6) 
M Il< " :::::M ,:-8(0), " -400(4) - 500(4) FII. " 24.75 kN I 0'111;£ 

,. - 4.SO m A trs. (+{M R),, " 'iM ,,: 
MR, - 'iM ,: 8(l(Ix .. 500(4) - 100(3) - 24.75(11) - - j (3)(4.5)(1.5) - 3(6)(3) 

.r " 2.12S m AilS. ,t .. 2.59 m Am:: 

F4-36. + IFI! '" 'iF,: 
FI! - jK.1X)d.r - [z.SXJ '/X _ I60N FI! - 2OO+2OO+ 100 + 100 t'4-4Z. 

- 6001'1 A",,:, (+M .... - ::£M ,,: 
M I<, - ~M ,: , 

- 6fIO,. .. ZOO(I) + 200(1) + 100(3) - 100(3) j .Ht1.r) Ii)'" 12.sx· dx 

.I' - -0.667m AM. x - - 0 160 - 3.20m 

Mil. , '" ~M,: jrl:(X)<I.r 

6OOx '" 100(3) + 100(3) + 200(2) - 200(3) 

.r - 0.66701 litIS. 
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Chapter 5 

.'5-1. =-~F. '" 0: -,I, + sooW - 0 

A, .. JOOJb AIlS; 

8 ,(10) - 500{:)(5) - 600 .. 0 

8 . '" 260 Ib 

+ I~F,"' O; o4 ,+ 260 - soo{~)- 0 
AI" 140lb A" y. 

F5-l. <'+ ~MA "' O; 

FClJ sin4S"(I.5 m) - HN(3 m) .. 0 
I'm- lUI tN - 1I .3tN Alll. 

:"' :i.F , - 0: A, + (11 .3 1 kN)('(1$ 4S- .. 0 
o4,--8tN - 8kN- A,IS; 

+ I~F.- O: 

A , ... (1131 tN) sin 45' - 4tN .. 0 

A ... - 4 kN .. 4 kN I AIlS. 

F5-3. <'''' ~MA '' 0: 

F5-4. 

N~16m + (6 m) COS 45"1 
- IOkNIZm + (6 m) COS 45"1 
- HN(4m) .. 0 
N" ... 8.0.17 kN .. S.05 tN 

:"' ~F. " O: 

(5 kN) ('(1$ 45" - II , - 0 

, I, - 3.54 tN 
+r ~F ... O: 

Am. 

o4 . + 8.0471;.1'1 - (5 tN) sin 45' - 10 I;.N .. 0 

'-~F , '" 0: - A, '" 4OOc053O" - 0 
, I ... ).161'1 

+ 1'::.1',- 0: 

A, - 200 - 200 - 200 - 400 sin 30" .. 0 

, I. - 8001'.' 

<.+ :i.M ... .. 0: 

M ,\ - 200(2.5) - 200(3.5) - 200(4.S) 

- 400 sin 30"(4.5) - 400 cos 30"(3 Sin 60°) - 0 
M ... - 3.t)()kN·m ""l. 

(+ ~M ... - O: 
N({0.7 m) - 125(9.8]) I'll (0.5 m) cos 30" - 0 

Ne .. 1Sl.7I N - 152 N 

_ "'iF , '"' 0: 
T ... /l cos IS" - (151.71 N) C056O" - 0 

T ... " '" 711.531'1 .. 78.51'1 
+ 1,£Fy- O: 

1' ... + (78.5.' 1'1) sin IS" 

+ (151.71 N)sin6O" - 25(9.81)N - 0 
1' ... - 93.51'1 , I II). 

H.... :"' "'i.F, - 0: 
Nc .in JO" - (25ON) sm6O" - 0 
Ne .. 433.0 N .. 433 1'1 IIIIS; 

(+ :iM,,_ 0: 
- N A sin 30"(0. ]5 m) - 433.01'1(0.2 m) 

+ 11250 N) cos 30"1(0.6 m) .. 0 
N,, - 577.4N - 577N A,I.>. 

+ I~F ... O: 

N,- S77.4 N + (433.0N)cos30" 
- (250 N) C05 6(f .. 0 

N,-327 N , IIIJ. 

.'5-7. :iF, .. 0: 

T ... + T, + Tc - 200 - SOO - 0 

"'i.M , - 0: 
T ... (3) + T ,:(3) - 500(1.5) - 200(3) - 0 

~M, .. 0: 

- T ~4) - TC(4) -+- 500(2) + 200(2) _ 0 

T,, - 350lb.T,- 25OIb. Tc- IOOlb JlIIJ. 

F5-4I. "'i.M , - 0: 
600 1'1(0.2 m) + 900 1'1(0.6 m) - I' A( I m) - 0 

FA" 660N 
"'i.M, - 0: 
0 ,(0.8 m) - 600 N(0.5 m) - 900 1'1(0.1 m) .. 0 

:iF, '" 0: 
:if, .. 0: 

:iF, - 0: 

D, " 487.5 N AIIJ. 

0 , - 0 
0 ." 0 

T/IC + 660N + 4S7.5N - 9001'1 - 6001'.' _ 0 
T /I(' .. 352.5 N ,1,11. 



 

FS-9. :! 1', . ... 0; 400 1" + C, ~ 0: 

C,--400N 

:£M,- O: - C, (OAm) - 600N(O.6m) - 0 

C, - - 900 N A"s. 
~M, '" 0: 8 , (O.6m) + 600 N(1.2 m) 

+ (- 400 N)(OA m) ... 0 
8 , - - 933.}1" Am:. 

~M:'" 0: 
- 8, (0.6 m) + - ( - 900 1")(1.2 m) 

+ (- JOON)(0.6m) - 0 
B, '" I400N Allot 

~F, ... 0: 1400N + ( - 900N)- A, " 0 
I I, - 500N 

:U', "'0: A, - 933.31" + 600 N ... 0 
A , ... 333.3 N 

FS-IO. :1.:1',- 0; 8 ," 0 
:::A(, " 0; 

C,(0.4m + 0.6m) '" 0 C, '" 0 

Allot 

:::1', ~ O: " ,+ 0 - 0 A , - O Ant 

:l.:M, - 0: C,(0.6 m + 0.6 m) + 8 , (0.6111) 

- 450N(0.6m + 0.6m) '" 0 
I.2C, + 0.68 , - 540 ... 0 

:l.:M , - 0: - C,(O.6 m + 0.4 m) 

- B,(0.6m) + 450N{0.6m) ... 0 

- C, - 0.68, + 270 '" 0 
C, - 1350N 8 , '" - ltSOON 

:1.:1',- 0: 
II , + 1350 N + (- I800N) - 450 1" - 0 
A , - 9001" 

F5-11. :1.:1'" .. 0: A.1 "' O 

:l.:M, ... 0: - 9(3) + F CEO) '"' 0 
Fc£- 9kN 

:l.:M,'" 0: Fa(3) - 6(3) '"' 0 
Fa - 6kN 

:::0\1 , '" 0: 9(4) - A, (4) - 6(1.5) ... 0 

A , - 6.75 kN 

:::1'" _ 0: A, + 6 - 6 - 0 I I. " 0 

":iF, ... 0; FOil + 9 - 9 + 6.75 '" 0 

I'/)/s '" - 6.75 kN 

Alts. 

Atts. 

Am. 

Alts. 

AIlS. 

A/IS. 

AttS. 

Alts. 

F5- L2. 
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'i.F, " 0: A, - 0 Am: 
:1.:1', .. 0: A. '" 0 Atts. 

"t.F, - 0; A , + I'I/C - SO ... O 

":!.M, " 0:(,11 ,1), + 61'IJC - !!O(6) '"' 0 
":!.M,- 0;3FIlC - !!O(1.5) - 0 FIlC - 4Dlb Arts. 

::!:M, - O:(MA),- O Am: 

A,- 40lb (MA ),- 240lb · ft Am: 

Chapter 6 
F6-1. J{Jilt/A. 

1'6-2. 

F6-J. 

+lYJ, - O; 2251b - FA{)sin45° - 0 

FAn - 318.201b - 318Ib(C) A"" 
:' ':E.F, - 0; FMs - (318.20 Ib)cos45° - 0 

FA" '" ill Ib (T) Am: 
kim Ii 

:" ':E.F, - O: F /fC- 2251b - O 

I'M' - 225 lb(T ) 

+1':E.F,- 0: Fllu - O 

Joirt/D. 

:" :1.:1', - 0: 

Alts. 

Fcvcos45° + (318.20 lb) cos 450 
- 4501b _ 0 

Fc v - 318.201b " 3181b[r) AtlS. 

kim D: 

+ 1 :£F,'" 0: ! Fcv - 300 ... 0; 

Fe,, '" 500 lb(f) 

~:::F, ... 0: - FA" + hSllO) ... 0 

FAD " JOOlb(C) 
FtIC ... 500 lb (T l. F M" ... FAil " 0 

A, .. O. A . '" C" ", 400 lb 

Joim A: 

+ 1::: " , - 0: -i FA( + 4OO - 0 

I'M; .. 6671b (C) 

10illl C: 

+1 ':!.I'~ - O; - I'fIC + 400 ... 0: 

I'lJc - 4001b (C) 

Am: 
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t'6-4, kllliC 

t'6-1. 

+I~F."' O: 

FM: ... F ill: a F ... F<!JO ... 0.5n4P (e) 
J(JIm B. 

:"~ f· , .. O: 0.sn4 f' cos60 - F". - O 

F"II '" O.2WP (T) 
F "B " 0.2887/' .. 2 kN 
I ' _ 6.928 kN 

F ... .. F K .. 0..5n4f' - L.S kN 

I' - 2.S98 kN 
The SIIIall", "alur of P IS chosen. 

I' - 2.598 kN - 2.60 kN 

f·r. - 0 
FeD - 0 

F"Ii - O 
F/II; - 0 

Ju;m C. 

A'~ 

A"t. 

II'IS. 
Ails. 

+1 ~F, -0: 259.811b - FeD Sin 30" - 0 
F,,, - 519.62 1b - 52{) lb (C) lIus. 

!..'f.F • .. 0: (SI9.621b)ros 30" - f". - 0 
F", - -150 Ib (f) AII.'-

.10111/ D. 
+?'f.F(-O: F""cos JO"-O f./)-O ,\l1f. 

+'.'f. f·, - 0: F oc-SlV.62 1b - O 

f DF. - S19.621b .. S2{) Ib (C) Am. 

.IomiB. 

I'f.F,,"' O: F,,£$in<f> - O f "A'- O 

!.. "::.F, - 0: 450 Ib - f ' ,,/I - 0 

f ' ,,8 - 450 Ib (T) 
.IoIIllA. 

+1 'f.F.-O: 340.\9Ib - f "Ii ... 0 

f ',u : ... 340 Ib (C) 

+1 'f.F,-O: Fa sm4So-600-800- 0 

FCI - l<J80 lb(n Alit. 

C.+'f. Me - 0: FHt"' ) - 800(4) ... 0 
f n:. - 800 Ib en , I,1f. 

C.+'f.M, - 0: F.-(4) - 600(") - 800(8) - 0 
F Be - 2200 Ib (C) All$. 

t"6-11. +1 'f.F, - O: F IiC,+ 3JJ3kN - 40kN - O 

F.6.c - 6.67 kN (C) /I,tl. 

c.+ ~M.6. '" 0: 
33.3HN(8m) - 40 kN(2m) - Fco(3 m) - 0 
feD - 62.22 "I" ... 62.2 kN (T) 

:"'f.f·, ... 0: f'Llt - 62.22 kN - 0 

F u: - 62.2 kN (C) illls. 

t·6-9. C.+ "::.M,, - O: G,.(12 ml - 20 kN(2m) 

.-6-10, 

- .3OkN("m) - 4OkN(6 m) - 0 
G, - 33.33 kN 

From the geometry of the trllS.\. 

<f> - Ian 1(3 ml2 m) ... 56.3 1·. 

C. + 'f.M A .. 0: 
33.3.1 kN(S m) - 40 kN(2 m) - f'erA3 m) _ 0 

f'eo ... 62.2 kN (f) 111It. 

C. ... 'f.M1)-0: 33.33kN(6m) - F .. a (3m) - O 
F,,} ... 66.7 kN (C) ' l ilt. 

+1 "::.F,- O: 

J3.JJkN - ,w kN + F"Dsin56.31·- 0 

FA'D - 8.01 kN (T) Alit. 

FrDm the ,eom~ l ry of [be tl'll$.!.. 

tDn<;6 _l·~)':''' - 1.732 d> _ 60" 
C.+'f.Mc - 0: 

F..,.sinJO"(6ft) + 300 Ib(6 rt) - 0 
Fu '" - 600 1b " 600 Ib (C) "'ttl. 

C.+'f. M'J " 0: 
300 1b(6 ftJ - FC(sin6W(6ft) - 0 

Fer · 346.41 1b - 346lb(T) 11'1$. 
C.+ 'f.Mr " 0: 
300 1b(9 [I) - JOO Ib{J rl ) - F"..(9 ft)t~n 30" _ 0 

f .. .. 346.41Ib - 346lb (T) IIIIt. 

'-6-11, From the ,eom~ l ry of the truS$. 
8 - tan ' (I m(2 m) - 26.57" 
o - tan '(3 m/ 2m) " 56.3 1·. 

l l1e \cH:alion of G C11I be found \I5I.n! SIIrular 
triangles. 

I m 2m 
2m - 2m +.! 
4m -2 m + ... 

... - 2m 



(+~MG" 0: 
26.25 tN(~ m) - 15 t N(2 m) - "-c';'3 m) .. 0 

Fctl - 25 t N (T) A/~ 

( + ~M/) " O: 

26.25 tN(2 m) - Fe,.. ros 26.5T (2 m) - 0 
Fe ,. " 29.3 kN (C) A"s. 

( + ~M(J " O: 15 kN(~JlI ) - 26.25 tN(2 m ) 

- F (; ,, 5," 56.31°(", m) .. 0 

FGD .. 2.2531.:1'1 .. 2.2SkN (1) AI~ 

H~-Il. (+ ~MH - O: 

F D("( llfl) + 120() 1b(9fI) - 1600 1b{21 fI) .. 0 
F DC" - 1900 tb (C) , Ins. 

(+ ~MtI "" 0: 
1200 1b(21 (I) - 1600 tb(9 fl) - FII/(12 tl ) .. 0 

"11/ - 900 Ib (e) A/IX 

(+~M(" - 0: FJ/cos -l5"(tlfl) + 12OO 1b{2 1 (I ) 
- ':100 1b( l l (I) - 1600 Ib(9 fl) - 0 

"/I - 0 

F6-lJ. +, "toF, - 0: 31' - 60 .. 0 
1' _ 20 1b 

.·6-I~. (+ ~M("- O: 

-(HCF ... X9) + .-00(6) + 500(3) - 0 

F". - SoII .67 1b 

:. r.F, - 0: - C, +1 (5"'1.67) - 0 
C. - 325 Ib II,IX 

+ Jr. F, - O:C. + ! (SoII .67) - 400 - SOO - O 

t"6-IS. (+ r. M" - 0: 100 N(2S0 mm) - N,.(SO mm) - 0 

NII - SOON 
:" ~ F. - 0: (SOO N) 5,"4 ~· - A," O 

, I , .. 3S3.55 N 

+ f::£.F,- O: "t- IOON - (SOON)cos ",5°- 0 

A . - ",53.53 1'1 

F" .. VC{"=357.'~N~r-+ (m.55N)1 

.. 5751'1 
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.,6-16. (+ r.M("" 0: 
F". cos ",5"(!) - F". 5I.n-l5· (3) 

+ 800 + .-00(2) - 0 

F " II _ ]131.371'1 

:. r. .... , .. 0: - C, + 1131 .37ros~5° .. 0 
C, - 800 1'1 AII.I: 

+! ~ F , _ 0: - C, + IUU7sin 45° - "00 - 0 

C,- -IOON 

F6-I7. !,IaIC , I: 

+ !r.F,- O: 2T + N ... - IOO - O 

!'hue 8 : 

... ! ::£.F," 0: 2T - N". - JO .. 0 

T _32..5lb. N,,"_ 35 lb 

t'6-IIi. !'!.I lky c: 
+ I::£.F,- O: T - 21' - 0:T - 2/' 

Beam: 

"" ~ "'-.- O: 21' + 1' - 6 - 0 
/ ' _ 2 kN 

(+ r. M" - 0: 2(1) - 6(.r) .. 0 
.r .. 0.333 m 

Chapter 7 
1'"7_1_ (+ r.M,," 0: 8 ,(6) - 10( \.5) - ]$(4.5) - 0 

B, .. 13.75 kN 

:' ~"- , - 0: Nc " O ' l Ilt. 

... 1 ::£.f , - 0: l'c ... I3.75 - 15 - 0 

Vc " l.2S t N , 1'1$ 

( + ~Mc" 0: U.75(3) - 15(1.5) - Me .. 0 
Mc "' 1I1.75 kN· m " '1$ 

1'"7- l. (+ r. M." 0: JO - 10(1.5) - ,1, (3) .. 0 

A.- 5kN 

:' r.F, - 0: Nc - 0 A," 
+1r.F,- O: 5 - Vc - 0 

Vc ., 5kN ,I~ 

(+ ~Mc - 0: Mc'" JO - ~( ! .5) - 0 
Mc- - n..5kN-m 1\,1$ 
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t7-J. !. ::'F, .. 0: Ii, .. 0 F7-<. + I'£F,- O; - V - 2x .. 0 

C, + 'i. M .. " 0: 3(6)(3) - 8 , (9) .. 0 V ... (- 2x) kip 

8, " 6kip (+ IMO-O: M + 1(0) - ]5 '"' 0 
:"':::'F, .. 0; Nc - 0 An!. M .. ( 15 - r)kip.fl 
(.+I:U.-O: VC - 6 .. 0 VI,atf, " - 2(9) .. - lSkip 

Ve - 6kip Aus. MI •• u, - 15 - <r .. - 66 kip·f! 
<'+'i.Mc " 0: - Me - 6(45) .. 0 

Me" - 27kip·fI 11/11, f7- 9. +1::" ',· 0: - V - ~ (2x)(x) .. 0 

1'7-4. C+ 'i.M .. " 0: 1.:1)(6) - 12(1.5) - 9(3)(4.5) .. 0 v .. -(r ) kN 
Ii .. .. 23.25 kN ( +'£Mo " O: Itt + I (lx)(x)(;) ,., 0 

!. 'I-F, .. 0: Ne .. O tI"s. M .. -U.\J) kN.m 
+1'£" , - 0: Vc + 23.25 - 9(1.5) - 0 

f1- III. + I:':F, .. 0: - V - 2 .. 0 
Vc '" - 9.7HN AII.~ 

(+'£ M,·O: V .. - 2kN 

23.25(1.5) - 9(1.5)(0.75) - Me " 0 (,+'i.Mo " 0; M + 2x - O 

Me" 24.75kN · m Am:. M " ( - 2x)kN - m 

(+ 'i. ,\/ .. - O: 8,(6) - ~ (9)(6)(3) '"' 0 
t'1- II. Region 3 :s; x < 3m 

t7 - S. 

B, .. 135 kN 
+ 1::'1', .. 0: - v - 5 .. 0 V .. - 5 kN 

(+'i.Mo - O: M + 5.f - O 
:' ::: 1', - 0; Ne- O All): 

M " (- 5x)kN-m 
+ I'iF, - 0: v .- + U.5 - J(9)(3)-0 RcgionO < x s 6m 

Vc - 0 , 111$, + I'iF,- O: V + 5 .. 0 V __ 5kN 

<. +'iMe " 0: 13.5(3) -} (9)(3)(1) - Me .. 0 <' + '£ "10 - 0: 5(6 - x) - M - O 
Me'" 27kN'm AilS. 

M -(5(6 - x») kN'm 
F7~. <'+'iM .. - 0: 

8,(6) - i (6)(3)(2) - 6(3)(.1.5) - 0 
f7- I2. RegionO s x < 3m 

+ I':E.F, - O: v - o 
8, - 16.5 kN <' + 'iMQ - O: M - 12 .. 0 

:"" 'iF, - 0: Ne- O AilS. ,\! .. 12kN-m 

+l'iF, - O: Ve + 16.5 - 6(3) - 0 
Rcgion3m < x s 6m 

Ve- I.SOkN AilS. 
+I'i Fy- O: V + 4 .. 0 V __ 4kN 

<'+'i Me - 0: 16.5(3) - 6(3)(1.5) - Me - 0 <' + 'iM,, - o: 4(6 - x) - M - I) 

M.- - 22.5 kN m AllY. M -(4(6 - x»)kN'm 

~i-7, +I '£F, " O: 6 - V .. 0 V .. 6kN f7- B . . r .. O. V .. - 4 . M - 0: 

<'+:::Mo " 0: M + Ib - 6x - 0 .f _ 1' . V .. - 10, M " - 4: 
M .. (6x - 18)kN'm x " 2' . V _ - 18. ,II .. - 14: 

x " 3. V - - 18. ,II .. -32: 



F7- I". .t - O. v _ 18. ,1/ - - 27: 
x - 15. V _ 6. M oo - 9: 

.f - 3. 
V _ 6. M - 0: 

F7_15. .f - O. V - 8. M oo 0: 

. f - 6' . V - 2 . M - 48: 
x _ ]2". V - - 10. M - 60: 

x '"' ]8. V _ - 10. M _ 0 

F7- 16. .f .. O. V .. O. M .. 0: 

.T - I.5 ' . V _ O. ,1/ .. - 6.75: 

., - 4.5 ' . v .. 9. ,II .. - 6.15; 
X " 6. V .. O. M - 0 

Jot- 17. x - O. V .. 9. ,II - 0: 
.T .. J. V - O. M oo 9: 

.T .. 6. V _ - 9: M .. 0 

F7- 18. .T .. O. V .. 13.5. M - 0: 
x .. J. V - O. M oo 27; 

x .. 6. V - - 13.5. ,11 - 0 

Chapter 8 

t"ll- I. +t~F,- O; N - 50(9.81) - 200(n - 0 
,'01 .. 6]0.5N 

:" ~F, .. O; F .. 200(~) - 0 
F .. lOON 

F < F-. .. jJ. ,N .. O.3{61O.5) .. 18.3.15 N. 
Ihcrcforc F - 160 N AliI. 

fo"ll-2. (+ :::.11 11 " 0; 

N,,(3) + 0.2,'01,,(4) - 30(9.81)(2) .. 0 

,v" " 154.89N 

:' :::f. - 0; 1' - ISU9 - 0 

I' - 1S4.89N - iSS N A,~ 

"'-J. Crall' A 

+1:£1'1-- 0; ,'01" - 50(9.81) .. 0 

N,, - 4905N 

:' 'iF, '' 0; 1" - 0.25(490.5) ... 0 
T ... 122.62N 
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Crall' Jj 

+ IYFy - 0: Nil + i'sin3(t - 50(9.81) - 0 

Nil " 490.5 .. 0.51' 

:''.E.F, .. 0; 

1' 00530' - 0.25(4905 - O.S ") - 122.62 .. 0 
P - Z47N AIlS. 

FlI ..... t :'YF, - 0; N" - 0.3N II - 0 

+ I:::Fy - O: 
NB + 0.3N" + I' - 100(9.81) - 0 

C+~Mo - 0: 

1' (0.6) ... N ,"0.9) - O.3N 1/(0.9) 
- 0.3,'01,,(0.9) .. 0 

N,, - 175.70N N,, -- SSS.67N 
/' - 343N 

fo"8-5. If shppingO(turs: 

+I'.E.Fy- O: N("- Z501b - ON(""- Z50]b 

:' ~F, .. 0; I' - 0.4(250) - 0 I' .. ]OO lb 
Irlipping occurs: 

( + :£ M" - 0; - 1'(4.5) + !5Q(I.S) - 0 
I' _ 83.3]b Am:. 

Chapter 9 

F9- 1. 

AliI. 

F9- l . 

I 1.'-' }"y.IA D 2 ",",(r'II.,) 
y-----

LilA l'"':I,':r 
.. 0.286 m 
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l Y"J! r { ("")) _ ~)'A 

~ }2 :VZ '/)' "'-" J' '' ~A .. 
~'9-3. ,.-"--- r (y'") .. 162.5mm Am. L ,fA , - dy 

" v'i ::i:iA 0.25[4(0.5)[ + 1.75[0.5(2.5)] 
.. 102m 

t"9- lll. ,,--. 
AII.I:. ::i: .. t -I{O.S) + 0.5(2.5) 

[{"'~I + ;,)", ] 

.. 0.827 in. A," 
i l ' dm _ ~)' II 2[4(0.5)J + 0.25/(0.5)(2.5)1 y.--. , ...... , .---- ::i:A 4(0.5) + (0.5)(2.5) 

it/III l\'~ I + ~: }/X .. ].33 in. A," 
~x I' 1[2(7)(6)] + 4(4(2}(3)] 

.. :!.... L F9-1I . , .--. 
2(7)(6) + 4(2)(3) ""$, ::i:V 

16 .. ] .67 fl AIlS. 

_ i,ytlV r){~y"y) ~y V 3.5[2(7)(6)\ + 1[4(2)(3)J 

,'-, y .. ::i:V " 2(7)(6) + 4(2)(3) , ---- -
r 

.. 2.9-1 fl I IIIS. ' 1 ,IV :!.yd)' ::i:zV 312(7)(6)1 + 1.51~(2)(J)J 
" , 4 t .. -yv- -

.. O.6()7 III Am: 2(7)(6) + 4(2)(3) 

t [9 1 
.. 2.67 fl A'~~ 

1 ' ''v o Z ;(4 - zf dZ 
" ... ::i: X- V , ..... " F9- 12. ,-----

t' 
. :::v 1 ,IV o ~(4 - z)l d: 

O.25(O.s(l.S)( III)j - o.2S[ io.5)(U)(O.5)]" [~(l5)(liI)(o.s)] " .. 0.786 ft Am: 

::i:iL O.5(2.5)(l.ll) '" ~ (1 5)11.11)(,0.5) t i (1.S)(lJI}(O.5) 
t'Y-7. i - TL .. 0.391 m A",: 

JSO(300) + 300(600) .. 300(400) _ ~y V 5.00625 

300 ... 600 ... 400 y- ~V "~- 1.39m Am; 

.. 265 mn\ ,111'£ _. ~z v _ 2.835 .. 07875 
11m; 

~yL ~~V3.6· m 
)' .. -:!L 

FI,I- B. A " 2".~i'L 
0(300) ... 300(600) t 600(400) 

.. 2,,-\0.75(1.5) '" 1.5(2} '" 0.75\1'(1.5)1 + (2} lJ 
300 + 600 + 400 

.. 323 mm 1111.£ _ 37.7 mZ 11/1$. 

~: L 
V - 2".~i'A z .. 'iL 

0(300) ... 0(600) ... l - 200}(400) - 2n{0.7S( I.5)(2) + 0.5(DO .5)(2)] 

300 + 60) ... 400 .. 18.8 mJ 1111.£ 

.. - 61.5mm AII.£ 
F9- 14. , \ ,. 2#~rL ,.,.., 'iy A 150(.300(50)] + 325150(300)] 

.. 2-i 1.'15 (0.9)1 t (1.2r + 2.4(I.S) + l.9S(O.9) + i..S(2.1)1 
) ' ----'iA .3ClOlSO) + 50(300) 

- 237.5 mm AIlS. 
_ n .S ml A," 

V .. 2,,~rA 

"" 2-i 1.~0l (O.9)(I2) + 1.9S(O.9)(U) j 

.. 22.6m' IIIIS: 



t"'- 15. A " 21I'::!:rL 

.... 2...[7.5(15) -+ 15(18) -+ 22.5v'iS: -+:zol -+ 15(.;o)J 

... 8765 ,n.: , In.l. 

V .... 2" ~'A 

... 2..-{7.5(15)(38) -+ 2O(1)(U)(20)J 

.. 45710 'n.' 

.'\1- 16. A .... z,. ~ iL 

.... 2...-{~(~) + 1.5(2) + 0.75(1.5)J 

.. .\0.1 m! An"" 
V .. 2 ,, ~~A 

- 2....f~}1;'l(¥) + 0.75(1.5)(2)J 

.. 21.2 m' AJI.t 

F ..... 17. "'t"" p_.ghb .... 1(00(9.81)(6)(1) 
.. 58.86 kN/ m 

FI< .... !t.58.76)(6) "' 176.51i ~N "" In kN , Ills. 

. ....... 111. ... ~ .... Y. hb .. 62.4 (4)(4 ) _ 998.4lb/ ft 

1'1<"" 998.4(3) .. 3.00 kip Am.: 

."9- 1.\1. wt '" ,,_gl',p - l000(9.8 IX2)( I.5) 
.. 29.43 kN/m 

F tI. .. ~ (29.43)( V"'(''''")'-:+-:(2''')!) 
.... 36.S kN Am; 

F!l-lO. w,, " p.,gh,.b .... 1000(9.81)(3)(2) 

.... 58.86 kN/ m 

"', - ""gl'iI' '" HXKl(9.1S1 )(5)(1) 
.... 98.1 kN/ m 

"If "" ! (58.86 + 98. 1)(2) - 1'7 kN tl/l.t 

."'-21. w,, " "'I.h"b " 62.4(6)(2) '" 74K8 1b/ fl 

.... - "'I..-I,lfb .... 62.4(10)(2) - 1248lb/ r, 

FIf "" } (748.8 + 1248)(V(3): + (4)l) 

'" 4.99 kip Au"" 

Chapter 10 
flO- I. 

I, "" 1 fdA '" [ ... f[(1 - yl'l)dyJ .. O.lll m' AII.t 

FUNDAMENTAl PIt08LEMS 6 1 7 

n O-2. 

1, - 1,': 1/,1- [ -f(rdy )- 0.222m' 

""'0-3 . 

f l .... l ·r If,' " 1'· ~l(:clf))d.\· - 0.273 m' tim . 

Flt)..4. 

f, - L",:,/,, - L' '''..-l! (, -···:.'J)dx]- o.0606m' Aus. 

."10-5. I , -/t: (50)(45O-') + oj + !li(JOO)(SOl) + OJ 
- J!!J{ IO") mm' , lll.t 

I ) - [fi (45O)(W) + OJ 
+ ~fi<SO)(I5Ql) + (ISO){SO)(IOO)!] 

.. 183{10") mm' Am: 

F1f1..6. I, " i~ (360){ZOO') - h (300)( 14W) 

.. 171(Hf)mm' Jlu"" 

I ,. - t: (200)(J6Ol) - i\{I40)(JOOl) 

.. 463( 10") mm' AII.(. 

."10-7. I , '" 2[t:(SO)(zool) + oj 
+ [t:(JOO~W) + 0] 

.. &.I.IS ( 1()6) mm' tim: 

1'1 ..... 
~)" A 15( \50)(30) + 105(30)(150) 

Y - ~A '" 150(30) + 30(150) .... 60 mm 

7, • :::(7 + Jld l ) 

• [~: (15OX30)l + (150)(30)(60 - IS)!] 

+ 1 1~(30)(15O)) + 30( \50)(\05 - 65):J 

• 2.U (10") mm' ,tll.t 

Chapter 11 
F11- 1. )"0 - 0.7Ssm 6 

x,. .... 2{ I.S) cos " 

OYr; .... 0.75 ~,; OIJ 

o.rr '" - 3sm n6(J 

W - 0: 21V0Ya + po.((" '" 0 
(29-1.3 00511 - 3/' sin 0)01/ _ 0 

I' '" 9IS.1 cOIIfl".", - 56.6 N 
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Fll- 2. X,, '" 5 cos 0 1i.1"" .. - SsinOOO 
y" .. 2.5 si ll II Ii),,, ... 2.5 cos 0 {iJ 

W " 0: - !'Ii.r" + ( - lVliy.::) .. 0 
(S P sin /I - 1226.25 cos 0)00 - 0 

f' .. 245.25cOI0!._".,.. - 142N 

FII_3. X8 " 0.6sinO SX8 - 0.6 cos 0 IifJ 

Yc" 0.6 cos II liyc - - 0.6 sin I) IifJ 

W .. 0; - f','pX6 + (- P/lye) .. 0 

- 9( 10-1) sin 0 (0.6 cos 0 00) 

- 2000( - 0.6 Sill I) 00) .. 0 
sinO - O I) · if 

- S-IOOcos/l + 1200 .. 0 
I) .. 77.16" ... 77.2" 

FlI-4. x8 "' 0.9cosO Sx8 --O.9sinOSIJ 

-fc "' 2(0.9rosO) 61"c --1.8sin(}/iIJ 

SU - O: f>1i-fs +(-F,p S-fc) - O 

6(101)( - 0.9 sin 0 (0) 

- 36( 10))(cos II - 0.5)(- 1.8 sin 0 00) .. 0 

AIlS. 

IIIIS. 

sin 8 (M 800 cos 0 - 378(0)56 - 0 
sin8 - 0 0 - 0" 

64800 cos (/ - 37 goo .. 0 
11 ... 5-1.31 ° ... 54.3' 

Am: 

n I- S. )'G .. 2.5 sin 0 

FU-6. 

X" .. ScoslJ hc --5sin06I.J 

W .. 0: - IVSy" + (- F."s ... ,,) .. 0 

(IS 000 sin OcosO - 75005inll 

- 1226.25 cos O)liiI .. 0 
o - 56.33· .. 56.3" IIII.~ 

F ,p " 15000(0.6 - 0.6 cos 0) 

Xc - 3[0.3 ~in 0] 

)'8 .. 210.3 cos 01 

S-fc'" 0.9ros/lM 

liys .. - 0.6 sin IJ 00 

W .. 0: I'S.I·e + 1',;.1'11 • 0 

(135 cos 0 - 5400 sin IJ + 5400 sin Ores O)&.! - 0 
IJ ... 20.9" 1I1It. 
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Answers to Selected Problems 
Chapter 1 

1- 1. ~. 4.66 m 
b. 55.6 s 
f. 4.56 k N 

d. 2.77 M& 
1- 2. ~. N 

1- 3. 

, ... 

h. MNlm 
c. N/s' 
d. MNls 
~. 0.431 g 

b. 35.3 kN 
c. 5.32 m 
II. GN/s 
h. Gg/N 
c. GN/(kg' s) 
a. 45.3 MN 
h. 56.!! k111 
f. S.6.liJg 

1- 7. Y. 3.65 Gg 
h. \\', - 35.8 MN 
f. 1V", - 5.89MN 

d. 111 .. '" III, " 3.65Gg 
1- 9 I p~ .. 20.9(10 J) lblfl~ 

I r\ Ti\1 .. lUI kPa 
1- 10. a. IV ... 98.1 N 

h. II' ., 4.90 mN 

c. 1\' ... 4-1. 1 kN 
1- 11. ~. 0.447 kg· mIN 

h. 0.911 kg·s 
c. 18.8 GNlm 

1- 13. Y. 27. 1 N·m 
b. 70.7 kN/m! 

c. 1.27 mmls 
1- 14. 2.71 Mglml 
1- 15. f'.,'" LOOMglmJ 

1- 17. a. '" '" 2.04 II 
h. m '" 15.3 Mg 
c. ", - 6. 12 Gg 

I- Ill.. Y. O.O-I1'.'1 Nl 
h. 2S iJm ! 

c. 0.064 kml 
1- 19. F ... 7.411lN 
1- 21. 26.9 I'm ' kgfN 

620 

Chapter 2 
2-1. FI! " '-It.! + 81 2(6)(8) cos 750

", 8.61 kN 

"',:.J. .. r.!t (I ... 63.0)0 
oJ> ... 3.05· 

!- 2. F II '" 10.5 kN 
<b ... 175· 

2-3, T .. 6.57 kN 

0 '" 30.60 

>-5. 

2-<i. 

>-7. 

2- 9. 

2- 10. 

2- 11. 

2-13. 

2-14. 

2- 15. 

2-17. 

2-18. 

2-19. 

2-2 1. 

F. 200 
~-~ ,.'.- 3I!6Jb 

F. - 2S3lb 
F." 1501b 
F.-260lb 
/J ... 711.6" 

F II .. 3.9;2;kCN.".~==_~~ 
F II - v'8~ + 61 2(8)(6) cos 100" ... 10.8 kN 
"", ., ~.J'" . ,~ 

0' - 33.16" 

<b '"' 3.16' 
o '"' 54.9" 
FR - \O.4 kN 

F/I "" olOON 
o - Ill' 
- F ,' 360 

sin W " sin 80" F ,' - - IM3N 

F, 360 
~"'~ F,- 344 N 

0 - 53.5' 
F IIH ... 6211b 
<f, - 38.3· 

. F~. - ~.F. - 77.6N 
Sin 30" Sin 75" .r 

F./oo 150 
sin 75" - ~. F!J, - lSON 

F,, _ 174N 
FII - 3-IIiN 
FIJ - 325N 
F,, - g93N 
/J '"' 70.0" 
F, ... 600530" " 5.20kN 
F~ .. 6sinJ(f _ 3 kN 

, - Ill' 



2-21. (J - 90" 
Fl - 2.50kN 
Fit - UJkN 

l-ll Fit - 8.00HN 

'" .. 98.5' 

2-lS. -' . , -. ...... ., 
<1> " ; 

Fit - V (F)! + (Ff - 2(F)(F)cos(11IO" 

Fit - 2fros (i) 
~-26. fA " 3.66 kN 

F, - 7.07kN 
2-27. F, - S.OO kN 

FA " 8.66kN 

"6fJ" 
2-211. FA - 600 cos .3O" - S20 N 

Fit " 6OOsin:lO" " JOON 
l-JO. (J .. 10.9" 

F ... - 2JSlb 
2-.11. I' - 97.4lb 

(J _ 16.2" 

2-33. 1'/1 - V4~.62l + 493.011 - 702 N 
(J _ 44.6° 

2-34. <I> - 41.4' 1', .. 731 N 
2-35. F ,- 67.3Ib 

F,--162Ib 
2-37. S. I96 .. - 2 + 1'1 COS <I> + J 

- 3 - - 3.46-1 + 1'1 sin 40 - 3 
II< _ 47.3° 1': - J .71 kN 

2-... F: - 12.'HN 
FIt - IJ.2kN 

2-311. (J .. 29.1' F,- 27SN 
2-41. 0 - 700sin 30" - F, costl 

ISOI) - 700 COS JO" + I' ,sm (J 

(J - 6!l.6' F, - \I6ON 
l-I2. F" _ 839N 

<b .. 14.11° 
2-43. F,, - 463lb 

(} - 39.6' .... ,. 0 - F , sin</; - ISO - 240 

1'" - 1', cos </; + 240 - 100 
1', - 42011'1 
F,, - I40lb 

2-46. (J .. 63.7" 1', - 1.201', 
l-I7. (J _ S4.3° FA - 6116N 

~ 
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2-49. F" - V( 103.OS)! + '( - 42.57f .. III Ib 
fJ .. 202' 

2-50. L2ZkN s I' s 3.17kN 

2-51. 1'" - 391 N 
Ii .. 16.4" 

2-53. 1'" - '(~.~,,~·,-+-300)f + (O.ll66OF, 240): 

F~ _ Fi - 11$.691', + 147600 

,IF" 
2F,,- - 2FI - 115.69 .. 0 

,IF, 
1', _ $7.IIN. F,, - 380N 

2- $.&. (} _ IOJ' 

F:- 88. llb 
2-55. 1'" _ 1611b 

(} _ 311.3° 

2-57. F~ - ( - 4. 1244 - I' COS 45°f + (7 - 1' sin 45' ): 

2F",IF" .. 2{- 4.1244 _ ,.. cos 45°)( - cos 45' ) 
>IF 

+ 2(7 - I' sin 45' )( - sin 4$' ) .. 0 
I' .. 2m kN 
F H - 7.117 kN 

2-5'1. F, - IF,cosO I + F,sinll j lN 

F:- P.'iOiIN 
tj - 1- IOOj ) N 
fJ .. 67.0' 
F, - 434N 

2-59. "', _ 1- \$9i + 276j + 311'\11: 1 N 

t': - (4Ni + 300j - JOOk l N 

~-6 1 . .'," 6OO(~)(+ i )+O j+600m( + I.: ) 
- \48Oi + 3601.: ) N 

F: .. 400 cos 60"1 + 400 cos 4$ j 
+ 400 cos 120"1.: 

- poo + 211Jj - 2001.: ) N 
l-{;2. 1'" .. 754lb 

.. - 15.S· 
fJ .. 68.0" 
l' .. n .'" 

2-63. F,--ZOON 
1'," ZOON 
F,- 28JN 

l-{;5. - \00k - [(Fl. - 33.40)1 + (1'1, + 19.2.II)j 

+ (Fl. - 45.96) 1.: ) 
F:- 66.4lb 
.. .. S\l.S' 

P - 107" 
l' .. ]44° 
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2-M. n " 124" 
p .. 71.3" 
l' .. I.w" 

2-07. FI .. p-l.Oj - 48.01,; ) Ib 
F: • ('JOi - 127j + 901.;) Ib 

2-69. - 3OOi + 6SOj + 2501,; 
.. (-I59.Wl + 26.~.17j - 530.331,; ) 

+ (Fcos .. I + Fcospj + Fcosyk) 
F1(COS1 .. + cos1p + cos! 1') .. I 33351S.08 
F _ 1.l5kN 
n .. 131 " P - 70.5" y . -17.5" 

2- 70. "' .. &l2 N 
n " 121 " p .. 52.7" Y - 53.0" 

2-71. "' 11 - 718Ib 
nil .. 86.S" 
/J II .. 13.3· 

YII .. 103c
o

""",-;<-;-;-","= 
2- 73. F II " V(550j! + (52.1): + (27Of .. 6151'1 

n .. 26.6" 
/J .. 85.1" 
l' .. &t o" 

2_7-1. n l " -15.6· 
PI .. 53.1 " 
1'1 .. 66A" 

2_75. n l" 90" 
/JI .. 53.1 " 
1'1 .. 66.'1" 

2- n. 1'1 cos n: .. - 150.57 
"': cos P: .. -86.93 
F: cos 1'1 - -16.59 
F!_ I,soN 

<>1 - 147" 
/J l .. 119" 
Y: .. 75.0" 

2- 78.. n " 121" 
l' .. 53.1 " 
1'11 - 75-11'1 
/J .. 52.50 

2-79. "'J" 9.58 kN 
<I) - 15.5" 
Pl .. 98.4" 
1'1" 17J)" 

2-81. R " 64.67" 
f, .. l.28kN 
1-', .. 2.60kN 
1', .. 0.176kN 

2-82. F .. 2.02 kN 
F,. 0523kN 

2-8J. FJ - 166 N 
R .. 97.5" 
P .. 63.7· 

y .. 27.~:,O""""C;;;"C7."''''-;-~-C;'' 
2-&5. 1'1" V(- 17. lOf + (8.68)1 + ( 26.17)! 

.. 32.-1 Ib 
R: .. 122" 
P: .. 7-1 .5· 
YI " l.j.j" 

2-86. r"H " {-3i + 6j + 21,; } m 
r"l1 _ 7m 

2-10. z .. 5.35 III 
2-89. t 'B " (oIOOi - <IOOj - 2()()1,; ) Ib 

t'~" (25Oi + 500j - 5OOk) Ib 
F1/ - V65O-'+100:+( 700)! - 960 lb 
.. .. -17.-1" 
p .. H-i.0· 
l' - 137" 

2- 90. .. .. 72.8" 
p .. 1\3.3" 
Y - 162" 
FII - 8UN 

2-'H. I'll " 1.38 kN 
.. .. 82.-1" 
p .. 125· 
Y .. loW" 

2-93. (4cos3O" 1- -Isin3O" j -6 1,; ) 
t'" .. 60 ,;'."~~:F~"i""";;i;;F"f='5 V{-Icos3O")1.;. (- -1511130' ): + ( 6f 

.. (2l!.8 i - 16.6 j - -19.9 k) Ib 
t', .. {- 28.S l - 16.6 j - -I9.H) lb 

--!(~4J~' ;-~6;'~) , F~-60-=-
V(-If + (_6)1 

.. (3J.3 j - -19.9 1,; ) Ib 
1'11 - 1501b 
.. .. 90" 
p .. 90" 
l' .. 180" 

2-9-1. F .. 52.1 Ib 
2-95. t' .. (59.J I - 88.2j - 83.2" ) Ib 

.. .. 63.9" 
p .. 13 1" 
Y .. IZSO 



2-97. r", - (0 - 0)1 + 10 - (-2.299)Jj 
+ (0 - 0.7SO) kl m 

re-a - 1I - 0.s - ( - 2.5)]1 + 10 - (- 2299)1j 
+ (0 - 0.7SO) kl m 

F" _ (285j - 93.0t;1 N 
Fe- - 11591 + ll13j - 59.7kl N 

2-93. f " - (-·13.51 + m j - IN I.: J N 

F, - 15J.2i - 79l1j - 146k1 N 
l-99. Fc - L62kN 

1', - 2AHN 
1', - 3A6kN 

l-IOI. U - : .. -1r:1- ~j - f:, 1.: 
~ - 2" fI 
Y - 18ft 
.: - 16 ft 

l-IOl. 1', _ 1.2-1 kip · -"" 
• - 90 l' - IISO'" 

l-103. F" - ,.., - Fe-- 3261b 
2-IIlS. f " - (301 - 20j - 6Ot1 Jb 

F . .. 1301 + 20j - 6Ok ) Ib 
Fe- - 1- 301 + 20j - 6Ok) Jb 
. '1> - 1- 301 - 20j - 6Ok ) Ib 

"II .. 240lb · -.,. 
• - OJ l' .. 1110" 

l- 106. F - 105 Jb 
2-107. t' - 1-6.6 11 - 3.73j + 9.29tj lb 
l- IOII. r" - (0 - 0.75)1 + (0 - Oll + (3 - 0)1.: 

_ (_ 0.7S 1 + OJ + Jklm 
t'" - (-1.46 1 + 5.S2 1.: ) kN 
fe- - 10 - ( - 0.75 1m ,W)II 

+ 10 - (- 0.75ros45·)U + (J - 0)1.: 
f e- - (0.857 1 + 0.857 j + " .8S klkN 
r, - 10 - (- 0.75smJO")\1 

+ (0 - 0.75 cos JO")j + (3 - 0)1.: 
f , _ 10.9701 - l.6Sj + 7.761.: ) kN 
F,, - I8.5kN 
.. .. 88.11· 
fJ .. 92.6" 
1' '' 2.IH" 

l-1I0. f .. 114Ji + 2-IlIj - 20I ki Jb 

l-113. (1',00),1- (2"lm + (- 48)(-1) 

+ 16(-;) - 46.9 N _ 
(FMlI." V (S6f - (46.86)1 _ JO.7N 

l-1 14. ' M'-5.J9 m 
l-1I5. (Fe,,) .. 3J.I N 

(FcDl. .. 498 N 
l-1I7. u, - rosI2O" 1 + ros6Cr j +ros "5 k 

[Proj " :I .. 71.6 N 
l-1I1S. I'M''' "5.21'1 

Fit' - 1321 - 32J1 1'1 
l - II'.1. F ,_3ll N 

F:-J7JN 
l- I.ZI. u,M''' O.ISSII + 0.27J9j - 0.9481 1.: 

(1',0('), - - 569lb 
l-Il!. I' ItC .. 366lb 

t',oc - (293j + 21 9k \ lb 
l-m. V .'M'>' - 24S N 

(F"d . - 316N 
l-l lS. Iton " -sin 30 I + tos30 J 

uo,, - 11 +1 j -; k 
til .. 65.S-

l-U6. W,) ,." SO.6 N 
l-127. " .. 117.3· 
l-129. r". " [ - I ~ I + 3j + Ski fl 

r,o(' .. 1- 151 - 8j + 121.: ) fl 

" - ).I.r 
l-130. F , _ 4711 Ib 

1',0(''' 4S.s Ib 
l-131. F, - - 751'1 

F," 2601'1 
l-Ill 
II" - cos J(f' sin 30"1 + cos xr ros 3O"j - I,n J(YI.: 

. f," ms IJ5 i + ros60"j + rosliO"k 
(f', ), .. 5.+4lb 
Z- IJ.-I. F , .. 1781'1 

6 " 100-
2- 135. " 11 " 215 1b 

8 " 52.7" 
2-137. r ", - (- Jif fl 

rM''' (61 + 4j - 21.:[ fl 
8 - 143" 

2-138. F, - 1781'1 
" .. 85.2· 

l-1311. 1'""" 21S lb 
() .. 52.7· 
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2- 14 1. 

2- 142. 
2- 143. 

250 F. 
--- - -- F. - 186N 
sill l ZOO sin4O" 
"'.- 98.7N 
I'roj F - 018.0 N 
.... " - [- 3201i + 130j + 19Sk[ N 
Fc'" [- 32Ji - lJOj + 195k l N 
FE - [- 1901; + 291&. 1 N 

Chapter 3 
.l- I. "-8"SIII300- 200(9.81) - 0 FB,,-3.92I;N 

"'/JC- HOkN 
.l-2. F9C"2.90 kN .,. ~ 0.g.jlm 

3-3. "'''B - 29.4kN 
FIJC - 15.2kN.FBII - 21.5kN 

3-S. T .. 13.3 kN. Fz .. 1O.21;N 
~. 0 " 36.3°. T - 14.3 kN 
>-7. T 9C - 22.3kN 

T IIII - 32.6 kN 

>-9. F"II CO$ 45° - "',oeW .. 0 
F N.- .. 294.631b 
IV _ J 121\) 

3-10. T - 7.20 kN 
F .. 5.40kN 

>-11 T _ 7.66kN 
I) .. 70.[ ° 

3- 13. IVt • cos)if - 275 CO$ 0 .. 0 
I) ,. ..0.9° Wc ., 2JOI\) 

.l- 14. xAe ., 0.793 III 
x,,11 - 0.467 m 

3-15. III .. 8.56 k2, 
.l- 17. "'('B (0$ 0 - Fe" cO$ .W .. 0 

I) .. 64.3" FOt " 1IS.2 N 
"'c,," 42.6N 

3- 111. "'''11 - 98.6 N "'~ - 267N 
3-19. d - 2.42m 
3-21. .Ioinl D. "!!.,.., .. O. 

FCII cO$)if - F BI)(O$ 45° .. 0 
Joinl8. "'iF," O. 

F fI(" + 8.7954111 cos 45° - 12.431l6m CO$ 30° - 0 
III " 48.2k2, 

3-H. 
3-23. 

I) .. 35.0" 
40 .. SO(V12 - 1').1' - 2.66 fl 

3-25. Jolnl E. F lD CO$ 30° - Fun) - 0 
Joinl IJ. 

1.3957W cos 30" - O.8lli IV m - F II" .. 0 
IV _ 57.71b 

-'- 26. 

3-29. 

F B" .. SO.7 1b 
Fe,, " 65.!l lb 
Fw: - 57.llb 
{J .. 2.95-
IV ,. - I23lb 
100cosl/ - W(M 
0 .. 78.7° 
1V - 5 1.01b 

3-341. T - 53.1 Ib 

3-J I. F - 39.31b 
3-J3. 2 (T cos 30") - SO .. 0 

T - 28.9N 
F R - 10I,9N,( A andlJ) 

FR - 40,8 N. (8 and C) 
3-J4. l' '' 147 N 
J-J5. f .. 19,1 in. 
3-37. - TIIC + "~cosO " O 

tf '"' 7.13 in. 
3-311. k .. 6.80 lbiin, 
J-J\I. WI: - IS.3 lb 
J-4I. - ISO + 2TsinO - O 

- 2(107.1) c()SoW"'o + 111 (9.81) - 0 
1/1 .. 15,6 kg 

J-4Z. III " 2.37 kg 
J-43. y .. 6.59 m 
J-4S. F "8-if,,/) .. 0 

- F N.-+jF,oI) .. 0 

IF,,,, - 91H .. 0 

F"v " 2.901 kN 
F"B - F..c - 1.96kN 

3-46. 1/1 " \02 kg 
J-47. F "B .. 2.52 kN 

FCB .. 2.52 kN 
F B,, " 3.64 kN 

J-4\1. -iF "II - il--N.: + F "" .. 0 
IF"II - i,....u: .. 0 

jF"R + IF,v.;- w - o 
F..c - 22.~lb F"v - 4SOlb 
W _ 375Jb 

3-50. F "B " 1.37 kip 
F AC .. 0.744 kip 
F.w " 1.70 kip 

3-5 1. F "8 " 1.47 kip 
F.tC " 0.914 kip 
F "n ,. \.42 kip 



3-53. 0.1330 Fe - 0.2182 F" '" 0 0.76IQ I'll - O.SUS I'c - 0.8729 Fn -0 
0.6J02 F II - 0.4·132 Fc - 0.4364 I'D - 4905 '" 0 

F/I '" 19.2 kN 
Fe - JOAkN 
1'" '" 6.32 kN 

3-54. F,,~ ... 1.21 kN 
F,.c - 606N 
FM;J-750 N 

3-55. F,,~ '" 1.31 kN 
F,oc - 763N 
F"n '" 708.5 N 

3-57. ,~Ft/ - I~F(" - ,~FI> - 0 

-1:,F~ -hF("+f,FD a O 

- ~F/I - ~Fr - HF,, + II' '" 0 
III - Z.62 Mg 

3-58. F "t/ ,. 831 N 
, .. ,oc '"' 35.6 N 
F,,/) '" 41SN 

3-59. III " \/0.3 kg 
.J-6 1. (I' "II), - ~F "II - ~F "II .. 0 

(F "II), + r,F"H + ;'1'''11 - ~905 .. 0 

F,," - S20N 
F,.c- F"p-2OO N 
11 _ 3.6Im 

.J-6Z. )' '" O.37~ fl 
z - 2.5lf, 

.J-63. F .. 8311b 

: - 2.07f1 

.J-65. F"/{~) - FM(~) - O 
,,{ ~) - {F( ~)] - o 

3F( ~) - 100{9.81) '" 0 
0.52 + :. 

1. - 173mm 
.J.-«,. /I '" 1.6-1 fl 
.l-67. F "II ... F,oc" F M) '" J7S Ib 
.l-69. -Q.3873 FOil + 0.3873 F ()(' + 100 sin (J .. 0 

(J - O' 
-Q.44n F 0" - 0.2236 I' QI/ 

- 0.2236 F oc + 100 .. 0 
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0.SW4 FQA - 0.S944 FOH - 0.894~ Foc '"' 0 
1'0" '" 1491b 
Fv~ - F(}( - 14.S Ib 

3-70. It '" IIY 
3-71. II - 4.69' 

,.\ .. 4.31 kN 
3-73. 1.699{1O) 'cos6O" - F .. 0 

I' - O.8S0 mN 
3-74. I'"t/ - lION 

FA(" - 8S.8N 
3-75. p .. 6391b 

irl'" 77.2" 
/JJ " 148' 
l'J '" 119" 

3-n. I'z+I',cosW- l;OOm-O 

800W + I' ,cos 135" - FJ '" 0 
F,cosOO" - 200 - 0 
F, - 4oolb 
F! " 21!OIb 
F, .. 3571b 

3-78. Fen "" 625 Ib 
Fe" .. Fell - 1981b 

3-7<J. ''', " 0 
1'2" Jilib 
F) - 238lb 

Chapter 4 
..... 5. 3O (cos4S' )(18) " I'(~) (11) 

F .. 39J:lJb 
4-0. M,, - 7.21kN·m;) 
4-7. tJ "" 64.0' 
.... 9. - 500 " - Fcos3O"(18) - F5;n3O"(5) 

F" 27.61b 
.... 10. Mv " 120N'm) 

Mo " 520N'm) 
4-11. ,II" '" 3S.2kN·n';) 
.... 13. M" a (36costl+JSsinlt)kN'm 

11M" -- .. - 36 sin 0 ~ 18cosO '" 0 d' 
(J .. 26.6' . (M,,) ... , .. 40.2 kN· m 
When M,, " O • 

0 .. 36 cos II + ISsin tl.O " 117· 
4-14.. ( + '\/" - lDlb·in.) 

F - 1J.7Ib 
.... 13. V.I ~)" .. 2.09N.m;) 
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4-17. (M F), " - 3OW(9) 
.. - 162Ib·ft .. 162Ib·fl ) 
(MF.)c-260 lb·fl) 
Sinee (MF.)c > (MF.k. t he gale will rOlate 
co"me,c1Q~kw;$e. 

4- 18. fA " U.91b 
4-19. Alp " (537.5cos/l + 75sinO) lb· fl 

4-21. a. M A " 400V(W + (2)2 
MA - I.44 kN · m) 
/I ., 56.3° 

4-lZ. (; + MA- 1200sinO + 800rosll 
M "",. - l.44kN·m) 
11m., ., 56.3° 

4-23. M .... " 0 
0 .... - 146" 

4-25. He .. 24.57 fl 

4-26. 

4-27. 

4-29. 

4-31). 
4-.n. 
4-.\). 

"-"-
4-35. 
4-37. 

"-". 
4-39. 
4-41. 

4-42. 
4-4.1. 

4-45. 

'-"'. 
4-47. 

To' - '!.~"i- /I .. 23.15° 
1500 .. F sin 23.15°(20) 
f - 191 1b 
(MA)I " 118Ib·in.) 
(MAh " 140lb·in.) 
M A - 73.9N · m ) 
Fc " 82.2N-
(; + .11 II - 40 cos 25°(2.5) _ \10.6 lb · ft) 
C + Mc " 141Ib · fl) 
C+ M ,, - 195Ib · fl) 
(;+M,, - 7.7IN·m) 
Maximum moment . 08 1. HA 
( +(,110) .... .. 8O.0 kN·m 
I) .. 33.6° 

1' - 1151'1 
F - g.UN 

Mo " '0" X t'l - lllOi - 50j + 9Okllb·h 
Mo - {9Oi - J30j - 6Ok} Ib · rl 
(M"lo - 1200i - 180j + 3Ol;j Ib · ft 
M v " .0" X Fc " pOSOi + 720j l N· m 
Mo - . (1(" X .·c - 110S0i + 72{Jj j N' m 
M o - l - 72Oi+72Oj }N · m 
(M ,,)o " \ - ISi + 9j - 3k} N·m 
(M B)o - jlSi + 7.5j + JO k j N·m 
MA - ·A/"X t· 

- 1-5.3'ii + 13.lj + 1J.~ kJN· m 
M, - llO.6i + J3.l j + 29.2k IN · m 
y * lm 
z .. 3m 
iI - USm 

4-49. b .. rCA X reB 
b 

Up " b 
M/I - . IIC X F .. IlOi + O.750j - 1.56kl kN · m 
4-5tl. Mo - 4.27N · m 

(> ., 95.2" 
p .. 110" 
y " 20.6" 

4-5 1. M "F - 19. 33j + 9.33j - ~.67k jN · m 

4-53. II " k 
. .. 0.25 sin 3W i + 0.25 cos JO" j 
.II, - IS.5N· m 

4-54. M" - IS.Olb · f! 
,II , ,, 4.001b · ft 
.II, ,, 36.0Jb·ft 

4-55. M,.c - l1l.Si + S.~j llb · f1 

4-57. . 08 " 10.2 cos 45°i - 0.2 sin .f5~k l m 
.11, " 0.82SN ·m 

4-S8. ,II , - 73.0 N· m 
4-59. F - mN 

4-6' 
"-"­
US. 

..... ... ,. 
4-70. 
4-7 1. 
4-73 

4-78. 
4-79. 
4-8 1. 

Mco " Ileo • rCA x F 
- " CO · . !>B X F - - 432tb · f! 
F - 1621b 
M y" -164 lb · ft 
11 ,· - -$in3O' ; ' + cos3O" j' 
. ...c --6cosI5° j' + 3 j' +6sin lS" k 
M, " 2/;2 Jb·ft 
,II - 282Jb·in. 
(,11. )1 - 3OIb·in . 
(M. h - 8Ib·in. 
M o,, " UO,,"OB X W - UOA · ' OB X W 
\\I _ 56.8Ib 

,II , ,, 14.8N · m 
F - 20.2 N 
M~" "2"N · m 
0 ... 42" .26 cos 45" - MJ 

MJ ""' 300N'm 
F - 6lSN 
(,lUll ... 260 lb · (! ) 

F' ... 33.3 N 

F - 133N 
F .. III N 
0 " 56.1" 
(+MR - 100oos3O"(0.3) + lOOsin 30" (0.3) 

- I'sin 15° (0.3) - " cos 15"(0.3) - 15 
1' - 70.7N 
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4-112. For minimum I' require 0 _ 45· 4-106. fll - S,'JJkN 
1' - 49.5N 0 - 77.87 

4-lIJ. N " 26.01" M~. " ]1.6kN·m) 
4-$5. .. 4-101 . f~ _ 29.9]b 

M ~ - II cos 45°(1.11) + II sin 45°(0.3) + 2 cos 30"(].8) I) .. 78.4°..::( 
- 2 sin J(t{O.J) - 2 cos 30°0.3) - 8 cos 45°(3.3) M~,, " 214Ib · in . ) 

M /I - 9.69 t N·m) 4- 1~. f/l - V S33.01 1 + ]002 .. 542 N 
h. M I/ - 9.69kN· m ) IJ .. 10.6":b. ..... ( M. )/I .. S.2() kN· m ) (MI/)" - 441 N'm ) 

4-117. F - 14.2 kN·m 4-110. f/l " SO.2I:N 
4-119. a. (+ Me - 40 cos 3O' (4)- 60W(4) o .. 84.37 

.. 5.l4Ib· ft ) (M/I)A - 239kN'm) 
b. (+Me --S3.4Ib · ft _ S3.4lh·fl ) 4-111. f/l .. 461 N 

4-90. a. (+ Me-SHlb'ft) I) .. 49.4,,", 

b. C+ Mc-S3.4 lb· n ) (M/I)o - 438N-m ) 
4-9 1. (M,)I/ - I.().lkN·m 4-113. f R - {2i - IOt \ kN 

.. .. 120" (MR)o - rOIl x .-" + roc x .·/) 
/J - 61.3° _ ( - 6i + 12i1 kN'm 

y " 136" 4-114. 
. '" .. {- 2IOkJ N 

4-93. M < .. r A" x f .. r"A x - t' M..., - {- lSi + llij ) N'm 
,II,,, 4O.8N·m 4-115. .·R '" 16 i - Ij - IH ) N 
.. .. 11.3° MIlO - {1.30 i + 3.30 j - O.4SO t ) N · m 
/J .. 101" 4-117. f~ .. {- 1.768i + 3.062j + 3.5J6t ) kN 

, - 90" f R .. {0.232i + 5.06j + l2.4 t ) kN 
4-94. F _ 98.1 I" M II,j. " r , x .') + r1 x f l 
4-95. ( .II /I), - 4.84 kip " .. {36.Oi - 26.lj + 12.210; ) kN'm 

(M R)" .. 29.11 kip' (I "- 1111. F~ - ]0.75 kip 1 
"-97. Me" ...-{I.S) M~. " 99.5kip·fl) 

f .. IS.4N d - 13.HI 

"-98. MR - [- 12.l i - 1O.0j - 17.3 Io; )N·m 4-119. F~ .. ]0.75 kip 1 
"-99. d _ 34Z mm d - 9.26 ft 
"-1111. 0 --M1+;M)+ 75 "-I ZI. f/l " V (I00)1 + {898.zf " ~Ib 

0 .. .III - ~Ml - 75 0 " 6.35" 

0 .. jM, - ]06.7 '" .. 23.6" 

Ml - 3]8Ib ·n d " 6.l0ft 

MI " M1 " 287Ih·ft "-IlZ. F/I - ]97Ib 

4-102. (Mc)1I - 224N'm I) "" 4Z.6°..::( 

" .... 153" d " 5.Z4f1 

/J .. 63.4" "-123. F/I - 1971b 

, - .,. I) .. 42.6°..::( 

4-103. F, - 200 lb d .. 0.824 ft 

F: " ISOlb "-125. f ll .. V( 4l.W + (SO.3 1)1 - 65.9Ib 

4-105. FI/ " V 1.25! ... S.7W .. 5.93 tN 
fJ .. 49.S,,", 

II .. 77.S" II - Z.\Oft 

MR .• - J-i.ll t N·m) 
"-Ll6. ' ''/I'' 65.9Ib 

I) .. 49J~,,", 
II _ 4.62 (I 
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4- 117. Fit " 5-12 N 

" .. 10.6":l:. 
rI .. 0.827 m 

4-129. f ' lt .. J-IO)';N\ 
- 1-10)'" - 50(3)- 30(11)- 40(13) 
,. - 7. 1~ m 
~ ... 5.7 1 m 

4- 130. " It" I,",),;N 
x - 6A3m 
,. _ 7.29m 

4-131. Fe - 600N Fo - 5OON 
4-133. 0 - 200( 1.500545°) - FII (I.50053O") 

f ' 8 - J63lb 

f 'e - 213lb 
4- 134. f' R " 215),;1'1 

y - 3.68m 
x - 3.5~m 

4-135. F .. - 3OkN f,, - 2UI:N fR - I!IOI:N 
4-137. Fit - 26kN 

- 26(y) - 6(650) + 5(750)- 7(600)- 8(700) 
}' - 82.7 mm 
.1·- 3.8.'imm 

.... 138. F .. .. IKOkN 
FR - 48.7 kN 

4- 139. F R - 8OII Ib 

F II _ 16.7kN 

~ .. 352f1 y .. 0.138 (I 
MI\" - - 10031b·tl 

4- 141 . F R .. 9901'1 
UF. " - 0.50511 + 0.303O j + 0.8081 k 
MI< - 3.07kN'm x - J.l6m 
I' - 2.06 m 

4- 14!. Fit " 75kN I 
S .. 1.20m 

4- 143. f ·R - JO kN J 
x _ 3.4m 

4- 145. "R " ~ ,,\)i. j 

-j ... oL(.i) - -h(tml-},,·O(tHiLl 
x - fi L 

4-146. Fit " 3.90 kip I 
" - 11.3 fl 

4- 147. w, " 1901bJfl 

""2 - 282 INtI 
4- 149. FII - j- l08 ijN 

M RQ- -( I + i (I.2») (IOS)j 

-(0.1 + ~(1.2» ) (J08) 1.: 
"' RQ - i - I'Mj - 5H )N·m 

4-150. b .. 4.50ft 
a " 9.75fl 

4-151. FIt - 7Ib 
.r .. 0.268(1 

4-153. Fit - 107 kN .­

L:: ... ,'z 
z .. L:"lit 

[ 0] (",I) (10') j" -. 
~ [ .. (20zl) (lW)llz 

/, .. 1.60 m 

4-154. Fit " 10.7 kN 
i _ 1m 

4-155. Fit " 5n lb." .. 47.5°~ 
Mit .. " 2.2Qkip·fl ) 

4-157. fit '" 80.6 kip I 

8CJ6.IOs .. 34560(6) + L' (.l + 12) wi/.f 

.r " 14.6(1 
4-158. Fit " 53.31b 

i - J.60ft 
4-159 . ....... .. ISlbJrl 

Fit " 53.3lb 
x' .. 2AOfl 

4-161. (IIFR) , - 62.5(1 + cos6jsin6i/O 
FR- 22Jlb ! 

4-161. Fit - 53J Ib j 
MR., - 533Ib.ft ) 

4-163. ,I _ 5.54 fl 

4-165. Mo" '0 .. x ~. - Imi + 15.lj - WOk) Jb· in 
4-166. M .. - 2./f9kip · r. ) 
4-167. "' .. - i- 59.7i - 1591.:1 N·m 
4-169. a. Me" r .. II X (25 1.:) 

Me - j - 5j + 8.75 j j N'm 
b. Me" '1)1' x (25 1.: ) + ' Q .. x ( - 25 Jr.) 

M("- 1- 5l + 8.75 j j N'm 
4-170. f .. 9921'1 
4-171 . I'lt - I- SOi - SOj + 4OIr.j Jb 

"' It ,. - 1- 24Oi + 720j + 960kJlb· ft 
4-173. 



Chapter 5 
5-1. IV is Ihe eff~el of grll\'II)' ( ... eight) on the 

paper roll. 
N ... and N. arc Ihe smoolh blade rellClions on 
the paper roU. 

5-2. N ... fOf«ofplaneOl\rollcr. 
H,.8, force of pin on member. 

5-3. IV IS Ihe effcci 01 Va\·,ly (,,·eighl) on Ihe 
dump$lcr. 
A, and A, arc the rellC'llOfH of Ihe pin A on the 
dump$ler. 
"./1<: 151he: rellCllon of the h)'draulk C)·linder BC 
on the: dumpster. 

5-S. C, and C, arc tlK: reaclions or pin Con Ihe truss. 

T". i5 the: tension of cable 118 on the: truss. 
.\ kN Dnd -I kN force arc the: cffcrt of external 
applied forces on the 111m. 

~ II' iII Ihe effect or gr~.ily (,,·eighl) on lhe boom. 

II , and II, arc Ihe reaclions of pin A on the 
boom. 
T K ilt the force reaction of cubic: BCon the boom. 
lhc 12S0 Ib force 15 Ihe suspended I~d relICtion 
on the boom. 

5-1. 11 ,. A ,. N. forces of cylinder on ... rench. 
5-9. N .... Nr"'r fOI(e$or ... oodon bllr. 

10 Ib forces of hand on bar. 
5- 10. C,. C. forces of pm on drum. 

FA. forcC$ of pa'" on drum gear. 
SOIl Ib r()f(e$ of cable: on drum. 

5-11. "'.- USN 
NA - -IUN 

5-U . 

T .... (()$ .30"(2) + T .... Sin .30"(") - 3(2) - 4(-1) - 0 
T .... - S.89 kN 
C, - S.lIkN 
C, - ".OS kN 

5-1". T M: - 11 .1 kip 
A • .. 10.2 k,p 

A . - 6.l.S lap 
5-15. N. - lolOlb 

A • .. 140 Ib 
1I, - 201b 

5-17. Ne - S.17 lh 
IOc053O"(13 - 1.732) - N ... (S - 1.732) 
- 5.17(J..j~) - 0 

N ... - 2J.1Ib N. -12..21h 
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5- 18. F .... - 401Ib 
C, " 3331b 
C, - 722 lb 

5- 19. (N ... ), - 9S.6Ib. (N .), - 21.4 Ib 
(11' ... 1, - 100 lb. (N .), .. 20 Jb 

5-1I. TWO) + TG~ I ) - 60(1) - 30 - 0 
T - J.l.62: kN 
A, _ 2O.g kN 

A , - S1.1 kN 
5-Z2. F ... 4.19 kIp 

II , _ 3..21 t,p 

II, - 1.91 kip 
5-lJ. Ne - 213 N 

II , .. lOS N 
JI~- lIgN 

5-l!. N.(3) - 300(I..S) .. 0 

N . .. ISO lb 
II,," JOO Ib 
II , " ISOlb 

5-U. Fro" 131 N 
8 , -.;J.ON 

8 , - 9SAN 
5-Z7. F .... .. 0.864 kN 

C,- 6.56 tN 
C, - 2.66kN 

5-Z'J. F..{!){1.5) - 700(9.8I){d) .. 0 

"'-c -
F ... -

5-JO. A . - SO Ib 
N. - l.60klp 
A , .. 1.51 kip 

5-3 1. F _ 93.751b 

'-ll 

A, - 1..12 kip 
A , - 46.\llb 

4Om>(H(4) + 4()(XXl{;)(o.2) - 200)(9.111)(.1') .. 0 
x - S.22m 
C, - 32kN 
C, - HgkN 

5-,W. N. - I.OJ tN 
II , .. 0 
II," 600N 

5-35. " .. 6 fl 
..... 2671b1ft 

5-37. -~90.5 (J. IS) + } "'. (0.3) (9.25) .. 0 

"'. " 1.11 kN/m 
"'A - 1 . .\.1 kNlm 
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'-l< k ... 1.33kN/ m 5-61. 95.35 sin .W(JOO)- F(400) .. 0 

Ar- JOON F .. SO.6N 
A, - 39!!N A,- l03N 

5-39. II .. lJ.l 6 A)_ 48.8N 

Ay " .lOON 5-6!. 11 - V(4rl)i- 4r 
A, - 353N S-6J. N,-- 289N 

5-11. A, _ 7SOlb 
N II - 213N 

N ,,(4 sin 30")- 300(1)- 450(3) NII - J32N 
N B - S25tb 5-6,. Tco(2) - 6(J) .. 0 
A, - 8Z51b 

T t;l) " HN 
5-42. N . .. I.27kN T f:F .. 2.25 kN 

A, - 9O.)N T,," " 0.75 kN 
M,, - 221N ' m ...... )' .. 0.667 m.x .. 0.667 m 

5-43. T ,. 9.08lb 5-67. HI) '" 22.6 tip 
5-45. 2500(1..1 + !lA) - SOO(IS (OS 30" - 8..1) R£ .. 22.6 kip 

- N,,(2.2 + ]A + !l4) - 0 R, .. 13.7 kip 
,v" " I.SS kip 5-6,. C,- 4SON 
N B - L.lSkip C , (O.9 + 0.9) - 900(0.9) + 600(0.6) .. 0 

S-<6. IV ... S.34 kip C: .. 2SON 
5-47. F .. _ 432 lb F,, - O Fc .. 4J21b 8, .. 1.125 kN 
5-49. 5O{9_81) sin 20" (0.5) + 50(9_111) cos 20"(03317) A," I25N 

- /' 0058(0.5) - Psin6{O.3317) .. 0 8, ... 25 N 
Forf'_ ; ~ .. 0 A, + 25 - S(X) - O 
0 " 33.6" A, .. 475 N 
1' ... - 3951'1 5-711. TBf} - Tcn - 117N 

'-S{). F .. 5.20 kN A, .. 66.7 N 
Nil " 17.3 kN fI , - 0 
N,, _ 24.9kN II," lOON 

5-51. fJ .. 63..1" 5-71. For - 375lb 
T - 29.2. kN E, - 0 

'-53. Fc(6 cos 8) - F .. .<6 cos 8) - 0 £ , - S62..5lb 
fJ - 12.8" A, .. 0 ,-s.. k " 1I.21blfl A . - 0 

5-55. .. _ 1.02" A . _ 62.5lb 

(Vi') 5-13. " ; .. (J) - 200(3) - 200(3 sin W) - 0 5-57. For disk E: - P + N' - , - _ 0 
NII - J13N 

For disk D: NAm - N'( ~) - 0 

A._ 333N 
T; ,, + 37J21 + 333.33 - 3SO - 200 - 200 - 0 
TCf> - 43.5 N 

N A - 250lb 
"' , - 0 N .. - IU8Ib 
A , - 0 

Nc - 1411b 5-74. Fc/, - O 
'-SII. 1'_ - 210ib 

F£F - toolb 
N A - 2621b 

Fill) - ISO Ib 
Nr- 14Jlb 

A, - 0 
5-59. .. - 1004° 



 

II, '" 0 
A,- looJb 

~75. F " 900 Jb 
A, " 0 
A," 0 
A," 600Jb 

.II", " 0 

.11",- 0 
5-n. T£/{L) - IY(H-O.75 IY (~ - (/'°5.15°) .. 0 

II _ O.550L 

T I;F - O.S831V 
5-7>1. T ,,1/ " 1.1411' 

T I;F - O.5701V 
Tm .. O.03981V 

5-79. T" .. 16.H.N 
A , '" 0 
11 , .. 5.00 kN 
A , .. 16.7 kN 

5-... A., + ( ~)FnI ... 0 

- 55(3) + ( ~)Fe" (3) - 0 

Fe,, " 67.41b 
A, .. - 27.51b 
A , ... - 27.51b 
A,- 0 
M" . ... 165 1b·ft 
.11",- 0 

5-". FFOC. - 17Slb 
A , '" 1301b 
A,--10Ib 
M", - - JOOlb · ft 
.11", "' 0 
M", - - 7201b · ft 

'-'3. F", .. IOSlb 

'-'5. ~M"H .. 0: 7"r (r + , ros 60") - W(r cos 60") 
- P(<f+rros6O") " 0 

d -HI+~) 
5-86. d - I 
5-87. P '" O.S IY ... ,. 600(6) + 600(.1) + 600(2) - ,v" ros 45°(2) - 0 

N,, - 5.09kN 
II, ... 3.60 1.:1" 
l l f " 1.110 kN 

5-911. F - 35-1N 
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5-91. N" .. 8.00 kN 
8., .. 5.20kN 

8, - 5.001;.1'1 
5-93. 5(14) + 7(6) + 0.5(6) - 2(6) - 11,(14) .. 0 

A . - 7.36kip 
B, .. 0.5 kip 
8 y " 16.6 kip 

5-!U.. T - 1.01 1.:1'1 
Dr - - 507.66 1'1 
Fo - 9I!2N 

5-95. p .. 100 Ib 
B," 40 1b 

B, - - 35.7Ib 
A, - l36lb 
8., . .. 0 

A , _ 40lb 

Chapter 6 
6-1. Jomt 0:600 - /-o e sin16.57" " 0 

Foc - 1.34 kN (C) 
fo~ .. 1.20 kN (T ) 
Joint C: - Fe(cos 26.57° ... 0 

FeE: '"' 0 
/-;.;" .. LJ.I kN (C) 
J oint £: 900 - Ff.1I sin 45' .. 0 
FCII '" 1.27kN (C) 
Fu .. 2.10 kN (1) 

6-2. F"" .. ll491b (C) 
FMI .. 600 Ib (1') 
I'IlI> .. .j()() Ib (C) 
f'se - 600 lb (1) 
Foc " 1.41 kip (1) 
/-or. .. 1.60 kip (C) 

6-3. 1'"J) - l.l3kip (C) 
F"B .. 800 Ib (1) 
I'RO ... 0 
File " 800 Ib (1) 
Foc " 1.13 kip (1') 
FIJ~ .. 1.60 kip (C) 

6-5. l oint II : FM{ 0) -166.22 ... 0 

F"F. " 372 N (C) 
I'~R " 332Nm 
J oint B: FBe - 331.45 .. 0 /-~c " 332 1'1 (1') 
FHt: " I96N (C) 
Joml E: Fcc cos 36.87' 
- (196.2 + 302.41) cos 26.57' .. 0 
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FIX " .'i58 N (T) 6-15. I' " 200010 
Fm .. 929 N (C) 6-17. Joint A : 0.8333/' cos 73.740 + /' cos 53.13" 
"nc .. 582 N (T ) - r"'8 - 0 ... , Fcs - 3.00 kNm Joint B: O.8mr(~) - FSC( H .. 0 
Fen ... 2.60 I;N (e) 
ff}£" 2.60kN {e} 

Joinl U; FOF. - O.833JP - / , cos 53.13" 

F08 .. 2.00 kN (T) 
- 0.83331' cos 73.7-1 · .. 0 

FBI: .. UIO kN (C) 
p .. 1.50 kN (comro ls) 

fB" .. 5.00 kN (1') 
6-111. Ff'll " lSOOlb(C) 

"-7, Fen .. 8.00 k.N (1') f;,F." 1200lb(T) 

Fel, .. 6.93 kN (C) f j,n " 1200 Ib ('1') 

FD fi .. 6.93 kN (e) fiji .. 0 

F/)B .. 4.00 kN (T) FAD " J250lb{C) 

FOE " 4.(10 kN (C) 
f~H .. 200 Ib (C) 

FM .. 12.0 kN (T) 
F/K' .. 200 Ib (e) 

"-" Joint A: f~,,§in 45" - " " 0 
FtlD .. 0 

Joint F: FfB C()S 4S· - 1.4142/'cos45° .. 0 Foe " 250 Ib (1') 

Joint £: FF./J - 2/' .. 0 6-19. Frio '"' 75 Ib (e) 

Joint 8: FIIIJ sin 45· - 1.41 42 r sin 45· .. 0 Fen .. 60 Ib (T) 

Joint C: 31' - Nc .. 0 FFF. .. 60 Ib (T) 

21' '" 8001b p .. 400lb F£A .. 55 Ib (C) 

31' .. 600 Ib I' .. 200 Ib (controls) F"" .. Is-! Jb (e) 

6- 10. FBG - FCc, - f~G - FOF - FCF - ff:F '" 0 F..H - 63.3 Ib (T) 

FA" - For. - 667 Ib (C) FIIC - 63.3 Ib (1) 

Fllc .. Fc" - 667 Ib (C) 
FIIO .. 55 Ib (T) 

6-11. FBG .. F=_ Fc,A .. 0 Foc - 79.2Ib (C) 

FOF .. 400 Ib (C) 6-2 1. Join! D: ~iCs in 45° + f ilf: cos 30.25° - IY .. 0 

FFC .. Ff't .. 3331b (T) Joinl A: FAc, - 1.414 lY sin 45° .. 0 

f jw .. F"A .. 708 Ib (C) III - 1.80l-lg 

Foc .. fiJE: .. 11251b (C) 6-22. Fen - 778 N (C) 

6-13. JoinlA:FAcsinO - O FCII - 550 N (T) 

Joinl D: 2.60 I~ cos 22.62" - Fnc .. 0 FOB " 70,7 N (C) 

Join! 8: F". - 2,60 I'! sin 22.62° .. 0 fo£ - SO(} N (C) 

1') - \J5 Ib FF .... .. 636 N (C) 

6-14. Fllc, - O FL-" - 70.7 N (T ) 

f8C - 245OIb(C) F8A .. 450 N (T) 

Fca .. 176810 (T) 6-23. Fco" 286N(C) 

FCI) - I250lb(C) FCII .. 202 N (T) 

f (;[) .. 1768lb (C) FolI - 118N(T) 

FC,F .. 2500 Ib (Tl Fo£" 286 N (C) 

FM: " 2450 Ib (C) FB£ .. 118 N (T) 

f~F " 0 FilA " 202N (n 

Fm " 1250lb(C) FI' .... .. 286 N (C) 

Fr.I' '' 1768 lb (1) 6-25. Join! A: 1.4142 Pcos45° - f~1I - 0 

FF/) .. 1768lb (C) Join! D: f oc - 1.4142 /' oos 45° .. 0 
Joinl F: Fff: - ].4]42 P sin 45~ .. 0 

JOint E: 1.41421'sIn 45° - 1' - Fc"sin 45" .. 0 



6-26. 

6-27. 

6-!9. 

6-J<). 

6-3 1. 

6-33. 

6-34. 

6-35. 

Joint C: FCII - P (e) 
I' ... I kN (ronuols) 
1..11421' ''' 1.5 
P - I.06kN 
FeD ... 780 10 (e) 
/:i."11 .. 720 Ib (T) 
fOB - 0 
Fo,: ... 780 10 (e) 
FIJI: ... 297 Ib (T) 
fir,. - 722 Jb (T) 
Fff: ... 0.6671' (T) 
f;'o .. 1.671' (T) 
f;'8 " OA711'(e) 
FM; ... 1.671'(T) 
f ;'c " 1.49f'(e) 
FIJF " 1.411' (T) 
F~n .. 1.49P (e) 
Fec " J.4Jf'(T) 
Fcn'" OA7Jf'(e) 

,", .i 15 ) Joint II: F"F - 2 . ....,.., \. f7""::; ... 0 
v 3.25 

Joim B: 2.1().l/{ J:1.25) - I' 

( 0.') (0.') - FM . r.;:; - FilII .~ - O 
v 1.25 v 1.25 

Joim f: Fm + 2[ 1.8631'(. ~)] 
v 1.25 

- 2.00P " 0 
I' .. 1.2.HN 
127" s 0 s 196" 
336" s 0 s 347" 
F~" .. 25510 (T) 
fire " 130 Ib (T) 
f'lc .. 180 10 (e) 
lIy " 65.0 kN 

A , " 0 
F8<"( 4) + 20(4) + 30(8) - 65.0(8) ... 0 
fire .. 50.0 kN (T) 
f ill .. 35.0 kN (C) 
Flit, '" 21.2 kN (e) 
f j,; .. I 1.I kN (C) 

Fen - 12 kN (T) 
Fa .. 1.60 kN (e) 
I'u " 12.9 kN (T ) 
FfI " 7.2 1 kN (T) 
FII/ ... 21.1 kN (e) 
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6-37. Ey " 7.333 kN 

7.333 (4.5) - 8 (1.5) - fid3 sin 60· ) .. 0 
Fm " K08kN{T) 
fct} .. M7 kN (e) 
fCF .. 0.770 kN (T) 

6-38. ~II .. 42.5 kN (T) 

f ;te " 100 kN (T) 
f IX-" - 125 kN (C) 

6-39. FCII .. 76.1 kN (T) 
FEo " 100 kN (C) 
f"l1 - 29.2 kN (T) 

6-41. A ,," 240 Ib 

A , - lOOlb 
240(8) - FBC~OS 14.().lO(4) .. 0 
fin: .. 495 Jb (T) 
~IC .. 420 Ib (C) 
F~G .. 200 Ib (e) 

6-4Z. AIJ. IIC. CD. l)fi. III. ~nd GI Me all zero·force 
m~mbers. 

f ic - S.62 kN (e) 
"'C(J - 9.00 kN (T) 

6-43. liB. Be. CD. DE. III. and GI are aU zero·force 
members. 
1)£ .. 9.38 kN (C) 
fGF .. 5.625 kN (T) 

6-45. N,. .. i300 Jb 
FK~ (8) + 1000(8) - 900(8) - 1300(24) " 0 
Fu .. 3800 Ib (e) 
fi:o - 2600 10 (T) 
f i.11 - 424 Ib (T) 

6-46. Fac'" 3.25 kN (C) 
I'CII - 1.921;N (T ) 

6-47. Fc,, " 1.92 kN (e) 
FGF .. 1.53 kN (T) 

fin - f;'r- O 
6-49. It,," 0 

II." 15.5 kN 
fi.Jsin 33.69°(4) + 5(2) + 3(4) - 15.5{4) " 0 
f i.J .. 18.0 kN (C) 
f KC - 7.50 kN (C) 
File " 15kN (T) 

6-stl. 1';'8 " 21.9 kN (C). f;'c ... D.I kN (T). 
FlJc " 13.1 kN (C). f BG .. 17.S kN (T). 
Fm " 3.12 kN (T ). Fm .. II.2kN(T). 

fCF '" 3.12 kN (C). Fen " 9.38 kN (e). 
fm; - IS.6kN (C). ~IF " 12.5 kN (T). 
f"f " 9.38 kN (T) 
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6-51. F"II .. 4J.8 kN (C). F,w .. 26.2 kN (T) Joint C: Fell .. I) 
f Be .. 26.2 kN (el. FIJ(; " 35.0 kN (T) Fm .. 650 II) (C) 
Fr.c .. 6.25 kN (T l. fel-.. 22.5 kN (T) Fa- 0 
FliD .. Jl.2 tN (C), Ff.F " 18.8 kN (T) Joint F: I'BI' '' 22511) (T) 
Foe '" 18.8 kN (el. FOF " 25.0 kN (T) FOF " 1230 Ib (T) 
"Fe .. 6.25 kN (C) fu " S25 Ib (C) 

6-53, Gr .. 1.60 kip 6-62. I'AF. .. File " 220 N (T) 

\.60(40) - fjj(30) .. 0 F..H .. 583 N (C) 

fil - 2.13kip(C) fso .. 707 N (C) 

"[,1:" 2.13 kip (T) F,,,: '" File " \4\ N {T l 

!>-S4. FCA .. &331b {Tl 6-63. F ... 170N 

FeN " 6671b (C) 6-65. loint F: fic- f m . and F,c arc Iring in the 

Fcn - 333Jb(n s.1me plane. 

F",o "" Flo" '"' 354lb (C) Fn;cos I} .. 0 Fn - O 

FOR " 50 Ib (1) Join! £: F£(J. F,,(;_ and 1-;:8 arc lying in the 

6-55. f CII .. 1000 Ib (C) same plane. 

Fen '" 406 Jb (1) f j,JJ oos8 " 0 f (I)" 0 

FCI< .. 34J Ib (C) 6-66. Fcn " IS7lb (T) 

f~8 .. 1':" , .. 424 II, (T) Fc£. .. 5051b (C) 

foa .. 544 Jb (C) FI'f} - 0 

Join! D: - j Flln + k 1-lm 
6-67. P - 12.51b 

6-57. 6-6,. Apply the force equation of equilibrium along 
3\.25 

+~FC/J - 200 - 0 
the y axis of each pulley 
21' + 2R + 2T - 50(9.81) - 0 

7.25 P - I8.9N 
Flo" .. 343 N (T) 6-70. p .. 5 1b 
FRO " 186 N (T) 6-71. ,> - 25.01b 
FCD - 397 N (C) 

Flo - I' .. 25.0Ib F8 .. 6O.0 1b 

Join! C: Fsc - ~ (397.5) .. 0 6-73. N8 (0.8) - 900 .. 0 
7.25 N8 - 1l25N 

FBe -148N(D 
A, - 79SN 

F .. c - 221 N (T ) A, _ 79SN 
Ftc" 295 N (C) 

!>-". FRe .. 1.15 kN (C) 
C, - 795N 

FOF - 4.16 kN (C) 
Cy "' l.30kN 

FR£ ", 4.16 I;:N (1') Mc " 1.25 kN·111 

6-59. FcF - 0 
6-74. ;ly - 60Ib 

Feo .. 2.31 kN (T ) C, "" 161 Ib 

1-i.·o .. 3.46kN (T ) C, - OOlb 

F" B .. 3.46 kN (C) A , - 1611b 

6-6 >- D, - IOOlb 6-75. C," 5.00 kN 

C, .. 650lb 8
f 

.. 15.0 kN 

E, - 5SOIb M .. .. 30.0 I:N · m 
F. - ISOlb ;ly - 5.00kN 

r; - 650lb A , - 0 

1-; - 700lb !>-77. C, - IOOlb 8 . " 4491b 

C, " 273.61b A, .. 92.3 Ib 
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A, " 186lb "-9; Pulley £: T _ ;;50 Ib 

MA - 3591b· It MemberABC: i l, _ 700lb 

6-711. A, '" JiX)N Memb/.'f OlJ: 0 , .. 1.82 kip 
A, - JiX)N 0" .. LSI kip 
C, - JOON A , _ 2.00 kip 
C~ _ JOON "-'" n: _ 3.351b 

"-79. 1.'0 .. 3331'1 "-9; " .. 562.S N 
A, - 333N 6-97. 80 - ,~; (0$ 36.00· - Nceos 36.0;;" .. 0 
A)'" 1001'1 NB - ,v. .. 49.5 N ..... S~gmem IlD: B, _ 30 kip "-,. M _ 2.43kN·m 
0 , _ 0 "-99. P - 5.07 kN 
D, " JOkip 6-101. Member ABC 
SegnlCnl ABC: C:. - 135 kIp Ill' - 2451'1 
A, _ 0 Member CD 

A, _ 7Skip D1,- 2451'1 
Segment DEF: F) .. 135 kip '>, - 6951'1 

E, - 0 11, - 6951'1 
£~_ 75kip 6-101. "w .. 1.01 kN 

H2. ,'Ie - 12.1 kN F"RC - 319N 
A, - ]2.7 kN 6-103. A,,- ]83N 
A," 2.94 kN £, - 0 
N" _ LOS kN ":; .. 417N ...... A , '" ]671'1 "',:- SOON-m 
A , - 1.17 kN 6-1D5. Member HC 

C, - l.3HN C. " l.3HN 
C,- 833N B1," 549N 

6-I!5. Member AB. FRG .. 264.9N McmberACO 
Member £ FG. Fr." .. ]58.9 1'1 C, - 2.98kN 
Member CD I_ Ill , - L7l kg I I,," 2..35 N - "',. - 106 kg I I , .. 2.98 kN 

6-87. F/II .. 1.94 kN B, - 2.98kN 
FRD .. 2.60 kN 6-106. ,,~c - 2.5 1 kip ..... 1>.lcmber All: "j1/) - 162.4lb FA R " 3.08 kip 
8, .. 97Alb F"" .. 3.43 kip 
8, _ lJOlb 6-107. F - 175lb 
A, .. 52.6Ib Nc " 350lb 

A,.- ]JOlb ,.' - 87.51b 

6-". E, " 9451b Nc - 87.51b 

£, - 500Jb 
6-H19. Oamp 

0, .. 9451b C, "' 1175N 
Handle 

I), ,, 1000 lb 
"' - 3701'1 

6-111. N" .. 4.60 kN Pllr. " 2719.69 1'1 
C," 7.05),:1'1 6-110. N" .. 28-1 1'1 
A" .. 7.OS),:N 6-11 1. We" O.S121Y 
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6- 113. '::.M,; '" 0: W(x) - N"(3b + !c) .. 0 C . ... 61.91'< 

F:o() - II'.T pe) _ O 
C, _ 125N 

~M .. ... 0: 
cO: (3b + !f). M", .. - .j29N-m 

Me, - 0 

j!J.lO: J« 4b) + \I{ I - - '-, }b) - \\Hul " 0 
6-12:7. Fir .. 133 1b 

Jb + .<" 6-12'1. fi'iI .. fi,,: .. 0 

IV, .. ~w Joinl C: FeIJ .. 17.91.:1'1 (C) 

6-114. f-i, .. 9.06 kN (T) FeD " 8.00 kN (T) 

F//C .. 15.41.:N (C) Join! D: f j,r; .. 8.00 kN (I) 

6-- 115. "'1' - 187 1'1 
Joint 8 : FilII .. 11.91.:N (e) 

6- 117. /"11 ,., 86L2] mm. LCAII ... 76.-11 · , Joint II: f~1f. .. 11.00 kN rn 
6-130. Fllf,'" 0 

f~8 .. 9.23 kN 
Flle - O 

C, " 2. I7I:N Flit' .. 500 lb (T) 
C ... 7.01 kN FAil .. .300 Ib (C) 
D, " 0 FAt: .. 5I!3 1b (T) 
f)J " 1.961.:1'1 F .. o .. 333 Ib (T) 
,lfl1 .. 2.66 kN m FAT. .. 6671b (C) 

6- 118. A, " L20 lb f in " 0 
' \f" 0 I)," '" .'000 lb (e) 
Nr - IS.Olb FeD .. .300 Ib (C) 

6- 119. f l , " &l Ib F,:r " .300 Jb (C) 

A,. 80 lb Fop " ·l24 lb (T) 

8 , .. 133 1b 6-IJI. FII, " 0 

8, .. 333 Ib f i.c .. 0 

C, " 413tb FtJ£ '" 500 Ib (T) 

C ... 53.J lb FAil " 300 Ib (C) 

6- 121. IX '" :!C..;.~J 
FAe .. 9721b (T) 

FAII - 0 
:II ... ~1-"cos{o - 0)1 FAT. " 367 1b (C) 

6- 1.H. WI " 3 1b Fill. " 0 
1V~ " 2 11b f i:r " 300 Ib (C) 
Uj _ 751b FCf) " SOl 1b (C) 

6- 1.23. P - 283N Fer - 3001b(C) 
8 , .. D. _ 42.51'0' F/lr " 42~ 1b (T) 
H, - D. - UUN 6-133. ~ lember AC: C, - 402.61'0' 
8: - 0 , - UU N C.- 97.4N 

6- 1.25. -t Fm;(3) + 180(3) - 0 Memb/: r AC: A. - 11 7 1'0' 
fiJI; - 270 Jb A,- 397 N 
8: + : (270) - 100 - 0 Member CH: 8 , .. 97.4 N 
8, - 0 H. - 97.4 N 
8, --30 1b 6-134. f' - : ... .':.:;;. (2 - csclI) 
8 , . .. - 13.31b 6-1.\5- A. - 8.3] kip 

6- 126. It, .. 0 
AT - 0.308 ~ip A, _ ]72N 
£, .. 8.31 kip 

A,.- 115N 
£." 5.69 ~ip 

C. - ~7.JN 
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Chapter 7 7- U. Member A8: H, - SOO N 

7- 1. H," 1.IXHip Member 8 C: 8 , .. 12SS.33 N 

A, _ 7.00 kip Nv - I.26kN 

A, - 0 Vv - 0 

,\\:- - 0 Mv - SOON· m 

Vr - - 1.OO klp 7-14. N~ - - 1.4SkN 

Mc- 56.0 klp·rl ' 'I;'' SOO N 

No - 0 M~ " IOOON·m 

Vo - - 1.00klp 7- 1S. Nv " 0 
Mv .. .&&.0 kiP' fl I~ .. IIOO lb 

7-l. Ne - 0 .110 - - 1.60 kIp , ft 
Ve - -386 lb Nr-O 
Mc - - 857 Jb· fl Vc- O 

'\n" 0 Me - l!OOlb·(t 
Vo - JOO lb 7- 17. A,. - .1(20 + b) (b - II) 
MI, - - 600 lb · (, : - 1 

7- 3. Ne .. - ll\O.llb 7- 18. NII -4 kN 
Ve - - 125 1b Vf) '"' - lI tN 
Mr - 117SO lb·" .110 - - llIkN' m 

7- 5. II . .. .tOO N N,.- 4kN 
" ,- 96N Vii - 3.7S kN 
Nc - 400N Mli - - 4.8:75 kN· m 
Ve --96N 7- 1,9. II - jL 
Mr. - 144N'm 7- ! 1. D, - 0 

, -<.- "Ie - 0 F~ .. 560lb 
Ve-- lkN D, - S40 lb 
Mr- 9kN'm £, - 580 lb 

7-7. ,'<- .. 0 A, - 0 
V,_ J . ",- A,-S1O lb , 

N~ - O 
Mc- -!",.,L! 

V, - 2Qlb 7- 9. ,,<- +SO-O 
Mr - I().IO lb· f' ,'<- - - 80 lb ."'<; - 0 

Vr - 0 Va - - 580 lb 
Me + 80(6) - 0 Ma - II60 lb·(, 
Me" - 480lb·m . 1-n. N,, - O 

1- 10. 'y_O 
Vo - - IO.6 kN 

Ve" 0 .110 " 42.5 tN m 
Me" i.5 kN · m 1- 13. N,, - O 

7- 11 . IY · O Vo " M.O N 
V(' .. 3.25 kN Mv- III.ON·m 
Me - 9.375 kN ' m V,," 0 
Nfl - 0 N,:" 1)6.0N 
Vv - ltN M,," II 
MIl " 13.5 kN·m 
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7- 25. Use lOP segment of frame. 7- 38. (Vol , .. !l6i.:N 
No " 200lb (No),_ ... - 65.6 kN 
v" '"' 0 (Va), " 0 
MD - 900 lb'fl (Mill, ... 49.2 kN· m 
Nt." '"' 360 Ib (Mn l

f
- 81.0 kN.m 

V,:- 120Ib (Mol, .. 26.2 kN· m 
Mr. - 11401b'ft 7-3!t (N£>. - 0 

7- 26. Nc " -\" CS(: IJ (vd" ... 53.6 kN 
Vc'" u (Ve) , .. - 87.0 kN 
Mc .. !.f cos/J (Me), - 0 

7_27. Ne· -1.9\ ItN (MI) ." - ·H.5kN·m 
Vr .. U 

(M,;)," - 26.8kN·11I 
Mr - 382N'm 7- lI. O s x < -Im 

7- 29. Beam reaction V .. 3kN 
R ., 7C1Otb M " !3J)kN -!l1 
Me " - 17.8 k.ip· ft 'm < ., < 6m 

7- 30. Nc '" 1.75 kip V - - 61:N 
Vc" - lI44lb 

'" _ (36 _ fixjkN ·m 
Me '" - iI44lb'fl M~ •• - 12 kN·m 

7- 11. N" .. l)4.Ilb 1-42. .J - 8 ' , V .. - 833. M " 1333 
Vo " 1.06 kip x .. 12 ' ,V .. - 33J. /Ic/ - 0 
/l/o - l.06kip ·fl 1-<:). x .. O,V - 4kN 

7- 33. B • .. 29.39 N M '"' - lOkN-m 
8y " 37.5 N 7-45. For V ..... .. ,11"/1" '\/0 " 4.~ kN·m 
No --29AN For M au> .. M"~. Mu" -14 kN· m 
Vo " 37.51'1 Mo· 4JkN-m 
M[) - 8.89N·m 1 ..... .t .. WL 

7- 34_ (Nd) - 0 
M .. TIslI'oLl (Yd, .. IO-Ilb 
~ .. Ll2 ( I'<-)~ .. 10.01b 

"',.r.! (Md," 2{l.Olb · fc M -""""]6 
(Md ) - 72.0 lb ' fc 

7 ..... 7. x - \.75m 
(Md~" - 178 Ib-fl 

M - 759N'm 7- 3S. (Nc)) - - 3ID lb 
7 ..... '.1. 0 :'5 x < 5111 

(Vd. - - ISOlb 
V " 2.5 - lr 

(Vd," 7001b 
M - 2.5x - .l! 

(Md, - IAOkip-fl 
5m < ., < 10m 

(Md. - - \.20 kip' fI 
V .. - 7.5 

(Mel , .. - 7ID Ib - ft 
M - - 7.5.1" + 75 

7- 37_ D," 550N 
7-50. V '"' 250(10 - x) 

B, - 900N 
M .. 25(100t - 5.t ! - 6) 

(Nd) .. 0 
7-5 1_ X " 1.7.J2m (1'<-), _ 4S0N 

M .... .. O.866kN · m 
( I'c-), .. - 550 N 

7-53. O s .>; < 9fl 
(Me), .. - 825 N' m 

V .. 25 - 1.667x! 
Tc - jON-m 

V - Oal .r - 3_S7ft 
(Md , - 675N-m 
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M .. 25x - O.555/it1 
.f - (2~ J · . V - - ]P. /11 - (D I'L 

M ... , - 64.5 lb· [I 7- 71. x - O.Z · . V - 96.7. M - - 31 
9 fl < A' < l3.5 fl 7- 73. x - 0. V - 1.76. M - 0 
V - O .\' .. 0.8 . V .. 0. 16 . .II - 0.708 
M - - 180 x - l. V - - J.!I4.M - O 

7-54. 10' .. 22.2 lblft 
7- 74. x - I· . V - - 9. 17 • .11 - - 1.1 7 

7- 55. V .. {48.0 - fl kip .\· - J · . v - 15.M .. - 7.50 
M .. {48.Ut· - ~ - .SlO) kip'[1 7- 75. .f '" 1.5- . V .. 250. M .. 712.5 

V .. {!(24 - X)l) kip 7-n. x - I ' . V - l75.M - - 200 

M - { - i~(Z4 - .Ii} kip'[1 
.\' - 5 . V - - 225 . .11 - - JOO 

7- 78. x .. 11 - . V .. 1Ol7. M .. - 1267 
7- 57. O s x < 3 rn 

x - 1" .1. V - O. AI - J34 
v ,, {-~.r - 4 } kN 7- 79. X " 6. V - - \100. M .. - 3000 
M .. {_ !xl_ 4x) kN.m 7-111. x .. O. V .. 5. 12. M - O 
J rn < x s 6 m x - 9. V - 0.625. M " 25.9 
V _ (24 - 4x) kN x - 9 ' . V .. - 1.J7S. M - 25.9 
.II " {-2(6 - .ll) kN · m x - 18. V _ - 3.625.M " 0 
V1, , • .. - 10 kN 7-112. .f _ L. V -=-fL. M --ar-
YL _3 ... - 12 kN 7-113. .\·- J. V -- 12. M - 12 
M~_J .. - - 18 kN · m 7-115. V .. " _ 'III' 

7- 511. " '0 - 21.8 1bJfl w - 2 ki pJr! 
7- 59. 10'0 - 8.52 kN/rn M .... .. - 6 ... 
7-6 1. V .. [3000 - SOOT) lb ... - 5 ki plft 

M - pOOOr - 250.1'1 - 6750) lb· fl Use ... - 2 kiplfl. 
.1' - 6fl .\·- 6' . V - 4,,· . .11 - - 120 m 
M~.l.51t .. 2250 lb · fl 7-116. x - Y . V - 11.5. M - - 21 

"'''[ 1 x - 6. V - 2.5. M - 0 7-62. If _ J L! (1_ + x)}- LJ 

7-117. x - JOO. V - n2. M - 277 

AI - - ~;j[ (L + x)' - 1} (4.\" + I.> ] .f - 900. V .. - 487. M .. J50 
7-.'<9. Enlire table 

7-63. V. - 0 TI/D - 78.2 1b 
It, - (2.;.0 - 4)') Ib Joint A: T.. c .. 74.7 1b 
M. - (2": - 24)' + /j.W)lb· fl Joint [); TCI) _ 43.71b 
M) - 8.00 lb ' (I I. - 15.7 ft 
M, - 0 7- '10. 1' - n.Olb 

7-65. .. , . V - 675. M - 135Q 7- 91 • x~ .. 3.911 ft 
. 1' '' 4 ~ . V - 275 . .11 " 1900 7- 93 . }'B .. 3.53 01 
.T - 6.V - - 62S. M " 1250 T..B .. 6.05 kN 

7-<6. .T - 2 ' . V - S. M -- IO TB(" - 4.53 kN 

"" 6 . V - - 5. M - - l0 TCD " 4.60 kN 

74">7. X " 2- . V " - 14.5. ,11 .. 7 Tm., .. Tnt; - 8. 17 kN 

x .. 4 ' . V .. 6. M - - 22 7-"- )'8 - 2.43 In 

74">9. x .. 2- . V _ 7.5. /11 _ 15 Tm,. - 157 N 

x .. " ' . V -- 12.5. M .. l0 7-95. }'a - 8.67 ft 

7- 711. .r -(~)· . V -- ,.. M - I'L )'n .. 7.OJ [I 
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7- 'J7. 

7-98. 
7- 99. 

7- 10 1. 

7- IOZ. 
7- 103. 

7- 105. 

7- H16. 

7- 107. 

7- 109. 

7- 111. 

7- 113. 

7- 114. 

. Ilr/il - IS 
Jom! 8: . ~. TRC .. 200 

v(X/iI - 3)' + 6-1 
JO - 2.r/il 

Joint c: TH~" 102 
V(.I"a - 3)! + 6-1 

.ra " 4.36 fl 
f' .. 71.4 Ib 
w~ .. 0.846 kN/m 

IS _ ~A"l 
21'1/ 

10 - ~(25 - .If 
2 FI/ 

"" - 26-1Ib1fl 
4.42 ~ip 

" .. 2.68 fl 
L .. I3A fl 
<1)' " '0 

d.I" - 21/ 
" '0 , 

)' .. 4F,/ ' 

,. - 7S maLl - xo 
,. .. 150 m au - - (1000 - xo) 
" '0'"' n.8 kN/ m 
). - 46.0( JO . ).1""' + 0.176.r 

T ..... .. 48.7 kip 
T..." .. 5.36 kN 
L - SJ.J m 

,. .. F" [~,(49.o.s .,) - 1]0. 
49.05 Fit 

L .. 45 _ z{...!:!L$inll(49.05(2Q»)) 
"'J.OS Fit 

f i, - II SMI N 
,. .. llSlcosh 0.0425..1' - I) m 
T ... , .. 1.60 kN 
J. .. 15.5 m 
i .. 5inll73S7S00 1).f 

)' .. l35.n !eosh 7.3575(10- 1)., - lJ 
h .. IA7 m 
TOIalknglh .. 55.6 fl 
h .. 10.611 

7_ IIS . . r " Z , V .. 4.86.M _ 9.71 

X " S' . V .. - 1.I4.M - 2.29 
7- 11 7. F,,~ - 310..58 N 

Segmenl C£ 
,vE- SOAN 
vE .. 0 

M£ _ 1l2..5N ·m 
Scgmcrll CD 
N/} - - 220N 
Vi. - - Z20N 
Mll .. - 54.9N· m 

7- WI. /I " O.366L 
7- 119. T ..... .. 76.71b 

7- 11 1. FeD " 6.36-1 kN 

~I} - 1.50 kN 
0 :s x < 3m 
V _ 1.sol:N 
M .. 11.5O.I·l kN·m 
3 m < x s 6m 
V .. - 4..50 kN 
M .. 127.0 - 4..s0.l"I I:N· m 

7- 122.0 5O x < 2m 
V .. 15.29 - 0.196.>"1 kN 

M .. IS.29x - O.098lxl II:N·m 
2 m < x 50 5 m 
V .. 1 - 0.196.( - 2.711 I:N 
M .. 116.0 - 2.71.< - O.0981.r lII:N.m 

7- 123. 0" 50 {J s ISO" 
V - ISOsin{J - 200cos{J 
N - 15Ocoslt + 200sinO 
M - lSOroso + 2005;nll - ISO 
Os y s 2 f1 
V _ 200Jb 

N .. - ISO lb 
M - - 300 - 200y 

7_12.'i . Fe-II - 86.6Ib 
Vo - MII - O 
N/} .. Fell - - S6.6Ib 

Nt; - 0 
Vii - 28.9 1b 
MF; - 86.6 lb· (I 

7- 116. $ " 18.2ft 
7- 117. 1 - 238 ft 

" - 93.75 (1 

Chapter 8 
8-1. I'cos 30" + O.2.'iN - 50(9.8 1) s;n 30" - 0 

I' - IJ{)N 
N - 4!N.~N 

8-2. /' .. 474 N 
8-3. ,,", - 0.256 
8-5. 180(10 eos 0) - OA(\80)(\Os;n OJ - \60(3) .. 0 

o - 52.0" 
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.... fl, '" 0.231 8-39. f) .. 33,4' 
"-,. Yes. !he pole will rcm~in s!alionnry. fl, '" 0.3 
"-,. JO (13 cos 9) - 9 (265in 9) '" 0 8-41. F" '" 0.3714 Fe" 

d - 13.Ht N" '" 0.92S5 Fc,j 
8-10. /' '" Is ib fl. '" 0.-1 
11-11 . I' - lIb 8-42. He can mo"c !he crmc. 
II-B. f.,, - 280N 8-43. 1': - 0.376 

N! - 700N 8-45. N,, - s51.~N 

!' - 3S0N 8, - IIOAN 
11-14. fl, '" 0.5n B, - ILO.4N 
11-15. FB - 200N M - 77.3N· m 
11-17. Nt) - 95.38lb ...... F,, - 71,4 N 

Boy docs no! sLip. ... ,. !' - 589N 
fi, - 36.9 Lb 8-49. T - LI772N 

A, '" 46i! Ib N - 9,81"'1 

B, - 34.6 Lb III, - 1500 kg 

8, - 228lb "-"'. III, - I!OO kg 

11-18. fl, - 0.595 11-51. /' .. 1.02 kN 

11-19. () - 10.6" x - O. I84ft 8-53. N - 4K61b 

11-2 1. N" _ 2UO cos 9 SLipping of board on saw horse 1', .. 24.3 lb. 

N! - 15Ocos9 Slipping 31 ground I~ '" 19.0l0: Lb. 

() - 16.3· l ipping r, - 2l.21b. 

Fcn '" 8.23 Lb Thc saw horse will starl 10 slip. 

11-22. 11 - 12 "-" The saw horse will starlloslip. 

II-B. 1' '' 0.990 Lb 8-55. fl, - O.J(M 
11-25. Assume I' '" lOOlb 8-57. !' - 60lb 

N - L60lb N' - 150Lh 

X - 1.44ft <:: L.5 fl P - 60 lb 
I' _ IOOlb >-58. !' - 90lb 

8-2/i. I' '" 45.0 lb 8-59. f) - 16.0" 

fl; .. 0.300 ..... Nc - 3n31 N 

11-27. The man is capable of moving the rdrige ralor. "'~, - 188.65 N 
The rcfrigerator sli ps. ,11 - 9O.6N ·m 

8-29. 1' - 29.5N N" - 150,92 N 
N" '" 12.9N Na - 72AN ,vs - 679.15N 

8-.\0. Tractor can mo,'c Jog. FB - 37.73 N 

11-3 1. IV '" 836Jb 8-62. !' - 4Slb 

11-33. f;' - 17.321b ... ,. !' - 49.0N 

N" - lJO lb ... s. "'$ - 82.57 lb ,'+ - 275.23 lb 
The bar will nol slip. !' - 90.7 1b 

(' - '''''') ..... P - I.98N 
8-34. 9 _ Ian I ... ,. ,. .. 863 N 2," 
11-35. I' '" O.1271b ... ,. N" _ 1212.18N 

11-37. N .. wa cos 9 Nc • 600N 
b - 2asin f) f' '' 1.29 kN 

8-38. It '" O.48m 8-70. All bloch slip at thc same lime: f' - 6251b 
11-71. /, - 574N 
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8-73. N" .. 0.524011' (,.,), ... .. 0.3 

"'. - 1.1"3511' M - 216N'm 
F" .. O.052401V 11-1112. I ' .. 17.11h 

f' .. O.03291V 1I-1I11. Since F < F_ • .. 54 lb. Ihe man will not slip. 
8-7. I' .. \.38\1' and he will successfully restrain Ihe cow. 

11-75. p o. L.l'IOkN II- IOS. T .. 486.55 1'1 IV " 314.8.2 N 

8-77. 0 .. 7.7 fJ .. (ZI' + 0.9]67)" Tad 

d>, " 11.310" l1lUl.lhe required number of fulilurns is 
F .. 6201'1 II " 2 

S-7< M - S.691h·in 11-106. The man ('an hold Ihe ('falc;n c'luilihrium. 

"19. ,II .. 1451b·ft 11-107. 7j .. 1.8S N .... f) .. 5.455- 7i " 1.591'1 
Ib, .. 14.036· 8-1119. For molion 10 ~ur. bloc!.: /1 will have 10 slip. 
F _ 678N /' - 2231'1 ... ,. F - 71.4N fa " T - 36.791'1 

1J..IIj. F - 49.21'1 8-110. F - 2,49kN 
8-115. f ell .. f"CII 11-11 1. IV .. 39.5 Ib 

F " 1387.3-11'1 8-113. T - 20.191'1 
f;1I) .. 1387.34 N 1;" _ 16.2N 

F1I8 .. 1962 N N,! .. 478,4 1'1 
8 " SASS- /( .. 0.00691 m < 0. 125 m 

~ . .. 14.036· No lipping ()C(:UI"$. 
F - 7.j.ON 11-11", M .. JO.llb·;n. ..... F - l74N 8-115. 1' • .. O.OS6ll 

.... 7. "'c OO I23N 11-117. Apply Eq. 1I-7. 
N ... _ 41.6N F", .. 1.611dp ...... T8 .. 13.6781b 1I-1l K. M - 170N'm 
fo'c - 13.7Ib 

11-11 '1. 
Jl, I'R 

A.,, " 6S.81b M--,-
Joil .. 38.Slb II-Ill . N .. .!. ...... F - UIIr:.N A .. .. :'.{tli - Ill) 
,.. .. 372 N Jl,P (tI~ - IIi) 

11-'11. F .. 4.60 Ir:.N M --- ---
3cos/l tli - tli 

,.. .. 16.1 kN 11-122. Po .. 0.442 psi 
11-'13. N .. IllS lb F _ S73lb 

F .. 136.'l lb 2Jl,I'R 
Yes..jusllmrcly. II- I.ZJ. M ---

3~' 
8-". 1j - S7.7 1b 
11-'15. /I - 14.ZO 

8-125. Ian 4>~ .. 1'1 

11-\17. F - 4.75/' 
sin "'I - •• 

r .. 19.531' \11 + Jli 
f' .. 42.3N 

M " (~)/" '-" ,If - I87N'n, 
T ... .. 616.67 N 

1 + 14,i 
8-IU. ,' .. 21SN 

Tr .. lSO.OON 11-127. {' '"' 17'1 N 
11-10 1. 1i .. 1767.77 N 11-129. 4>," 16.6W 

1j .. 6Sl!.83 111 8 " 13.1 kg 
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8-13(J. ('AI - 0.2 in. 9-2. JI, ,.. 0 

('f )" - 0.075 in. Ay " 26.6lb 

8-1J1. {'A, - 7.SOmm ,\flo" 32.7Ib· [I 

('r>S' ... 3 mnl '-'. x .. O.546m 

0, - 0 8-I.B . 'r" 2.967 mm 
~, .. 7.()6 1'1 

R '"' V p! + (833.85)l MQ - 3.851'1 ·m 
,' .. 814 N (exact) 

9-5. dm "" 1110(1 + t) dx p .. 814 N (approx.) 
8-1J.:I. P ... 42.2Ib III .. ~ lIIoL 

8-1J5. 1-'," OAII .r .. ~ L 
8-U 7. 0 - 5.74" .... .r-O 

P - 96.7N y-I.82f1 
II-U8. P - 299N '-7. :r "'~ 
8-U9. 1' - 2661'1 9-,. rlA _ x J(! dx 
8-14 1. 1' ,.. ~\M~ - 235 N :f - x 
8-142. P - 4()lb .en 
11-143. s - 0.75Om Y- T 
8-145. a) N ... - 5573.86 N T _ 2786.93 N A - OAm~ 

IV .. 6.97 kN .1 '" 0.714 m 
b) N ... .. 6376.5 N Y - 0.3125 m 

N8 .. 5886.01'1 9-10. JI .. 2.25 (11 
T .. 6131.25 N x - 2Arl 
IV .. 15.3 kN y ... 0.857f1 

8-146. a) IV .. 1.25 kN 9-11. A .. ja1llb.\rl 
b) IV .. 6.S9 kN 

~ .. ~ b 
8-147. 1II$ - I.66kg 

y .. !Vub 8-149. N ... .. 1(lOOtb 
Ns .. 2500ib 9- 13. dA - .r'lIx 

r - I250lb 
y 'Z' tx; 

!of .. 2.50kip·f! y .. L33in. 

8-IS{1. /of - 2.21 kip 'f! 9-14. II "f! ln! 

8-151. o .. 35.0" b - , ,- --
II- I!.l. N - 787S.51b In: 

,.. ... 1389.2Ib ("2(b _ /1) 

lhc " 'edges do nO! slip a! COnlaC! su rface AB. ,-
lab In ! 

Nc - 8()(k) lb 9-15. II -1 1111 
"'c" 0 "i '" ~ II The "'edgc~ arc sclf·locking. 

y .. I~h 
Chapter 9 9-17. <lA _ ~\, l l2 lly 

9- 1. dL -~~II)' 1t'1l . 

11m .. v'.Yf+J" y 
, _ _ ' _ yl l2 

y-y • 2111.'1. 
", -ILSkg 

A .. i /ll j - l.64m 

y - 2.29m .i" .. ~u 

Y .. ~ " 
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9- lll File - 2.64 kN 
II , .. 0 
A. - 1.98 kN 

9- 1.9. i - - 0.8331, 
9-21. !lA .. 2k(.f - ~) d.t 

x- x 
.f .. :: 

9-22. .f - LOS in. 
9-23. y .. 0.541 in. 

9-25. lIt1 .. (.f - ~) riA' 

:\' - x 
y .l(x+ ?l 
,I ... 2.25 f\l 

.f" 1.6 fI 
Y .. 1.14 fl 

9-26. .f " 0.45 m 
9-27. 
9-29. 

9-.n. 

9-33. 

9-34. 

9-35. 

9-37. 

9-"'-
9-39. 

9-41. 

9-4l. 

y-0.45m 
uti - >,dx 
Y ~ ~ 
y-~~\! II 
i- L20m 
y"O 
,vs - 55.1 kN 
tI, .. 24.6 kN 

AI ' - 73.9 kN 
. f - 0.914 m 
y .. 0.357m 

IItI - (i - ~)(I)' 
Y - )' 
y - 1ft 
1/1 - ~ p()i'bl 
i ""' ~ <I 
- . 
' -21!0 - 3.1 

uv - r.r d)' 
y ... " 
y-3.2m 
z - i ll 
, _ 4.36ft 

dm - "'~Ir - i + Il)' -~) d>, 
Y ... )' 
Y" ~ lJ 
v .. ..... -.!.~ 
Y .. ! II 
t"-

9-43. III " ~ 

I - f~ r 
9-45. i - I¥Ji~r .. 121 mm 

y .. r;.~ .. 44.1 mm 

f -~ " I24mm 
9-46. x .. - 0.590 in. 

y .. 1.07 in. 
"!".o; 2. 14 in. 

9-47. i '" 0.0740 in. 
y .. 0.0370 in. 
Z .. 0.157 in. 

9-49. x - - SOmm 
y - 88-6mm 

9-50. 

9-5 1. 

9-53. 

9-54. 
9-55. 

9-57. 

9-58. 

9-59. 

.... 1. 

9-62. 

9-<'. 
9-<5. 

(J .. tan - I'.~;;;;_;;~"~. '_,"fIO)" 10.89" 
<I> - 30" - 10.89" .. 19 .• • 
i - 1.65m 
y-9.24111 
Ey - 342N 
A, .. ].J2kN 
A," 0 
X " 2.64 in. 
y .. 12 in. 

y - ~~I; ~!\~I~ ~~ 
- 5.125 in . 
y - 2.00 in. 
y .. 2.57 in. 

x-W-2.22 m 

Y"'~ .. IA1m 

_ 4 { r~J_ r/) 

X" 3".(r} _ r/) 
x - 4.8.1 in. 
y " 2.56 in. 
x - o 

441 .2(10') 
j - - 544mm 

81 (10') 

j - 293mm 
~m " J6Akg 

2.4971( 10- J) 

x - 16.:)47(10 J) - 153 mm 



'-<7. 
'-<,. 

' - 70. 

9-13. 
9-7-1, 
9-75. 

'1-77. 

9- 78. 
'I-N. 
'-" I. 
1)..lI2. 

'-". 
9-l1S. 

..... 
9-417. 
'-",. 

9-91. 

9-',lj, 

?-Il" , 
9-95. 
'1-97. 

)' .. - 15mm 

1.8221( 10 1) 
- .. - ]llmn! 
~ 16.3-I7(IO -J) 

j .. 5.07fl 
Y .. )'sO ft 
i - L'_(';~ 

i .. I;I~,"! .. n.\ mm 

t .. ~~:;;;; .. 225 rum 
fJ .. 30.2" 
i .. -I.56nl 
j' '' 3.07 m 
8 ) .. 4.66 kN 
A , .. 5.99 kN 
i .. 1'1.0 fl 
)' - 11.0fl 

~-!1:;':: - ll lmm 
:. .. 75-1 mm 
j ... 2.19 in. 
y .. 2.79in. 

=- .. 1.67 in. 
]\.02(1rt)". 

:f - -6-U mm 
172(IIY)". 

1l - 80 mm Qr /, .. 48 mm 
Z - 122mm 
A .. 2 .. {I84) .. ] 156 fl l 
V _ ~85rl) 

V _ lOIn) 

v .. 2~(~{atp) + 0.5(1.5)( 1) 

+ 1.667(~)J 
.. n.Om' 
A - I36Sm! 
II .. \4\ inl 

V .. 2".[(] 12.5)(75)(375) + (\87.5)(325)(75)1 
_ O.~mJ 

II " 116in1 

II .. 5O.6in' 
;\ .. 1.06 ml 

I' .. 0.0376 ml 

~ .. 2,,·[O.7S(6) + O.633J{O.780) + 0. 1(0.240)1 
V, - Z05m) 
R .. 29.3 kip 
2.26 gallons 
I'. 2W{(~10"'(4)1) + (2)(8)(4) 1 

.. 536 ml 
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'i-n. v .. 25.5 m' 
9- 99. , \ .. 43.18 ml 

14Alile'" 
9-101. II " Z".r7.5(V'2Ji) + ]5(30)1 - 3.56(10') r,! 
'l- IO!. V '" n-l(lol) fI ) 
'1-103. /, - Hl6 mm 
'1-105. - 176580(2) + 73S7SI/(j,/) - 0 

d - 2.68 m 
'1-11)6. II - 3.65 m 
9-107. FCf)f.F '" 750 It> 

f~9oc '" 1I'l00 Ib 
9-109. /, - 2.7071 - 0.7071, 
IIF/t .. (26.5561\fI - ).! - 6.9367>,~) II)' 

fil '" 41.7 kN 
9-110. Fit " ill Ib 
9-1I 1. fR. ", .j50lb 

9-113. "'8 '" 39.2-1 kN 

"''' '" 58.116 kN 
Nc '" 13.1 kN 

9-114. 1_ '" 2.31 m 
9-115. III " '" 5.89 Mg 
9-117. f~ '" 39.2-1 kN 

f ;' ''' 176.58kN 
(IV_)~ '" Igs.35 kN 
(IV_), '" 282.53kN 
F.S . .. 2.66 

'1-11 11 . . r '" LSI m 
9-11 .... FJI. - 170 kN 
9-121. dll - x:,i.t 

r -f 
y - U3in . 

9-IH. y '" 87.5 mm 

9-123 . .i '" )' - 0 

z - iu 
9-1205 . . r - IN:' '" 2.73 in. 

y .. g'!;i '" 1,42 in. 
9-126. i " 0 

Y .. 1.63 in. 

9-121. y - - O.261u 

9-1l9. dFJI. '" 6{- ~ + 340) li.t 
fil '" 7.62kN 
.i - 2.7-Im 
y - 3.00 m 
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Cha pte r 10 .. [t!(200)(lOO)' + 200(300)(450): 
10-1. ,I"~ .. ]2 - (4) )1'lJ flv + [-!pS)," (-w(15)!(4SO)lj 

I, .. 0.533 m' 
.. 10.3(10") mm' II>-L I, .. 2.67 m' 

IO-J.,t. ,. .. 22.5mm 
10-3. I, .. 0.0606 m' 

I, .. J..l.J(10") mm' 
10-5. 1M .. (2 _ll') dy 10-35. I, .. 1l2( 10") mm' 

J, " 2. l3m' It)..J7. I, -ih(2)W)j .. 2!~(J}(1») .. J(1)(2.Jfj 
I .... 1. - 4.57m' 

.. 74 ln' 
10-7. 1, - 0.205 m' 11>-311. J " l70mm 
10-9. .M -I I - (1)"J',. I" .. 722(10)- mm' 

I , " RWI m' 10-..l9. I, .. 2.17( 10 JI m' 
flA - 2r'1h: 11l-41 . Consider 31argc: rc:nang~ and I hole. 
I , .. O.ztCi7 m' I, .. 52.7(10") mm' 
10 " OA91 m' 10--12- I, .. 2.51(10") mm' 

10-10. I , ,, J07in' 10-43, .r .. 2.00 In .. I" .. 6-1 .0 m' 
IG- I! . I," IO.7 m· 10-45. ConSider ihrct segments. 
IU-IJ. 11;\ .. (2 - lfl) ,iT I, .. .s4S( \0") mm' 

I, .. 0.333 in' 111-46. I, .. 548(10") mm' 
10-14. I, .. 19.5 in' 10- 17. 'T .. 914( 10") mm' 
10-15. I, .. 1.07 in' 10-49. Consider three segments.. 

10-17. IIA .. (II - tr) ./J 1,_" 12~ (l{f) 11ll1l ' 

I .. .LJlb' HI-SO. I" .. 1.21{ IOt ) mm' , .. 
III-51. I, .. 2.51(10") mm' III- III. t , " ~h' 

j .. 'tP .. 4.7S In. 
I, - ,~II~ 

III-53. 
111-19. 

I" .. 1S.S96 + J6.37S .. S2.J in' 
111-2 1. 1M .. ~' !l llx 11>-5< I, _ 388 in' 

II - J07 m' HI-55. t, .. 22.9( 10") mm' 
11I-2!. I, - 9.05 m' III-57. Conside r renangul3r scpucnts. 
10-21. II .. 30.9 in' 226 mm x 12 mm. 100 mm x 12 mm. and 
III-!!. 1M .. (,,18) II, ISOmm x 12mm 

I, . .. 
." .' f, .. 1IS{10") mm' , IO-Sli. I," 153(10")mm' 

10-26.. 
." ,' 10-59. f" .. 30.2(10") I1lm' ,--, 

16-61. :r .. ~ 
10-27. )' .. 2.20 in. Y - .I' 

I, ... S7.9 .n' IIJ' .. X .1.1' 
10-29. I," ,\(2)(6)' + 2U:(~)(I)J + 1(4XI.S)!] I" .. 0.667 in' 

.. S4.7 m' 11Hi!. ,', J,, " • 
10-30. J, " 76.6{ 10")mm' I ..... I.," -IlIm' 
16-31. I, " ~5.s(I()"i)mm· 11Hi5. 1M .. !tx' + It! + ~.t) lI.t 
11l-33. (9 ...... .. [~(200)(JOO') i .. . r 

+ ~(200)( 300)(200)! ] r .. ~ 
I" .. 3.12 m' 
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10-66. 1'1 .. 0.B3 m' I.- .. 8.07 in' 

11)..67. IA> .. f~bl/,l (tI~) , '* .W) 

10-69. 1111 .. :rlll,/X.:!' _ ;'\:.)' _ ~ (8)~)l - ·W;> 
I" .. 10.7 in' 1~7. I ..... .. 11 3(10") mm' 

10-70. I" .. 35.7 in' 1_ - 5.03( IO"J mm' 

10-71. I" .. 36.0 in' 
(O~) , .. 12.3") 

10-73. Consider three scgmc nls. (tI~h" n.T';> 

I" .. 17. I{loOl mm' '''''. ( '. )' 
10-74. "," - l lOin' 

IIm - prr 'G-h~ liz 

10-75.. .< .. -18.2 mm 
01/ . .. ! prr(,o - ~:)'.t! 

I. - 112(10") mm' " It 
1 ~ .. 258( lo')mm· 1< .. fo mrJ 
I.~ - - 126(10") mm' 10-90. I , ,, 1~m') 

IO-n. Consider th ree segments. 10-91. ( - f,; ml l 
1'1 " - 13.OS(IO") mm' 10-9J. dm _ 1>7r(50.r) dx 

10-78- I. - -13.9 in' III, - Y (2500 xl) Ib 
I~" 23.6;n' k, .. 57.7 mm 
I •• - 17.5 in' 10-9",. I.-;mb! 

IO-N. y - 1S.25in. 
I. - I{)OJ in' 

10-95. I , .. ~~ ml,l 

I, . .. 23lS in' 10-97. III, .. ~1:·'/: 

1 •• - II l in' I, .. 87.7(JO') kg· ml 

10-81. I , - 107.8.3(10") mm' 10-'" 1< _ 63.2 slug ' fl l 

I." 9.907( 10") mm' 10-'19. I ,." 1.71{IO')kg·m1 

I" .. - 22..1(10") mm' 10-101. 0.5 _ ~~~rt'lp I.~l~ 

, __ - 113(10") mOl'. (O,h .. 12.3" L - 6.39m 

1_" 5.03(10") mm'.(o,») - - n.7" 10 .. 53.2 kg · ml 

10-82- y .. 82.5 mm 1001Ol. I, - O.ISO kg · ml 

I • .. "'3.4(10') mm' 
10-103. I, . .. 0.14-1 kg · ml 

I • .. 47.0( IcY') mm' 10-105. y _ UJI/J?ill .. 1.78m 

I •• .. - 3JIS(IcY') mm' Ic, .. 4..15 kg· ml 

10-83. ;< .. -IS.2 mm 10-1(\6. I, .. 2.25 kg· ml 

I • .. 1I2( lif) mm' 10-107. I , .. 3.25 g ' ml 

I • .. 25S{ 10") mm' 10-10'1. 10 .. 8-1.9-1 slug · [t l 
I •• _ - 126(lo') mm' IA .. 222 slug' ft l 

10-S5. j' .. S.25 in. 10-1 10. 10 .. 0.276 kg ' ml 

I", " 173.72 in' III- III . 10 ... 0.1 13 kg· ml 

R - 128.72 in' 10-113. Consider four triangles and 3 rectangle. 

I. - 109 in' I) - 0.187J"' 

I"" 13S in' 10-1 14. I, _ ,1jU ' 

I ... '" III in' 10-11 5. ,. .. 0.875 in .. I , .. 2.27 in' 
10-116. :f .. 1.6S in. 111-1 17. <fA - !(4 - .r) til: 

y .. 1.68 in. I y " 2. 13 ft' 
t-. . .. 31.7 in' 10-1 III I, .. 0.610 ft ' 
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10-119. 1, .. 9 14( 10") mm' 
I, . .. 146(10") mm' 

10-11 1. dA .. ,.lfJ ,I), 

<II,, " !~'/J 
~" - 0.1875 m' 

Chapter 11 
II- I . moo 2.45in 0 

)1 - 2(2.4 sin 6) + b 
F,w " 3.92 kN 

11- 2. " _ Ooand6 _ 73.lo 
11- 3. 
11- 5. 

11-<-
11_7. 

11- 9. 

" .. 41.2" 
. f,, - 6tosO 
Ye - 3sin6 
F" .. [O.Olb 
Fs - IS lb 

" - 24.!r' 
y" - 2(0.2 cos 6) 
Ii),,, .. 0..5 S8 

f f: - 177 N 
11- 10. F - 60N 
11- 11. I' .. 2k Ian 6 (2/ cos fJ - 10) 
I I_ IJ. fe - lsin8 

y,,-3sinO 
" .. [J.9° 
, .90' 

11- 14. IUr" m(;) 
11- 15. 0 " cos l(ti:)l 
11- 17. yc. - O.15sinO + b 

YG, .. 0.25 sin 0 + II 
.f (· .. 0.25 tOS t! 
k ... I66N/m 

II_ Ill. F - 2001'1 

11- 1'1. fJ .. 38.8· 
11- 21. fa " 0.5 cos (/ 

),,, - 1001/1 

.1" - 1 sin 0 
f;, .. 4.961Ib 
k _ 10.1I1b1ft 

I I- ZZ. % - 2.S Ib 
II- D. of " 16in. 
11- 25. Sl _ .4 + 3: - 20"(:") (3) ros (90" - 6) 

F - 1591b 
11- 26. of '" 0..590 ft 

,/~V 
tf.r- .. 12.2 > 0 

11- 27. 

II - Z9. 

11- 30. 
11- 31. 

11- 33. 

x .. - 00424 ft 
d! V 
---122 < 0 dr . unstable 

, • 90' 
ff!V 
tlrr - 16 > 0 stable 

fJ .. 36.9' 
til l ' 
,/rr .. - 25.6 < 0 ult';table 

V _ 5S86 ~ fJ + 9I!1U sin 0 + 39240 
6 " S9.()" 

% - 275Ib 
Ir .. 8.71 in . 

tI!~ .. 70 > O 
,/lr' 

~Iable 

V _ 6.25 cos! O + 703575 sin fJ 

+ 245250 -+- 4.'JOSh 
6 " 36.1 " 

I I- J..I . .r - 1.23 m 
11- 35. 6 " 70.!r' 

11-37. 

I I_JIl 

tltv 
- .- Im > o 
'/~ 
/I - 17.1" 

stable 

,lt V 
f/rr .. - 176-1 < 0 unstable 

v _ - 4.415"' l;sin8 
+ 202.5 cos! e - 40S cos 6 - 9.81 III~I> + 202.5 
m e. " 7.IOkg 
6 - 64.11· 
,/!I' 
,/rr - U5 > 0 stable 

(J .. O· 
tI! I ' 
-- -72< 0 
/Iq! 

unstable 

11- 39. /I - 20.2" 
tf! v 
- . ... 17.0 > 0 stable 
'/~ 

11-4 1. V - ",s(r+llcos6) 
Thus. tllc cylinLlcr is in unstable equilibrium at 
6 - ()"(Q.E./). ) 

11-42. II - 0 
11-43. 11 - -..13 , 
11-45. y .. 1(11 + ,I) 

V-~ros{J 

,/ ... t 
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d1y II -55 • . -.,. 
ll-Ki. 8 - 0". -, --12.6 < 0 unstable t/l y 

,'~ , - 1524 > 0 stable 
11-47. I • .. 1.35 in. ,,~ 

1 1 -4~. )' - t. , (j - 9.47" • t/1V 
V _ \~..." ;~,. ~J<t:1 cos (j ttl -- In5 < O unstable 

" <1 - 0,586 " II- 57. y - 25sinI 8 + 15cos(J 
11-5(1. 1' - 512N (J - O· 
II -5 1. (J - 90" ,,' . '(") ,/ l V 

(j - sIn lI.t. 
,lttl - 35 > O stable 

11- 5J. V - SOsin1(J - IOOsin(J - 50 cos (j + 50 
(j - 37.S" (j - 72.S· 

d1V ,/l V 
unstable -, - 125.7 > 0 stable ,Iff - - 455 < 0 

,'IY 
h " ~~ ' 11- 54. r -(Y) mg 11-5S. 
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